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ABSTRACT

Abstract: A thin-shell wormhole is crafted by the cut-and-paste method of two Bardeen de-Sitter black holes
using Darmois-Israel formalism. Dynamics and stability of the wormhole are also studied around
the static solutions of the linearized radial perturbations at the throat of the wormhole.
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I. INTRODUCTION

The first wormhole solution was discovered by Ludwig Flamm [1]. It was rediscovered as the Einstein-
Rosen bridge [2] while Einstein and Rosen were trying to develop a non-Boscovichian, i.e., singularity-free, 
atomic model of gravity and electromagnetism. Later, Wheeler developed a theory about geons [3], 
topologically unstable gravitoelectromagnetic quasi-solitons that can connect widely separated spacetime 
regions. Misner and Wheeler tried to develop the theory of geons into a geometrical unified classical theory 
[4]. In Misner and Wheeler project the wormhole term was coined.
Between the development of geons and the rejuvenation of Morris and Thorne traversable wormholes [5], Ellis 
studied the flow of “substantial ether” through a drainhole [6]. Also Bronnikov analyzed tunnel-like solutions 
[7], which are considered the precursors to the studies of wormholes in modified theories of gravity [8]. Geons 
reappear again in galileon theory as a scalar-tensor theory [9]. Even in Euclidean space, Ellis variant p-norm 
drainholes can be used in pedagogical examples to study electrostatics [10–13]. More on wormholes can be 
found in Ref. [14].
To find a wormhole solution to field equation, one can choose some equations of state such as phantom energy [15, 
16], Chaplygin gas [17], and/or quintessence [18]. Then, rotating spacetimes [19], evolving wormholes [20], thin-
shell spacetimes [21], and/or dust shell wormholes [22] can be implemented to the field equations to “ameliorate” 
the violation of energy conditions associated with the laring-out condition, which is necessary for the field 
equations to have wormhole solutions. There are numerous studies that consider different black holes in de-Sitter 
and anti-de-Sitter spacetimes [23–28]. Also thin-shell wormholes can be obtained from regular black holes [29, 30], 
which is the general theme of this letter.
In this letter we construct Bardeen de-Sitter thin-shell wormholes. The Bardeen black hole [31] is an interesting 
regular black hole, i.e., with no geometric singularity. Bardeen black hole can be discerned as a 
quantum-corrected Schwarzschild black hole [32] by applying the generalized uncertainty principle and its 
corresponding tunneling approach with thermodynamics [33–40]. Also Bardeen black hole can be 
implemented in de-Sitter background (BdS) [41]. The BdS solution in arbitrary dimensions and the 
corresponding thermodynamics for each dimension are also considered [42].
In section (II), we use Visser’s technique of cut-and-paste [43, 44], together with Darmois-Israel formalism 
[45], to connect two BdS regions of spacetime through a thin shell. We also study the components of the 
stress-energy-momentum surface tensor using the extrinsic curvature. We comment on the violation of energy 
conditions in terms of stress components. We also calculate the attraction and repulsion nature of the wormhole 
throat in terms of the acceleration.
In section (III), we analyze the linear stability of BdS thin-shell wormhole by studying the concavity condition on 
the “speed of sound” as a function in BdS parameters: the mass, the magnetic monopoles and the cosmological 
constant. And we see the change in stability regions upon varying the amount of magnetic monopoles while 
both mass and cosmological constant are fixed.
In section (IV) we summarize and comment on the results of the previous two sections.
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II. VISSER’S CUT-AND-PASTE TECHNIQUE AND THE DARMOIS-ISRAEL FORMALISM

The BdS black hole is constructed [41] starting with the metric

ds2
BdS = −

(
1− 2m(r)

r

)
dt2 +

(
1− 2m(r)

r

)−1
dr2 + r2dθ2 + r2sin2(θ)dφ2 . (1)

The field equations are derived from the action [46]:

A =
ˆ
d4x
√
−g

R− 2Λ
16π − 1

4π
3M
|µ|3

( √
2µ2F

1 +
√

2µ2F

) 5
2
 , (2)

where µ is the magnetic monopole charge, M is the mass of the black hole, and F = 1
4F

µνFµν is the trace of
electromagnetic field tensor Fµν .
Therefore eq.(1) becomes:

ds2
BdS = −f(r)dt2 + f(r)−1dr2 + r2dθ2 + r2sin2(θ)dφ2, (3)

where

f(r) = 1− 2Mr2

(r2 + µ2)3/2 −
Λ
3 r

2 . (4)

