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Abstract: Epigenetic changes are a hallmark of short- and long-term transcriptional regulation, and 10 
hence instrumental in the control of cellular identity and plasticity. Epigenetic mechanisms leading 11 
to changes in chromatin structure, accessibility for recruitment of transcriptional complexes, and 12 
interaction of enhancers and promoters all contribute to acute and chronic adaptations of cells, tissues 13 
and organs to internal and external perturbations. Similarly, the peroxisome proliferator-activated 14 
receptor γ coactivator 1α (PGC-1α) is activated by stimuli that alter the cellular energetic demand, 15 
and subsequently controls complex transcriptional networks responsible for cellular plasticity. It thus 16 
is of no surprise that PGC-1α is under the control of epigenetic mechanisms, and constitutes a 17 
mediator of epigenetic changes in various tissues and contexts. In this review, we summarize the 18 
current knowledge of the link between epigenetics and PGC-1α in health and disease. 19 
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1. Introduction24 

The term epigenetics originally described how phenotypic traits could be inherited without 25 
alterations in the DNA sequence of the genome [1,2]. In recent years, this term has been expanded 26 
and used in a more inclusive way to include non-heritable, even short-term plastic events. Often, the 27 
latter are triggered by changes in the environment and drive the adaptations to external stimuli, e.g. 28 
those exerted by exercise, fasting or high-fat diet [3-5]. In fact, in many of these contexts, epigenetic 29 
changes are integral to an adequate transcriptional response, and dysregulation of such changes have 30 
been linked to the etiology and/or pathology of various diseases. The peroxisome proliferator-31 
activated receptor γ coactivator 1α (PGC-1α) is a central regulator of mitochondrial function and 32 
cellular metabolism, important for the adaptation of different tissues to increased energetic demand 33 
[6,7]. Accordingly, the gene expression of PGC-1α is strongly regulated when phenotypic changes of 34 
an organ require an increased production of ATP. Once activated, PGC-1α coordinates complex and 35 
tissue-specific transcriptional networks that mediate cellular plasticity. Soon after its discovery, 36 
epigenetic mechanisms have been linked to the action of PGC-1α as a transcriptional coactivator [8-37 
10]. More recently, epigenetic changes have been identified to control the gene expression of PGC-1α 38 
in physiological and pathological contexts [11-13]. In this review, we summarize the current 39 
understanding of the epigenetic regulation of PGC-1α gene expression, and the epigenetic 40 
contribution to the activity of the PGC-1α-containing transcriptional complex in health and disease. 41 

2. Epigenetic Mechanisms42 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 October 2019                   doi:10.20944/preprints201910.0021.v1

©  2019 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Int. J. Mol. Sci. 2019, 20, 5449; doi:10.3390/ijms20215449

https://doi.org/10.20944/preprints201910.0021.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms20215449


 2 of 13 

 

 

Epigenetic regulation has originally been defined as heritable changes in gene expression that 43 
do not involve DNA sequence alterations, hence mostly focused on DNA methylation and histone 44 
protein modifications [1,2,14]. However, more recent work has clearly demonstrated that these and 45 
other epigenetic changes can also occur short-term and in a transient manner. Thus, other 46 
mechanisms, for example microRNAs (miRNAs), mRNA modifications, long non-coding RNAs 47 
(lncRNAs) or nucleosome positioning are now included under the umbrella term epigenetics [15,16]. 48 
For many of these, both stable as well as transient effects have now been demonstrated. 49 

