

1 Article

2 **Latent GLM Tweedie Distribution in Butterflies**
3 **Species Counts**4 **Rezzy Eko Caraka^{1,2,3,*}, Rung Ching Chen^{1,*}, Toni Toharudin², Isma Dwi Kurniawan⁴, Asmawati**
5 **S⁵, Doni Ropawandi³, Muhammad Fijar⁶, Indra Indra⁵, Muh Fahmi Rustan⁵**6 ¹ College of Informatics, Chaoyang University of Technology 168, Jifong East Road, Wufong Dist.,
7 Taichung City 41349, Taiwan (R.O.C.)8 ² Department of Statistics, Padjadjaran University, Bandung, Indonesia, 45361.9 ³ The National University of Malaysia, Bangi, Selangor, Malaysia, 43600.10 ⁴ Department of Biology, UIN Sunan Gunung Djati, Bandung, Cipadung, Bandung, West Java, Indonesia,
11 40614.12 ⁵ Informatics, Faculty of Engineering, West Sulawesi University, West Sulawesi, Indonesia, 91412.13 ⁶ University of Malaya, Kuala Lumpur, Malaysia, 50603.

14 * Correspondence: rezzyekocaraka@gmail.com (R.E.C.) and rungching@gmail.com (R.C.C.)

15 **Abstract:** Background: The diversity of butterflies relies on the accessibility of food plants and the
16 quality of their habitat. Methods: The purpose of this study was to evaluate the diversity butterfly
17 based on latent GLM in 3 different Habitat. At the same time, we perform the step construction of
18 Tweedie Distribution both in species levels and individual level. Results: Our finding can be shown
19 by accuracy AIC, AICc, and BIC. Conclusions: In modelling with latent glm tweedie it can conclude
20 that the our model is suitable for use at the species or individual level.21 **Keywords:** tweedie; GLM; species counts; butterfly24 **1. Introduction**25 Research on ecology is always interesting to study, especially in species modelling. The scope of the
26 most essential Ecological studies is ideally about changes in the population of a species at different
27 time vulnerable, the transfer of energy and matter of living things to one another, as well as the factors
28 that influence and the occurrence of interrelationships between living things (animals, plants, and
29 microorganisms, and The environment is a unity of space with all objects, power, conditions, and
30 living things, as well as behaviours that affect the survival and well-being of humans and other living
31 things. Ecology has a variety of levels, ranging from the smallest organisation or cell to large scale
32 such as biosphere. Based on the composition of the types of organisms studied, Ecology can be
33 divided into autecology and synecology. Aukelogi discusses the study of individual organisms or
34 individual species whose emphasis is on the histories of life and behaviour in adjusting to the
35 environment, for example, studying the life history of a species, and its adaptation to the
36 environment. Meanwhile, Synecology discusses the study of groups or groups of organisms as a unit.
37 For example, studying the structure and composition of plant species in swamp forests, studying the
38 distribution patterns of wild animals in natural forests, tourist forests, or national parks.39 Ecosystems are dynamic, continually changing, can be fast, or can be for thousands of years. The area
40 of the ecosystem varies significantly from small to large and large. The diversity of animals in
41 Indonesia is high so that it is also known as Megabiodiversity. Insect is the most dominant fauna
42 group in almost every habitat type, both in terms of diversity, abundance, and its role in the
43 ecosystem. One member of Insecta who is very diverse and has an important role in the ecosystem is

44 the butterfly. Butterflies are diurnal insects belonging to the Order Lepidoptera. To date, there are at
45 least 28,000 species of butterflies that have been described worldwide and nearly 80% are found in
46 the tropics [1]. Indonesia as a mega-biodiversity country has a high level of endemic species of
47 butterflies. The number of Indonesian butterfly species is estimated at 1,600 species. This number is
48 only less than Brazil and Peru which have approximately 3,000 species [2].

49 Butterflies have a very important role in the ecosystem. This group is one of the important pollinators
50 that help the process of pollinating various species of flowering plants. In addition to helping
51 pollination, butterflies also play a role in increasing plant genetic variation. This is because butterflies
52 can carry pollen from one individual plant to another so that cross-pollination can occur. In the food
53 network, butterflies are a source of food for various predatory fauna located at higher trophic levels
54 such as birds, reptiles and amphibians. Butterflies also have important economic value. Larvae from
55 several species of butterflies can produce high economic value silk. Many species of butterflies have
56 beautiful colors and shapes so that many are used as a tourist attraction. Besides having important
57 ecological and economic functions, butterflies are also a bio-indicator of the balance of an ecosystem.
58 Butterflies are very sensitive to changing environmental conditions so they are often used as key
59 indicators in monitoring changes in ecosystems. In addition, butterflies can also be used as indicators
60 to assess the success of ecosystem restoration [3].