And by finding the roots of f(r) = 0, or the roots of the decic polynomial

r10Λ2 + r8 (3Λ2µ2 − 6Λ
)

+ r6 (3Λ2µ4 − 18Λµ2 + 9
)

+ r4 (Λ2µ6 − 18Λµ4 + 27µ2 − 36M2)+ r2 (27q4 − 6Λµ6)+ 9µ6 = 0,
(5)

one can determine the location of the inner, event(rh) and cosmological (rc) horizons of the BdS. However, we
must avoid the combinations of M,µ, and Λ that lead to formation extreme BdS [26]—at which the event and
cosmological horizons coincide by setting f(r) = f ′(r) = 0 —so the throat radius a of the wormhole still exists
as rh < a < rc.
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Figure 1: The behavior of grr metric component for Bardeen de-Sitter (BdS: M = 1,Λ = 0.01, µ = 0.5),
Reissner-Nordstrom de-Sitter (RNdS: M = 1,Λ = 0.01, Q = 0.5) and Schwarzschild de-Sitter (SdS:

M = 1,Λ = 0.01).

Following the Cut-and-Paste technique [43, 47], one can easily construct a geodesically complete manifold
Γ = Γ+

⋃
Γ− by pasting the region of timelike hypersurfaces, named a thin shell ∂Γ = ∂Γ+

⋃
∂Γ− , where

∂Γ± := {r± = a | a > rh}, that bounds the bulk of two BdS. This follows after cutting spacetime regions
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Γ± := {r± ≤ a | a > rh} inside the throat radius a.
Now we follow Darmois-Israel formalism [48, 49] by defining the coordinates of Γ as xµ := (t, r, θ, φ) and the
coordinates of the shell ∂Γ as ζi := (τ, θ, φ), where τ is the proper time that a comoving frame measures on the
throat of the wormhole. The induced metric of the shell is:

ds2
∂Γ = −dτ2 + r2dθ2 + r2sin2(θ)dφ2, (6)

where the parametric equation that relates Γ to ∂Γ is r = a(τ).
We use the Gauss-Kodazzi decomposition of spacetime such that it yields Israel’s junction condition on Γ. The
condition is described by the energy momentum tensor on the shell Sij = diag (−σ, pθ, pφ) as

Sij = − 1
8π
([
Kij
]
− δijK

)
, (7)

where the Kij is the extrinsic curvature,
[
Kij
]

= Ki +
j −Ki −j , and K =

[
Kii
]
.

We define the unit vectors n±µ normal to ∂Γ as

n±µ = ±
( ∣∣∣∣gαβ ∂f∂xα ∂f

∂xβ

∣∣∣∣−1/2
∂f

∂xµ

)
. (8)

And the extrinsic curvature, or the second fundamental form, is defined in terms of the unit vectors as

K±ij = −nµ
(
∂2xµ

∂ζiζj
+ Γµ±νρ

∂xν

∂ζi
∂xρ

∂ζj

)
(9)

We substitute eq.(4) in eq.(8) to get:

n±µ =
(
∓ȧ,±

√
ȧ2 + f(a)
f(a) , 0, 0

)
. (10)

Then, we substitute eq.(10) in eq.(9) to get the components of the extrinsic curvature as

Kθ ±θ = Kφ ±φ = ±1
a

√
1− 2Ma2

(a2 + µ2)3/2 −
Λ
3 a

2 + ȧ2 ,

Kτ ±τ = ±
6Ma3

(µ2+a2)5/2 − 4Ma
(µ2+a2)3/2 − 2Λa

3 + ä√
1− 2Ma2

(a2+µ2)3/2 − Λ
3 a

2 + ȧ2
.