 50 
1.1 Histone Modifications and nucleosome positioning 51 
 52 

DNA strands are compacted in several layers into chromosomes, with the nucleosomes, the 53 
wrapping of the DNA around 8 core histones, as the first layer [17]. A condensed packaging is 54 
intrinsically repressive in regard to the binding of transcription factors, and thereby prevents 55 
unwanted transcriptional activity. Histone proteins can be postranslationally modified at various 56 
residues, leading to changes in the chromatin structure [18,19]. The integration of the consequences 57 
of methylation, acetylation, phosphorylation and/or ubiquitination of histones thereby determines 58 
DNA accessibility for transcription factors, the degree of condensation of the chromatin, or long-59 
range interactions between distal regulatory elements. Histone modifications can be stable as well as 60 
transient, the latter being an obligatory event in transcriptional regulation of gene expression. Many 61 
of the histone modifying enzymes have been identified, in particular those involved in histone 62 
acetylation (histone acetyl transferases, HATs) and methylation. Histone acetylation events have 63 
been linked to relaxation of chromatin packing, and thus facilitation of transcription factor and RNA 64 
polymerase binding [20]. The functional outcome of histone methylation is more complex and 65 
dependent on the modification of specific sites [21]. Histone lysine residues can be mono-, di- or tri-66 
methylated, and act as activating or repressing marks. For example, mono-methylation of lysine 9 or 67 
lysine 27 of histone 3 (H3K9 and H3K27) are generally associated with transcriptional activation, di- 68 
or tri-methylated H3K4me2/3 with transcription factor binding regions and increased gene 69 
expression, whereas mono-methylated H3K3me1 often marks enhancer regions, and H3K27me3 or 70 
H3K9me3 are repressive marks [22,23]. For many of the known histone modifications, the exact 71 
consequence is still unclear, and additional mechanisms have been proposed, e.g. regulation of 72 
splicing or priming of promoters. Finally, histone modifications and DNA methylation events can act 73 
in a cooperative manner, e.g. DNA methylation-promoted methylation of H3K9 [21]. 74 

Even though the nucleosome is a stable DNA-protein complex, nucleosomes can reposition on 75 
the genomic DNA, a process called nucleosome sliding, which is independent of histone complex 76 
disruption [24]. The CCCTC-binding factor (CTCF) anchors nucleosome positions and thereby affects 77 
large transactivation domains (TADs). Moreover, nucleosome sliding is controlled by various ATP-78 
dependent chromatin remodeling proteins, for example the SWItch/Sucrose Non-Fermentable 79 
(SWI/SNF) complex [25], leading to transcriptional activation such as large scale expression of tissue-80 
specific genes. 81 
 82 
2.1 DNA methylation 83 
 84 

Most often, DNA methylation has been linked to silencing of transcription [26,27]. Methylation 85 
events have primarily been described on the cytosine nucleotide, resulting in the formation of 5-86 
methylcytosine (5mC) [27]. Recently, methylation of adenosine, as originally observed in bacterial 87 
genomes, has also been found and attributed to functional outcomes in eukaryotic cells, potentially 88 
counteracting the effects of cytosine methylation [28]. Whole genome methylation profiling of 5mC 89 
has revealed that specific elements and regions exhibit marked differences in methylation events. For 90 
example, transposon-derived sequences are highly methylated in the human genome, presumably as 91 
a mechanism to silence these elements. In contrast, regions with a high CpG content, called CpG 92 
islands, can by hypomethylated, in particular when found in promoters or first exons. CpG islands 93 
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in intergenic regions may act as distal regulatory elements, or, in particular when found in repeat 94 
regions, be important for chromosome stability [21,26,27]. Finally, CpG islands in gene bodies can 95 
affect differential promoter usage, transcription elongation or splicing. The methylation event on 96 
cytosines is mediated by a group of enzymes called DNA methyltransferases (DNMTs) [29]. 97 
Transcriptional silencing is subsequently achieved by preventing transcription factor binding and the 98 
recruitment of 5mC binding proteins, which in turn sequester histone deacetylases (HDACs). 99 
Inversely, DNA de-methylation is exerted by Ten-eleven translocation methylcytosine dioxygenases 100 
(TETs), which play an important role in the spatio-temporal control of opening genomic regions, e.g. 101 
in embryonic development [30]. 102 
 103 
1.3. miRNAs, lncRNAs, mRNA modifications 104 
 105 