61 The existence of butterflies is greatly influenced by the condition of the habitat where they live. In
62 general, the diversity and abundance of butterflies tend to be high in locations with diverse
63 vegetation structures. Butterflies also tend to prefer open spaces that have water sources [4].

64 One of the diversity that is classified as high is a butterfly. The existence of butterflies is strongly
65 influenced by the carrying capacity of existing habitats including physical and biotic components.
66 This causes the butterfly is one of the insects of the order Lepidoptera which has a beautiful shape
67 and colour pattern with wings covered with varying fine scales. Butterflies are one type of insect that
68 has essential value as pollinators and prey for insectivorous animals [5]. Butterflies are one of the
69 pollinators in the process of flower fertilisation. Ecologically this has contributed to maintaining the
70 balance of the ecosystem so that changes in diversity and population density can be used as an
71 indicator of environmental quality [6]. Butterflies are fascinating insects, colourful, and present
72 everywhere. The larvae are clustered on a host and the transformation of their larvae into butterflies
73 is very easily observed.

74 On the other hand, some species species that are rarely found actually prefer dense forest habitat that
75 has not been disturbed. This pattern of population distribution makes butterflies very interesting to
76 be used as statistical object modeling species counts. One of the main problems in modeling species
77 counts is that there are often quite a lot of data with zero values and there are also latent variables
78 outside the observation that also influence so that the statistical method that can be used is very
79 limited. In this work we will perform latent glm with laplace approximation [7] and tweedie
80 distribution to see the diversity of butterfly in three different habitat.

81

82 **2. Materials and Methods**

83 **Tweedie Latent GLM**

84

85 In general, statistical modelling is abstract which is a simple concept from a theory that is generally
86 used in the scientific family, research technology on the relationship between real phenomena is the
87 basis of the goals of science and plays a vital role in everyday life. Nowadays regression analysis is a

88 popular tool for finding out these relationships. Regression analysis is one method for determining
 89 the causal relationship between one variable and another. The cause variable is called the
 90 independent variable, the explanatory variable or the X variable [8]. While the affected variable is
 91 known as the affected variable, the dependent variable, the dependent variable, the response variable
 92 or the Y variable. Estimated regression curves are used to explain the relationship between
 93 explanatory variables and response variables. The most commonly used approach is the parametric
 94 approach. The assumption underlying this approach is that the regression curve can be represented
 95 by a parametric model [9].

96 In parametric regression, it is assumed that the shape of the regression curve is known based on
 97 theory, previous information, or other sources that can provide detailed knowledge. If the model of
 98 the parametric approach is assumed to be correct, then the parametric estimation will be very
 99 efficient. However, if it is wrong, it will lead to misleading data interpretations. In addition,
 100 parametric models have limitations in predicting unexpected data patterns. If the assumptions of the
 101 parametric curve are not met, then the regression curve can be assumed using a regression model
 102 from the nonparametric approach. The nonparametric approach is a model estimation method which
 103 is based on an approach that is not bound by certain assumptions of the regression curve shape. The
 104 classical regression analysis has the requirement to fulfil linearity assumptions and the assumption
 105 of normally distributed data. This analysis aims to determine the direction of the relationship
 106 between the independent variable with the dependent variable whether positive or negative as well
 107 as to predict the value of the dependent variable if the value of the independent variable has increased
 108 or decreased. The data used is usually interval or ratio scale. If the number of independent variables
 109 is more than one, multiple linear regression analysis is used. In practice in the field, the data found
 110 often does not meet the assumptions required by classical linear regression. The generalized linear
 111 model (GLM) is an extension of the linear regression model assuming the predictor has a linear effect
 112 but does not assume a certain distribution of the response variable and is used when the response
 113 variable is a member of an exponential family.

114 Natural exponential families (NEFs) are an essential part of theoretical statistics. For several decades,
 115 they have been studied and classified.. Many authors then looked at their classification according to
 116 the form of their variance function (i.e. the writing of their variance as a function of the mean
 117 parameter). For example, [10], [11], [12] who gave a complete description of all the NEFs of R d of
 118 quadratic variance function. A very particular case of these families, when they generate an
 119 exponential dispersion model, are those of Tweedie models. These laws, introduced by Tweedie
 120 (1984) [13] [14] The variance function is very specific and is given by equation (1):
 121

$$122 \quad V(m) = m^p \quad (1)$$

123

124 With $p \in]-\infty, 0] \cup [1, +\infty$ [Tweedie laws are involved in a significant number of fields of
 125 application. They are indeed linked, by the relation (1.1), to the law of Taylor's power. The latter
 126 appears in both biology and physics and states that the power of the average gives the empirical
 127 variance. In particular, the links between Tweedie models and Taylor's power law in physical science
 128 are brought to light [15]. To make these laws accessible to practitioners, [16]) proposed a package
 129 for the R software [17] who proposed a method for estimating the densities of Tweedie laws, which
 130 are not explicable for the most part, by Fourier inversion.