(11)

We use the the last results to define the surface stresses as

σ = − 1
π
Kθθ = − 1

2πa

√
1− 2Ma2

(a2 + µ2)3/2 −
Λ
3 a

2 + ȧ2 , (12)

p = pθ = pφ = 1
8π
(
Kττ +Kθθ

)
= 3

8πa

1
3 −

2Ma2

(a2+µ2)3/2 − Λ
3 a

2 + 2Ma4

(a2+µ2)5/2 + aä+ ȧ2√
1− 2Ma2

(a2+µ2)3/2 − Λ
3 a

2 + ȧ2
. (13)

And for the static configuration, i.e., ȧ = ä = 0, the surface stress become

σ0 = − 1
2πa0

√
1− 2Ma2

0
(a2

0 + µ2)3/2 −
Λ
3 a

2
0 , (14)

p0 = 1
8π
(
Kττ +Kθθ

)
= 3

8πa0

1− 2Ma2
0

(a2
0+µ2)3/2 − Λ

3 a
2
0 + 2Ma4

0
(a2

0+µ2)5/2√
1− 2Ma2

0
(a2

0+µ2)3/2 − Λ
3 a

2
0

− 1
4πa0

1√
1− 2Ma2

0
(a2

0+µ2)3/2 − Λ
3 a

2
0

. (15)

From the last two equations, surface density σ0 imposes the violation of the weak energy condition (WEC).
Meanwhile, the null energy condition (NEC), σ0 +p0 > 0, can be maintained with no need to any exotic matter

as long as f(a0) < 6Ma4
0

(a2
0 + µ2)5/2 . And for the strong energy condition (SEC), σ0 +3p0 > 0, it is also maintained

with f(a0) < 9Ma4
0

(µ2 + a2
0)5/2 −

6Ma2
0

(µ2 + a2
0)3/2 − Λa2

0.
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Figure 2: The energy conditions expressed in terms of σ and p vs. the throat radius a0 with fixed M = 1 and
Λ = 0.01, and different values of magnetic monopole: µ = 0.1 for figure.2.(a) and µ = 1 figure.2.(b).

For a BdS black hole with no radial pressure, pr = 0, and a mass density that it localized at the throat
ρ = σ0 δ(r − a0), the total amount of exotic matter necessary to keep the wormhole open is

Ωσ =
ˆ 2π

0

ˆ π

0

ˆ −∞
∞

√
−g σ0 δ(r − a0) dr dθ dφ = −2a0

√
1− 2Ma2

0
(a2

0 + µ2)3/2 −
Λ
3 a

2
0 . (16)

We can examine the attractive and repulsive characters of the constructed thin-shell wormhole by studying the
four-acceleration aµ = uν∇νuµ, where uµ = (1/

√
f(r), 0, 0, 0). The geodesic equation of a test particle is

d2r

dτ2 = −ar , (17)

where the radial acceleration is given by

ar = Γrtt
(
dt

dτ

)2
= Mr3

(r2 + µ2)5/2 −
Λ
3 r −

2Mµ2r

(r2 + µ2)5/2 . (18)

We notice that the wormhole has attractive or repulsive nature if ar > 0 or ar < 0 respectively.
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Figure 3: Attraction and repulsion in terms of acceleration ar vs. the throat radius a with fixed M = 1 and
Λ = 0.01, and different values of magnetic monopole µ.

III. LINEARIZED STABILITY ANALYSIS

The stability of the wormhole can be checked [47] by performing linear perturbation about the static configura-
tion (a = a0) for eq.(14) and eq.(15). One can easily notice that differentiating eq.(12) with respect to τ yields
the continuity equation

d(σA)
dτ

+ p
dA

dτ
= 0 , (19)

which directly leads to

σ′ = −2
a

(σ + p) , (20)

where A = 4πa2 is the area of the wormhole throat, σ′ = σ̇/ȧ, the dot means d/dτ , and the prime means d/da.
If we rearrange eq.(12), we define a potential function

V (a) = f(a)− 4π2a2σ2 = −ȧ . (21)
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Then we substitute with eq.(20) in the first derivative of eq.(21) to get

V ′(a) = 6Ma3

(µ2 + a2)5/2 −
4Ma

(µ2 + a2)3/2 −
2Λa

3 + 8π2aσ(σ + 2p) . (22)

And for the second derivative of (21), we parameterize the pressure to be a function in the density p := p(σ)
[21]. Then we introduce a new parameter ϑ(σ) = dp/dσ, which can be seen as the “speed of sound”. And the
second derivative of (21) becomes

V ′′(a) = f ′′(a)− 8π2 [2σ(σ + p)(1 + 2ϑ) + (σ + 2p)2]
= f ′′(a) +

[
1
a2

(
af ′(a)− 2f(a)

)(
1 + 2ϑ

)
− 1

2

(
f ′(a)
f(a)

)2
]
.