Epigenetic changes might also be conferred by different types of RNAs [31]. miRNAs are small 106 
RNAs, of around 22 nucleotides in length, which can interact with mRNAs and thus modulate the 107 
activity of their targets in a posttranscriptional manner [32]. Long non-coding RNAs (lncRNAs) affect 108 
cellular functions in a number of different ways, for example by affecting promoter activity or mRNA 109 
translation [33]. Both types of RNAs not only act intracellularly, but are also delivered to other cells 110 
via exosomal transport [34]. Moreover, an overlap between RNA activity and other epigenetic 111 
mechanisms exists. In Arabidopsis, the miRNAs mir165 and mir166 are involved in the regulation of 112 
DNA methylation [35]. Similarly, DNMT1, -3 and -3a are all predicted targets of miRNAs [36], while 113 
miR-140 affects HDAC4 [37]. Furthermore, miR-132 fine-tunes circadian gene expression by 114 
modulation of chromatin remodeling and protein translation [38]. Finally, mRNAs are also targets 115 
for methylation events [39]. For example, the fat mass and obesity-associated protein (FTO) has been 116 
strongly associated with human obesity, and acts as an N6-methyladenosine demethylase on mRNAs, 117 
thereby affecting RNA metabolism and hence protein expression [40]. 118 

 119 
3. The transcriptional coactivator PGC-1α 120 
 121 

PGC-1α is a transcriptional coactivator that initially was identified in an interaction screen with 122 
the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) [41]. However, it is now 123 
clear that PGC-1α binds to and coactivates a large number of different transcription factors, both of 124 
the nuclear receptor superfamily as well as non-nuclear receptor-type of DNA binding proteins [6]. 125 
PGC-1α is the founding member of a small family of similar coactivator proteins, which also includes 126 
PGC-1β and the PGC-1-related coactivator (PRC) [42]. The PGC-1α gene is transcribed from two 127 
different promoters, and several transcript variants have been described, even though their exact 128 
regulation and function remains to be elucidated [7]. In higher mammals, PGC-1α is expressed in all 129 
tissue with a high energetic demand, e.g. brain, kidney, cardiac and skeletal muscle, brown adipose 130 
tissue and liver. In most of these organs, PGC-1α gene expression and post-translational 131 
modifications are strongly regulated in a context-dependent manner, resulting in higher PGC-1α 132 
levels and activity upon internal and external stimuli that evoke an increased ATP demand, such as 133 
fasting in the liver, physical activity in cardiac and skeletal muscle, or cold exposure in brown adipose 134 
tissue [42,43]. Once activated, PGC-1α controls complex transcriptional networks that control cellular 135 
plasticity, resulting in tissue-specific gene programs controlling hepatic gluconeogenesis, 136 
thermogenesis in brown adipose tissue, or endurance exercise adaptation in skeletal muscle [6]. 137 
However, the core function of PGC-1α consists of the strong promotion of mitochondrial biogenesis 138 
and function, coupled to enhanced oxidative phosphorylation of energy substrates [44,45]. 139 

As a transcriptional coactivator, PGC-1α contains no discernable DNA binding domain. 140 
Moreover, no enzymatic activity has been attributed to this protein. Thus, mechanistically, PGC-1α 141 
relies on selective interaction with transcription factors to be recruited to target genes, and then serves 142 
as a protein docking platform to recruit other complexes. For example, via N-terminal interaction, 143 
PGC-1α binds to HAT complexes by interacting with p300/cAMP-responsive element binding 144 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 October 2019                   doi:10.20944/preprints201910.0021.v1

Peer-reviewed version available at Int. J. Mol. Sci. 2019, 20, 5449; doi:10.3390/ijms20215449

https://doi.org/10.20944/preprints201910.0021.v1
https://doi.org/10.3390/ijms20215449


 4 of 13 

 