131 We will now introduce the family of Tweedie laws. This family contains some well-known laws such
 132 as the normal law, the gamma law, the law of Poisson or the inverse Gaussian law. To begin, put $d =$
 133 1. We recall that for $\lambda > 0$, the NEFs $(\mu\lambda)$ generates the family of laws $ED^*(\theta, \lambda)$ called the exponential
 134 dispersion model and whose elements are written

135
$$\exp[\theta x - \lambda k_\mu(\theta)]\mu_\lambda d(x) \quad (2)$$

136 This family of laws is called additive. Indeed, it is easy to see that for every $\lambda_1, \lambda_2, \dots, \lambda_n$ of Λ_μ

137
$$ED^*\left(\theta, \sum_{i=1}^n \lambda_i\right) \underset{138}{=} \sum_{i=1}^n ED^*(\theta, \lambda_i), \quad (3)$$

139 where $\underset{138}{=}$ designates equality in law. The corresponding family $ED(m, \sigma^2) \underset{139}{=} \frac{1}{ED^*(\theta, \lambda_i)}$ with $m = \tau(\theta)$
 140 and $\sigma^2 = \frac{1}{\lambda}$ is called the exponential reproductive dispersion model.

141 Generalized Linear Models (GLM) aims to determine the causal relationship, the effect of
 142 independent variables on the dependent variable ([18], [19]). The superiority of GLM compared to
 143 ordinary linear regression lies in the distribution (curve shape) of dependent variables [20]. Variable
 144 dependent on GLM is not socialized with a normal distribution (symmetrical bell curve), but
 145 distributions that belong to an exponential family, namely; Binomial, Poisson, Negative Binomial,
 146 Normal, Gamma, Gaussian Inverse. In GLMs, the distribution of responses can be of various types,
 147 which are included in the Exponential Family. A random variable Y , included in the distribution that
 148 is incorporated in the Exponential Family, if it has a form

149
$$f_Y(y; \theta, \phi) = \exp\{(y\theta - b(\theta))/a(\phi) + c(y, \phi)\} \quad (4)$$

150 with certain functions $a(\cdot)$, $b(\cdot)$ and $c(\cdot)$. If ϕ is known, then the form of equation (4) is an Exponential
 151 Family with canonical parameters θ .

152 The GLLVM model is generally used to model the type of data where the response variable is large
 153 enough [21], $p > n$ where p is the number of respondent variables and n is the number of observations
 154 [22]. If we assume that the response variables are independent of each other, then we can do the glm
 155 analysis as usual individually or can jointly use the manyglm () function available in the mvabund
 156 package [23]. So that the regression equation will be obtained as many as p pieces. However, the fact
 157 is in ecology that these response variables are not mutually exclusive. To be able to model the types
 158 of correlated responses we need a combined model and one of them is to introduce random effects
 159 into the model [24], [25], [26]. In general, the GLLVM model is defined as follows:

160
$$g(\mu_{ij}) = \eta_{ij} = \tau_i + \beta_{0j} + \mathbf{x}^T \boldsymbol{\beta}_j + u_i^T \boldsymbol{\lambda}_j \quad (5)$$

161 Each butterfly goes through four phases in its life cycle which starts from the egg, caterpillar, pupa
 162 and imago stages. The change from caterpillar to cocoon and into butterfly involves a major change
 163 in the appearance of the butterfly called metamorphosis [27]. Butterfly classification and diversity,
 164 namely:

- 165 • Order: Lepidoptera
- 166 • Suborder: Rhopalocera
- 167 • Superfamily: Hesperioidae and Papilionoidea
- 168 • Family Hesperioidae: Hesperiidae
- 169 • Family Papilionoidea: Papilionidae, Pieridae, Lycaenidae, Nymphalidae