(23)

To linearize the model, we apply Taylor expansion to the potential function around the static point a = a0 such
that eq.(21) becomes

V (a) = V (a0) + (a− a0)V ′(a0) + 1
2(a− a0)2V ′′(a0) +O

[
(a− a0)3] . (24)

We use eq.(14) and eq.(15) to evaluate eq.(21) and eq.(22) at a = a0. Therefore, we get V (a0) = V ′(a0) = 0.
Meanwhile eq.(23) becomes

V ′′(a0) = 30a2
0M

(a2
0 + µ2)5/2 −

4M
(a2

0 + µ2)3/2 −
30a4

0M

(a2
0 + µ2)7/2 −

2Λ
3

− 1
a2

0
(1 + 2ϑ)

(
6Ma2

0

(µ2 + a2
0)5/2 −

2
a2

0

)

− 1
2

− 4Ma0

(µ2+a2
0)3/2 + 6Ma3

0

(µ2+a2
0)5/2 − 2Λa0

3

1− 2Ma2
0

(µ2+a2
0)3/2 −

Λa2
0

3


2

.

(25)

Of course we can use (1 + 2ϑ) = (σ′+ 2p′)/σ′ to express ϑ in terms of the metric parameters M,µ, and a . But
we will not as we need to study the behavior of ϑ when the throat is stable.
The concave down condition V ′′(a0) < 0 results in provoking either expansion or contraction of the throat when
any small perturbation occurs. While the convex, or the concave up, condition V (a0)′′ > 0 stabilizes the throat
with a local minimum of V (a0) at a0. Therefore, we solve for ϑ0 at that local minimum to get

ϑ0 <
1
2

{
1− a2

0(
6Ma2

0

(µ2+a2
0)5/2 − 2

a2
0

)[ 30a2
0M

(a2
0 + µ2)5/2 −

4M
(a2

0 + µ2)3/2 −
30a4

0M

(a2
0 + µ2)7/2 −

2Λ
3

− 1
2

− 4Ma0

(µ2+a2
0)3/2 + 6Ma3

0

(µ2+a2
0)5/2 − 2Λa0

3

1− 2Ma2
0

(µ2+a2
0)3/2 −

Λa2
0

3


2 ]}

.

(26)

Or

ϑ0 <
1
2

(
1−
−

4Λa2
0

(
6µ2M−3Ma2

0+Λ(µ2+a2
0)5/2)2

3(µ2+a2
0)2(6Ma2

0+(Λa2
0−3)(µ2+a2

0)3/2)2 + 30Ma2
0

(µ2+a2
0)5/2 − 4M

(µ2+a2
0)3/2 −

30Ma4
0

(µ2+a2
0)7/2

6M
(µ2+a2

0)5/2 − 2
a4

0

)
. (27)

IV. DISCUSSION

In this letter we construct Bardeen de-Sitter thin-shell wormhole. We use Visser’s technique of cut-and-paste
with Darmois-Israel formalism to connect two BdS regions of spacetime through a thin shell. We compare the
asymptotic behavior of the metric with that of SdS and RNdS as in fig.(1). We also study the components of
the stress-energy-momentum surface tensor using the extrinsic curvature. We find that WEC is always violated.
However, both NEC and SEC can be maintained upon imposing the inequalities that relate f(r) to f ′(r). The
energy conditions are shown in fig.(2). Then, we calculate the radial acceleration to express the attractive and
repulsive nature of the wormhole throat. The results are plotted in fig.(3).
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Figure 4: Regions of stability of the thin-shell wormhole for the Bardeen de-Sitter solution for fixed values of
M and Λ, and different values of µ. Stable regions are the blue shaded domains.

Also we analyze the linear stability of BdS thin-shell wormhole by studying the concavity behavior on the “speed
of sound” as a function in BdS parameters: the mass, the magnetic monopoles and the cosmological constant.
And we see the change in stability regions upon varying the charge of magnetic monopoles while both mass
and cosmological constant are fixed. The analysis is demonstrated in fig.(4). We conclude that for a diminutive
value of cosmological constant and small value of magnetic charge, relative to the amount of mass, we find
different regions of stability. Once the mass is equal to the magnetic charge, we no longer have stability regions.
So to keep the Bardeen de-Sitter thin shell wormhole, and for a minute value of the cosmological constant, we
suggest choosing the value of magnetic charge to be always less than the value of mass.
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