 

protein (CREB) binding protein (CBP) and the sterol-receptor coactivator 1 (SRC-1) [8]. The ensuing 145 
acetylation of histones contributes significantly to the transcriptional activation of PGC-1α target 146 
genes. Similarly, recruitment of the thyroid hormone receptor-associated protein (TRAP)/vitamin D 147 
receptor interacting protein (DRIP)/mediator complex to the C-terminus of PGC-1α facilitates the 148 
interaction of the PGC-1α transcriptional complex with RNA polymerase II [9]. Moreover, the direct 149 
interaction between PGC-1α and the PPARγ-interacting mediator subunit TRAP220 facilitates 150 
preinitiation complex formation and function. Finally, PGC-1α binds to the BRG1-associated factor 151 
60A (Baf60a) and thereby promotes nucleosome remodeling and chromatin opening via SWI/SNF 152 
activity [10]. The recruitment of these different complexes are linked. For example, a mutant version 153 
of PGC-1α lacking the C-terminal domain not only lacks binding to the mediator complex, but also 154 
fails to enhance p300/CBP-dependent transcription via the still intact N-terminus [9]. 155 

The strong transcriptional regulation of PGC-1α gene expression, and the recruitment of several 156 
protein complexes that exert effects on histones and chromatin hint at a strong epigenetic control of 157 
PGC-1α expression and action. In the following paragraphs, we have summarized the current 158 
knowledge about the epigenetic regulation of PGC-1α in different physiological and 159 
pathophysiological contexts. 160 
 161 
3. Regulation of physiological PGC-1α expression and action by epigenetic mechanisms 162 
 163 
3.1. Skeletal muscle and exercise 164 
 165 

PGC-1α gene expression is strongly induced by multiple signaling pathways and stimuli in the 166 
contracting muscle fiber (Figure 1) [6]. Interestingly, PGC-1α induces its own transcription in a 167 
positive autoregulatory loop by coactivating myocyte enhancer factors 2 (MEF2) binding in the 168 
proximal promoter region [46]. However, the PGC-1α-mediated recruitment of HATs, and the 169 
resulting acetylation of histones, competes in the absence of active protein kinase D (PKD) with 170 
binding of HDAC5 to MEF2, which then mediates deacetylation of histones and transcriptional 171 
repression [47,48]. Indeed, different histone marks have been linked to the transcriptional activity of 172 
PPARGC1A, the gene encoding PGC-1α, in skeletal muscle after exercise. For example, the expression 173 
of transcript isoforms that are initiated from the distal promoter coincides with the deposition of the 174 
activation mark H3K4me3 1 hour after training in murine quadriceps muscle [49]. Similarly, elevated 175 
acetylation of histone 3 was reported at the proximal promoter of rat PGC-1α in a muscle fiber type-176 
dependent manner [50]. PGC-1α promoter activity furthermore is strongly influenced by DNA 177 
methylation events. In ex vivo stimulation experiments of mouse soleus muscle, enhanced expression 178 
of PGC-1α after 180 minutes was preceded by a decrease in DNA methylation at the promoter already 179 
after 45 minutes of stimulation [12]. In skeletal muscle in vivo, a similar reduction in promoter 180 
methylation of the PGC-1α gene was associated with elevated transcription [12]. Finally, a 181 
combination of H3K4me3 and H3K27me3 was found at the distal promoter, indicative of a poised 182 
promoter ready for rapid transcriptional activation in skeletal muscle, suggestive of the usage of 183 
poised promoters for isoform and tissue-specific expression of PGC-1α [49]. Then, the changes in 184 
DNA methylation in the PGC-1α promoter have been associated with nucleosome repositioning in 185 
this locus. Thus, after an acute endurance exercise bout, the -1 nucleosome in the PGC-1α promoter 186 
is repositioned away from the transcriptional start site by exercise and hypomethylation of the -260 187 
nucleotide, leading to increased transcription of the PGC-1α gene [51]. Importantly, this mechanism 188 
has been linked to decreased ectopic lipid deposition in muscle, but only in high responders in regard 189 
to PGC-1α induction by exercise. Finally, the levels of muscle PGC-1α are affected by different RNAs. 190 
For example, miR-23, a putative repressor of PGC-1α, is strongly downregulated after 90 minutes of 191 
acute exercise in mouse muscle [52]. In chronically trained and casted mice, the expression of miR-192 
696 and PGC-1α negatively correlated, with higher and lower expression of PGC-1α in training and 193 
unloading, respectively [53]. The repressive effect of miR-696 on PGC-1α was subsequently 194 
confirmed in cultured myocytes. Furthermore, the presence of an upstream open reading frame 195 
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(uORF) in the 5’ untranslated region of PGC-1α mediates translational repression in an evolutionary 196 
conserved manner [54]. Absence of a functional uORF in the genome of the Atlantic bluefin tuna 197 
correlates with high abundance of muscle mitochondria, slow-twitch, oxidative muscle fibers, and an 198 
exceptionally high endurance. 199 