170
171
172
173
174**Table 1.** Species Counts

Habitat A (Flowing Water)		N	Habitat B (Puddle)		N	Habitat C (No Watter)		N
<i>Lampides boeticus</i>	Lycanidae	3	<i>Jamides tiglath</i>	Lycanidae	4	Leptosia Nina	Lycanidae	1
<i>Jamides tiglath</i>	Lycanidae	1	<i>Lampides boeticus</i>	Lycanidae	4	Euplea Eunice	Nymphalidae	2
<i>Jamides celeno</i>	Lycanidae	3	<i>Danaus chrysippus</i>	Nymphalidae	1	Junonia Hedonia	Nymphalidae	5
<i>Neptis cliniooides</i>	Nymphalidae	1	<i>Euploea Mulciber</i>	Nymphalidae	5	Hypolimnas Bolina	Nymphalidae	3
<i>Junonia almana</i>	Nymphalidae	20	<i>Hypolimnas Bolina</i>	Nymphalidae	5	Ideopsis Vulgaris	Nymphalidae	1
<i>Athyina nefre</i>	Nymphalidae	1	<i>Ideopsis Vulgaris</i>	Nymphalidae	1	Troides Helena	Papilionidae	1
<i>Euploea eunice</i>	Nymphalidae	2	<i>Junonia orithya</i>	Nymphalidae	4	Calopsilia pomona	Pieridae	43
<i>Ideopsis vulgaris</i>	Nymphalidae	1	<i>Catopsilia pomona</i>	Pieridae	61	Eurema sp.	Pieridae	36
<i>Euploea climenia</i>	Nymphalidae	5	Eurema sp.	Pieridae	17			
<i>Danaus chrysippus</i>	Nymphalidae	3						
<i>Neptis hylas</i>	Nymphalidae	5						
<i>Euploea mulciber</i>	Nymphalidae	1						
<i>Papilio helenus</i>	Papilionidae	2						
<i>Pachliopta aristolochiae</i>	Papilionidae	1						
<i>Papilio memnon</i>	Papilionidae	1						
<i>Graphium sarpedon</i>	Papilionidae	1						
<i>Papilio demoleus</i>	Papilionidae	1						
<i>Graphium agamemnon</i>	Papilionidae	1						
<i>Papilio polytes</i>	Papilionidae	1						
<i>Eurema sp.</i>	Pieridae	54						
<i>Catopsilia pomona</i>	Pieridae	63						

175
176

RESULTS AND DISCUSSION

Species Level

177 The highest abundance of individuals and species of butterflies in Habitat A (flowing water) is
 178 thought to be due to the suitable location for life, in addition to that available sunlight, so the amount
 179 of vegetation that grows is different. That the number of species is sufficiently affected by the canopy
 180 cover and intensity of sunlight. Variation of canopy cover provides a suitable place for butterflies so
 181 that species of butterflies in locations that have water become more diverse. At the same time, in
 182 order to survive, the butterfly must drink. Flower nectar is a drink that butterflies like because it
 183 contains sugar which can be used as an energy source. In addition to nectar, some butterflies also like
 184 to drink water vapour from sand and water vapour from rotted fruit. To form a latent model in this
 185 paper using the Gaussian inverse. However, in other studies using the Poisson distribution. One
 186 assumption in the Poisson distribution is that the mean and variance have the same value
 187 (equidispersion) [28]. The mean and variance of a data count are often not the same whether the mean
 188 is higher than the variance (overdispersion) or the mean is smaller than the variance
 189 (underdispersion). In other words, the assumption of equidispersion is often violated. Chopped data
 190

191 often shows a quite large variance because it contains a lot of zero values (extra zeros) or a distribution
 192 that is greater than the values in the data or both. Overdispersion cases if ignored can lead to
 193 underestimation of the estimated standard error, which can result in errors in decision making some
 194 hypothesis testing. For example, a predictor variable has a significant effect, but in reality it has no
 195 significant effect. Based on Table 2, the intercept, theta latent values and parameters of the dispersion
 196 are obtained.

197 In this paper, we will use the tweedie distribution or also said that the Gaussian inverse distribution
 198 is a continuous distribution and is a family of exponential distributions. This distribution has one
 199 mode and has curves that tilt to the right, sometimes even the right tail curve of this distribution is
 200 very long. The opportunity density function is as follows:

$$201 \quad f(v; \delta, \tau) = (2\pi v^3)^{-\frac{1}{2}} \exp -\frac{(\delta v - 1)^2}{2\tau v}, v \geq 0, \delta > 0, \tau > 0 \quad (6)$$

202 The parameters δ and τ are known as shape parameters. The expected value and variance of the
 203 Gaussian inverse distribution are $E(V) = \frac{1}{\delta}$ and $Var(V) = \frac{\tau}{\delta^3}$. Skewness and kurtosis of the Gaussian
 204 inverse distribution are $3\sqrt{\frac{\tau}{\delta}}$ and $\frac{15\tau}{\delta}$, respectively. This distribution is named Gaussian inverse by
 205 Tweedie because its cumulative generating function is the opposite of the Gaussian distribution. To
 206 evaluate the models we use AIC, AICc, and BIC. The AIC is defined as

$$207 \quad AIC = 2k - 2 \ln(l) \quad (7)$$

208 and its corrected form for small sample sizes,

$$209 \quad AIC_c = AIC + \frac{2k(k + 1)}{N - k - 1} \quad (8)$$

210 as well as its Bayesian alternative,

$$212 \quad BIC = -2 \ln(l) + \ln(N) * k \quad (9)$$

213 where l denotes the number of parameters and k denotes the maximized value of the likelihood
 214 function. For model comparison, the model with the lowest AIC score is preferred.
 215 The *absolute* values of the AIC scores do not matter. These scores can be negative or positive.

216

217 **Table 2.** Parameter Estimation GLLVM

	Intercept	theta.LV1	Dispersion parameters
Lycanidae	1.562320	-0.4909974	6.893565e-01
Nymphalidae	2.877803	-0.6032400	3.188624e-06
Pieridae	4.498928	-0.1745962	5.485229e-02
Papilionidae	0.513864	-1.0766610	1.871521e+00

218

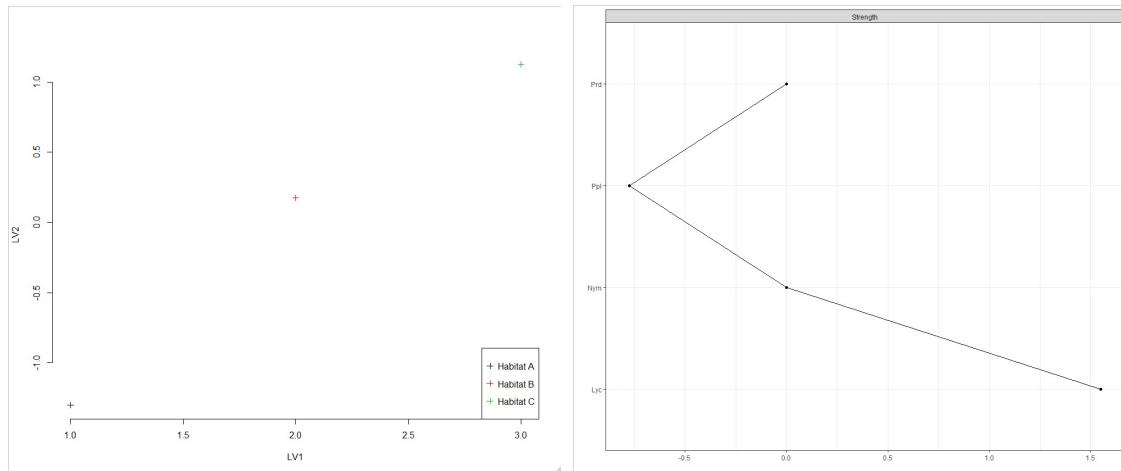
219 Then also obtained values from species ordination based on habitats A, B, and C. It can be seen clearly
 220 in Table 3 and Figure 1 that the difference in the number of species in this habitat for habitat A has
 221 negative ordinance compared to B and C. It can be assumed that statistically clear differences the
 222 number of butterflies at location A with B and C.

223

224 **Table 3.** Habitat Ordination

Habitat	Ordination
Habitat A (Flowing Water)	-1.3025632
Habitat B (Puddle)	0.1744208
Habitat C (No Watter)	1.1281974

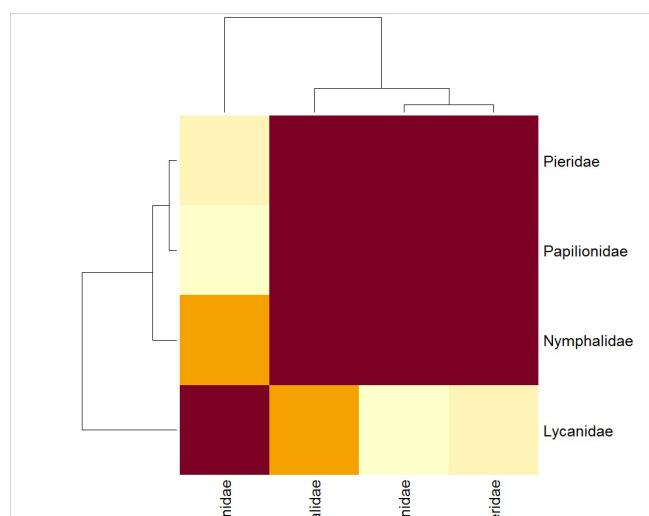
225



226

227 **Figure 1. Ordination Habitat (left), Strength Species (right)**

228



229

230 **Figure 2. Heatmap Based on Species**

231

232 In Figure 1 the right can be seen the centrality of this species and can be seen that *Lycanidae* is more
 233 dominant than *Papilionidae*. *Lycanidae* can be found in all habitats A, B, and C. While *Papilionidae* is
 234 only found in specific habitats. To evaluate the model, log-likelihood is obtained, AIC 92.22747, AICc
 235 61.02747, BIC 81.41082.

236

237 **Individual Level**

238 Then we analysis at an individual level because this information is crucial considering the different
 239 conditions of each habitat. For example, in location C, there are a large number of *Calopsilia Pomona*,
 240 but that cannot be obtained at other locations. We also use the Tweedie distribution to get LV
 241 parameters and disperse parameters which can be seen in Table 4