In addition to the effects on PGC-1α gene expression, epigenetic mechanisms are involved in 200 
modulating the activity of the PGC-1α protein in this tissue. For example, the coactivation of the 201 
nuclear receptor estrogen-related receptor α (ERRα) by PGC-1α correlates with the relative GC and 202 
CpG content of ERRα binding sites in PGC-1α target genes, implying a potential role of DNA 203 
methylation in controlling the interaction between these two partners in the regulation of PGC-1α-204 
dependent metabolic gene expression [55]. Second, as described above, by recruiting HAT, mediator 205 
and SWI/SNF protein complexes, PGC-1α promotes various epigenetic changes to regulate a complex 206 
transcriptional network [56]. Then, the nuclear receptor corepressor 1 (NCoR1) competes with PGC-207 
1α for binding to ERRα, and represses PGC-1α target gene expression by recruiting HDAC complexes 208 
to the respective regulatory sites [57]. Finally, the activity of PGC-1α is activated and repressed by 209 
deacetylation by sirtuin 1 (SIRT1) and acetylation by K(lysine) acetyltransferase 2A (Kat2a/Gcn5) [58], 210 
which are also involved in the acetylation and, in the case of Kat2a, succinylation of histones. 211 
However, whether and how posttranslational modifications of PGC-1α and histones by these 212 
enzymes are coordinated is unknown. Of note, while many of these mechanisms up- and 213 
downstream of PGC-1α have been studied and described in skeletal muscle, they might also be 214 
important for PGC-1α action in other tissues. 215 

Figure 1. Overview of epigenetic changes on the PGC-1α in skeletal muscle and exercise: 216 
(a) PGC-1α induces its own transcription in a positive autoregulatory loop by coactivating 217 
(MEF2); (b) PKD represses HDAC and retains the acetylation marks and elevation of PGC-218 
1α transcription; (c) a combination of H3K4me3 and H3K27me3 is deposited at the distal 219 
promoter of PGC-1α suggesting a fast switch of gene programs if necessary; (d) nucleosome 220 
repositioning enhances PGC-1α transcription; (e) miR-696 and miR-23 are putative 221 
repressors of PGC-1α; (f) NCoR1 competes with PGC-1α for binding to ERRα, to repress 222 
PGC-1α target gene expression; (g) the activity of PGC-1α is activated and repressed by 223 
deacetylation by SIRT1 and acetylation by KAT2a. 224 
 225 

3.2. Brown adipose tissue and thermogenesis 226 
 227 

Numerous studies with gain- and loss-of-function have underlined the central role of PGC-1α 228 
in controlling non-shivering thermogenesis in brown adipose tissue (Figure 2) [59]. Besides creatine 229 
cycling, mitochondrial uncoupling is the major mechanism by which thermogenesis in brown 230 
adipose tissue is achieved. Upon stimulation by β-adrenergic signaling, the expression and activity 231 
of the uncoupling protein 1 (UCP-1) is upregulated, which then produces heat by uncoupling the 232 
proton gradient across the inner mitochondrial membrane from ATP production [60]. PGC-1α gene 233 
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expression is stimulated by β-adrenergic signaling in brown adipocytes, and PGC-1α subsequently 234 
coactivates PPARγ and recruits SRC-1/p300 in regulatory elements of the UCP-1 gene to induce 235 
transcription [8,41]. The regulation of PGC-1α gene expression in this context is mediated by different 236 
mechanisms. First, the transcription factor ATF-2 is recruited to cAMP-responsive elements (CRE) in 237 
the PGC-1α promoter upon phosphorylation by the p38 mitogen-activated protein kinase [61]. 238 
Second, in response to β-adrenergic signaling, HDAC1 association with the CRE element in the PGC-239 
1α promoter is reduced and replaced by binding of the H3K27 lysine-specific demethylase 6A 240 
(KDM6A) together with the HAT CBP, leading to lower methylation and higher acetylation of H3K27 241 
and subsequently enhanced PGC-1α gene expression [62]. 242 