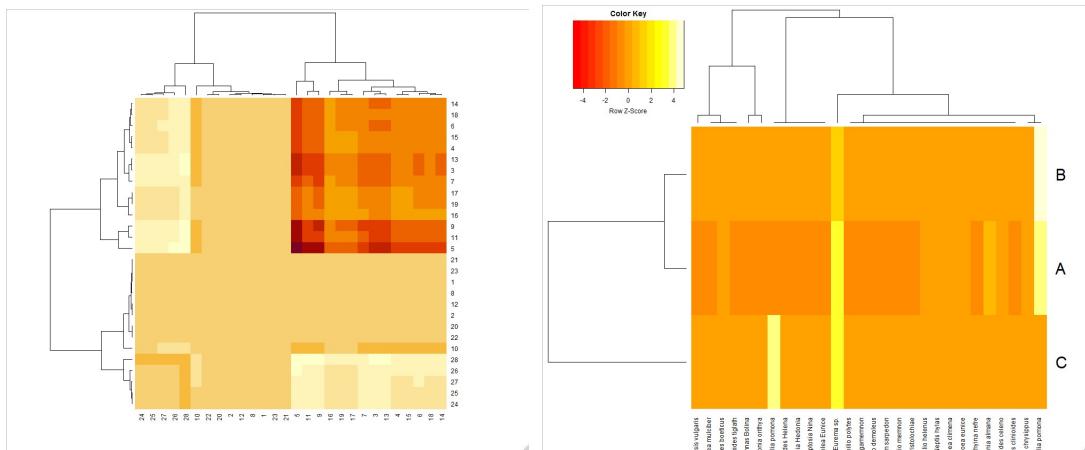
242

243

Table 4. Individual Butterflies Counts

No	Name	Hab	Hab	Hab	Intercept	theta.LV1	Dispersion
		A	B	C			parameters
1	<i>Lampides boeticus</i>	3	4	0	0.1918613	1.824132919	0.0000000
2	<i>Jamides tiglath</i>	1	4	0	0.1196806	1.390784277	0.0554530
3	<i>Jamides celeno</i>	3	0	0	-22.3256231	36.40333227	0.0000000
4	<i>Neptis clinoides</i>	1	0	0	-19.3633553	30.06868128	0.0001116
5	<i>Junonia almana</i>	20	0	0	-30.3595546	51.85249351	0.0000000
6	<i>Athyina nefre</i>	1	0	0	-20.8599137	32.40316633	0.0001140
7	<i>Euploea eunice</i>	2	0	0	-21.1510486	33.900739	0.0000000
8	<i>Ideopsis vulgaris</i>	1	1	0	-1.4365198	2.456160331	0.0000028
9	<i>Euploea climena</i>	5	0	0	-26.2246992	43.26507266	0.0000000
10	<i>Danaus chrysippus</i>	3	1	0	-3.6491945	7.324644478	0.0000000
11	<i>Neptis hylas</i>	5	0	0	-24.1491405	40.03382187	0.0000000
12	<i>Euploea mulciber</i>	1	5	0	0.2214806	1.548258021	0.2973333
13	<i>Papilio helenus</i>	2	0	0	-23.0294663	36.88284706	0.0000000
14	<i>Pachliopta aristolochiae</i>	1	0	0	-20.2489731	31.45031725	0.0001126
15	<i>Papilio memnon</i>	1	0	0	-19.6198712	30.46891488	0.0001117
16	<i>Graphium sarpedon</i>	1	0	0	-15.4576646	23.96637522	0.0001165
17	<i>Papilio demoleus</i>	1	0	0	-17.4575418	27.09332625	0.0001142
18	<i>Graphium agamemnon</i>	1	0	0	-19.9752136	31.02327873	0.0001121
19	<i>Papilio polytes</i>	1	0	0	-17.4013016	27.0054651	0.0001143
20	<i>Eurema sp.</i>	54	17	36	3.5768664	0.008946943	0.1708117
21	<i>Catopsilia pomona</i>	63	61	0	2.9489731	2.022838075	0.0029583
22	<i>Hypolimnas Bolina</i>	0	5	3	0.9453342	-0.10337632	0.4775907
23	<i>Junonia orithya</i>	0	4	0	-0.3713151	1.998601509	2.1260480
24	<i>Leptosia Nina</i>	0	0	1	-23.0476328	-12.07378698	0.0000532
25	<i>Euplea Eunice</i>	0	0	2	-22.226489	-12.0148352	0.0000000
26	<i>Junonia Hedonia</i>	0	0	5	-24.6583221	-13.77211016	0.0000000
27	<i>Troides Helena</i>	0	0	1	-24.0393129	-12.59557446	0.0000525
28	<i>Calopsilia pomona</i>	0	0	43	-33.6748127	-19.62356859	0.0000000

244

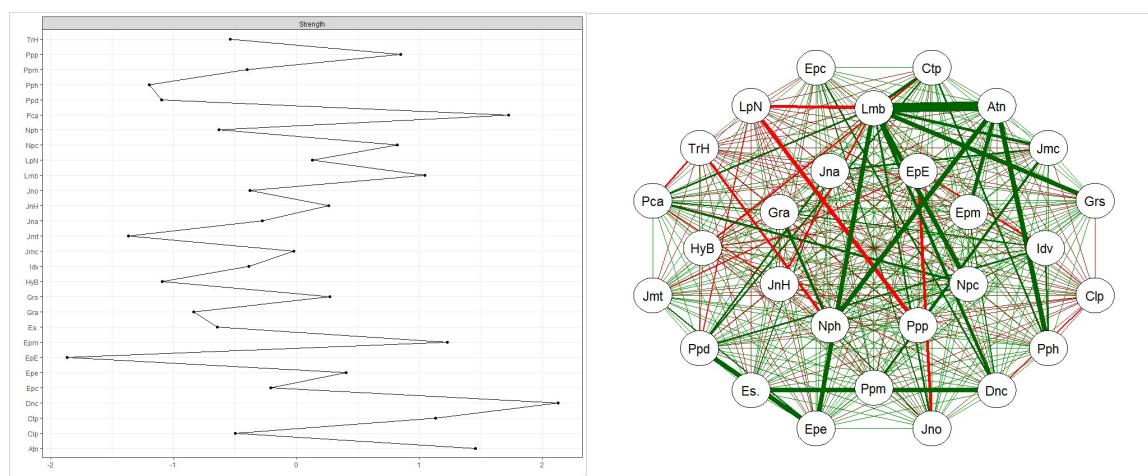


245

246 **Figure 3. Heatmap Based on Individual (left) and location (right)**

247

248 With this simulation we get the negative AIC: -2.2518e+16, AICc: -2.2518e+16, BIC: -2.2518e+16,
 249 and log-likelihood 1.1259e+16. This is because our likelihood is a continuous probability function, it
 250 is not uncommon for the maximum value to be greater than 1, so we calculate the logarithm of the
 251 value, we can get a positive number and (if that value is greater than k) get a negative AIC. At the
 252 same time, in figure 4 we can see the strength and correlation in individual level
 253



254

255 **Figure 4. Strength Individual (left) and Correlation (right)**

256

257 **Discussion**

258 The species richness of butterflies in habitat A is a different when compared to Habitat b and habitat
 259 C. The high species richness in Habitat A is thought to be because the area is overgrown by nectar-
 260 producing flowering plants such as *Melastoma malabatricum*, and *C. rutidosperm*, *banyan* (*Ficus sp.*),
 261 *Caesalpinia pulcherrima*, and *Plumeria sp.* Habitat modification is one thing that must be considered to
 262 maintain the abundance of butterflies [29] assert that butterfly abundance will be higher in areas with
 263 moderate disturbance, where disturbance creates forest gaps. Moreover, forest encourages plant
 264 growth due to incoming sunlight, and this plant growth will provide a food source for animals. This
 265 causes the abundance of species to increase. According to [30] treated forests and grasslands are two
 266 of several habitats Which has the highest number of butterflies. The abundance of butterfly species is
 267 closely related to the abundance of plant food sources. A consistent species found in all habitat types

268 is *Eurema* sp. However, The only species found in Habitat C are *Leptosia Nina*, *Euplea Eunice*, *Junonia*
269 *Hedonia*, *Troides Helena*, and *Calopsilia Pomon*. In modelling with latent glm it can be seen that the
270 model is suitable for use at the species or individual level. Butterflies increase the opening of their
271 wings to get sunlight and increase body temperature by sunbathing in cold weather. When this cold
272 weather the butterflies always spread their wings to dry so that they can fly lightly and easily,
273 whereas if the body's temperature rises the butterflies will find shelter. The range of temperatures
274 that can support the life of a butterfly is between 21°C - 34°C.
275

276 ACKNOWLEDGEMENTS

277 This work is supported by the Ministry of Science and Technology, Taiwan. MOST-107-2221-E-324-
278 018-MY2 and MOST-106-2218-E-324-002, Taiwan.
279