In addition to the regulation of PGC-1α gene expression in brown adipocytes, different 243 
epigenetic mechanisms have been implied in the PGC-1α-dependent regulation of UCP-1 expression 244 
in thermogenesis [59]. First, PGC-1α interacts with the H3K9 JmjC domain-containing histone 245 
demethylase 2 (JHDM2), which affects the recruitment of the PPARγ complex containing the 246 
heterodimerization partner retinoid X receptor α (RXRα), PGC-1α, p300 and SRC-1 to the PPAR-247 
response elements in the UCP-1 promoter [63]. Consistently, JHDM2 knockout mice accumulate fat 248 
in adulthood and fail to adapt to cold exposure, lacking adequate regulation of UCP-1 in brown fat 249 
tissue. PGC-1α-mediated induction of UCP-1 is also influenced by the twist-related protein 1 250 
(TWIST1) [64]. While both proteins are recruited to the UCP-1 promoter, TWIST1 associates with 251 
HDAC5, reduces PGC-1α-induced histone 3 acetylation and thereby represses the expression of UCP-252 
1 and other target genes of PGC-1α. Interestingly, TWIST1 transcription is positively regulated by 253 
PPARβ/δ, a transcription factor binding partner for PGC-1α in the control of mitochondrial and other 254 
metabolic genes, and thereby exerts a negative feedback loop on PGC-1α activity in brown adipose 255 
tissue. 256 

 257 
 258 

 259 

 260 
Figure 2. Regulation and activity of PGC-1α in the regulation of UCP-1 in brown adipose 261 
tissue and thermogenesis: (a) PGC-1α recruits PPARγ and SRC-1/p300 to regulatory 262 
elements of the UCP-1 gene; (b) ATF-2 is recruited to CRE elements in the PGC-1α promoter 263 
upon phosphorylation by the p38 mitogen-activated protein kinase which enables PGC-1α 264 
transcription; (c) H3K27 is demethylated by KDM6A, higher acetylation of H3K27 leads then 265 
subsequently to enhanced PGC-1α gene expression (d) Interaction of PGC-1α with the H3K9 266 
demethylase 2 JHDM2 affects the recruitment of the PPARγ complex containing RXRα, PGC-267 
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1α, p300 and SRC-1 to the PPAR-response elements in the UCP-1 promoter (e) Interaction of 268 
TWIST1 and PGC-1α represses the UCP1 expression. 269 

 270 

5. PGC-1α and epigenetic mechanisms in disease 271 
 272 

Many diseases are characterized by wide-spread epigenetic changes that could either contribute 273 
to, or be a consequence of the pathological changes [65]. Similarly. dysregulation of mitochondria is 274 
observed in numerous pathologies, often associated with changes in PGC-1α expression and/or 275 
activity [66]. In the following sections, we have therefore summarized the current knowledge about 276 
epigenetic mechanisms that control PGC-1α in different diseases. 277 
 278 
4.1. Obesity 279 
 280 