280 REFERENCES

- 281 [1] M. Ghazanfar, M. F. Malik, M. Hussain, R. Iqbal, and M. Younas, "Butterflies and their
282 contribution in ecosystem: A review," *J. Entomol. Zool. Stud.*, 2016.
- 283 [2] R. Koneri and M. J. Nangoy, "Butterfly community structure and diversity in Sangihe Islands,
284 north Sulawesi, Indonesia," *Appl. Ecol. Environ. Res.*, 2019.
- 285 [3] V. Fileccia, S. Santorsola, S. Arpaia, and B. Manachini, "Seasonal patterns in butterfly
286 abundance and species diversity in five characteristic habitats in sites of community
287 importance in Sicily (Italy)," *Bull. Insectology*, 2015.
- 288 [4] L. Van Vu and C. Quang Vu, "Diversity Pattern of Butterfly Communities (Lepidoptera,
289 Papilionoidae) in Different Habitat Types in a Tropical Rain Forest of Southern Vietnam,"
290 *ISRN Zool.*, 2011.
- 291 [5] P. C. Hammond and J. C. Miller, "Comparison of the biodiversity of lepidoptera within three
292 forested ecosystems," *Ann. Entomol. Soc. Am.*, 1998.
- 293 [6] R. Rusman, T. Atmowidi, and D. Peggie, "Butterflies (Lepidoptera: Papilionoidea) of Mount
294 Sago, West Sumatra: Diversity and Flower Preference," *HAYATI J. Biosci.*, vol. 23, no. 3, pp.
295 132–137, 2016.
- 296 [7] B. Bower and T. Savitsky, "Laplace Approximation," *Graph. Models*, 2008.
- 297 [8] A. Agresti, *An Introduction to Categorical Data Analysis*. 2007.
- 298 [9] D. Barry and W. Hardle, "Applied Nonparametric Regression," *J. R. Stat. Soc. Ser. A (Statistics
299 Soc.)*, 1993.
- 300 [10] G. G. Letac, "Introduction to Morris (1982) Natural Exponential Families with Quadratic
301 Variance Functions," 1997.
- 302 [11] G. Letac and M. Mora, "Natural Real Exponential Families with Cubic Variance Functions,"
303 *Ann. Stat.*, 1990.
- 304 [12] H. Abdelhamid and M. Afif, "The mean radius of curvature of an exponential family," *Stat.
305 Probab. Lett.*, 2001.
- 306 [13] S. D. Foster and M. V. Bravington, "A Poisson-Gamma model for analysis of ecological non-
307 negative continuous data," *Environ. Ecol. Stat.*, 2013.
- 308 [14] Y. Zhang, "Likelihood-based and Bayesian methods for Tweedie compound Poisson linear
309 mixed models," *Stat. Comput.*, 2013.
- 310 [15] W. S. Kendal, "Multifractality attributed to dual central limit-like convergence effects," *Phys.
311 A Stat. Mech. its Appl.*, 2014.

312 [16] P. K. Dunn, "Package 'tweedie,'" 2017.

313 [17] R Core Team, "R software," *R Foundation for Statistical Computing*, vol. 739, no. 2.11.1. p. 409, 2008.

314

315 [18] Jamilatuzzahro., R. Herliansyah, and R. E. Caraka, *Applikasi generalized linear model pada R*, 1st ed. Yogyakarta: INNOSAIN, 2018.

316

317 [19] Jamilatuzzahro, R. E. Caraka, D. Aprinaldy, and A. Mahadi, "Generalized linear model multivariate poisson with artificial marginal (GLM-MPAM): Application of vehicle insurance," in *AIP Conference Proceedings*, 2019.

318

319

320 [20] Jamilatuzzahro and R. E. Caraka, "Modelling Inflation using Generalized Additive Mixed Models (GAMM)," *Int. J. Chem. Math. Physics(IJCMP)*, vol. 1, no. 1, pp. 73–39, 2017.

321

322 [21] R. Herliansyah and I. Fitria, "Latent variable models for multi-species counts modeling in ecology," *Biodiversitas*, 2018.

323

324 [22] F. K. C. Hui, D. I. Warton, J. T. Ormerod, V. Haapaniemi, and S. Taskinen, "Variational Approximations for Generalized Linear Latent Variable Models," *J. Comput. Graph. Stat.*, 2017.

325

326 [23] J. Niku *et al.*, "Package 'gllvm.'" R Project, 2017.

327 [24] D. I. Warton, S. D. Foster, G. De'ath, J. Stoklosa, and P. K. Dunstan, "Model-based thinking for community ecology," *Plant Ecol.*, 2015.

328

329 [25] D. I. Warton *et al.*, "So Many Variables: Joint Modeling in Community Ecology," *Trends in Ecology and Evolution*, vol. 30, no. 12. pp. 766–779, 2015.

330

331 [26] J. Niku, D. I. Warton, F. K. C. Hui, and S. Taskinen, "Generalized Linear Latent Variable Models for Multivariate Count and Biomass Data in Ecology," *J. Agric. Biol. Environ. Stat.*, vol. 22, no. 4, pp. 498–522, 2017.

332

333

334 [27] C. E. Allen, P. Beldade, B. J. Zwaan, and P. M. Brakefield, "Differences in the selection response of serially repeated color pattern characters: Standing variation, development, and evolution," *BMC Evol. Biol.*, 2008.

335

336

337 [28] R. E. Caraka *et al.*, "Ecological Show Cave and Wild Cave: Negative Binomial Gllvm's Arthropod Community Modelling," *Procedia Comput. Sci.*, vol. 135, pp. 377–384, 2018.

338

339 [29] T. S. S. SUBAHAR, "Butterfly diversity as a data base for the development plan of Butterfly Garden at Bosscha Observatory, Lembang, West Java," *Biodiversitas, J. Biol. Divers.*, 2010.

340

341 [30] A. J. Sundufu and R. Dumbuya, "Habitat Preferences of Butterflies in the Bumbuna Forest, Northern Sierra Leone," *J. Insect Sci.*, 2008.

342

343