In skeletal muscle, obesity results in an altered gene expression profile that is associated with 281 
wide-spread changes in DNA methylation events [13]. As one of these genes, the promoter of PGC-282 
1α is hypermethylated in obese subjects, and the methylation pattern is restored after gastric bypass 283 
surgery, comparable to that observed in lean individuals. Similar methylation changes of almost half 284 
of the CpG sites in the PGC-1α promoter could be triggered by short-term overfeeding of young, 285 
healthy men with a high fat diet in skeletal muscle [67], or of low-birthweight individuals in white 286 
adipose tissue [67]. In the latter cohort, PGC-1α gene expression was restored after insulin injection. 287 
Changes in the methylation status of the PGC-1α promoter were furthermore described in cultured 288 
human primary myocytes exposed to fatty acids, in a DNMT3B-dependent manner [11]. A link 289 
between fatty acid oxidation and PGC-1α promoter methylation was likewise proposed by the effect 290 
of decreased FAD levels leading to a loss of histone 3 acetylation and H3K3me2/3 deposition near the 291 
PGC-1α gene [68]. Of note, methylation of four specific CpG loci in the PGC-1α promoter in blood of 292 
children was predictive of adiposity later in life, independent of sex, age, pubertal timing, and activity 293 
[69]. 294 
 295 
4.2. Type II diabetes 296 
 297 

Hypermethylation of non-CpG sites at the PGC-1α promoter negatively correlated with PGC-298 
1α expression in skeletal muscle of type 2 diabetic subjects compared to glucose-tolerant individuals 299 
[11]. This reduction was linked to DNMT3b activity in cultured myotubes treated with tumor necrosis 300 
factor α (TNFα) or free fatty acids, both leading to hypermethylation of the PGC-1α promoter. The 301 
methylation site at -260 nucleotide location was in particular responsible for the transcriptional 302 
repression in that context. Moreover, a study in monozygotic twins showed higher methylation levels 303 
in the PGC-1α promoter in skeletal muscle and adipose tissue in type 2 diabetic subjects [70]. 304 
Similarly, a 2-fold increase in PGC-1α promoter methylation was described in human pancreatic islet 305 
cells of type 2 diabetic compared to normal individuals [71]. Finally, placental PGC-1α promoter 306 
methylation correlated both with maternal hyperglycemia and newborn leptin levels [72]. 307 
 308 
4.3. Non-alcoholic fatty liver disease (NAFLD) 309 
 310 

A comprehensive DNA methylation profiling of liver biopsies of morbidly obese patients with 311 
NAFLD revealed broad changes in the methylation pattern compared to health individuals [73]. 312 
Motif prediction implied an enrichment in methylation changes in DNA regions of PGC-1α 313 
recruitment. Moreover, bariatric surgery reversed some of the NAFLD-associated methylation 314 
changes, with a high enrichment of predicted binding sites for ERRα, a strong interaction partner for 315 
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PGC-1α. However, whether methylation changes modifying predicted PGC-1α and ERRα 316 
recruitment sites really contribute to the degree of NAFLD remains to be shown. In line with this 317 
hypothesis, NAFLD-related insulin resistance is positively correlated with PGC-1α promoter 318 
methylation, and negatively with PGC-1α gene expression [74]. 319 
 320 
4.4. Parkinson’s disease 321 
 322 

Adequate PGC-1α levels are indispensable for mitochondrial activity in the brain, and loss-of-323 
function of PGC-1α promotes neurodegenerative events in this organ [75,76]. In an extensive study 324 
incorporating 322 samples from the brain and 88 samples from blood, non-canonical cytosine 325 
methylation of the PGC-1α gene was found to be significantly increased in Parkinson’s patients 326 
compared to controls [77]. In line, treatment of mouse primary cortical neurons, microglia and 327 
astrocytes with palmitate caused PGC-1α promoter methylation at non-canonical cytosines. Likewise, 328 
the intracerebroventricular injection of palmitate into mice with transgenic expression of human α-329 
synuclein triggered increased PGC-1α promoter methylation, reduced expression of PGC-1α and 330 
diminished mitochondrial number in the substantia nigra. Moreover, PGC-1α promoter methylation 331 
correlated with increased ER stress and inflammatory signaling. 332 
 333 
4.5 Kidney diseases 334 
 335 

The lncRNA taurine-upregulated gene 1 (Tug1) interacts with PGC-1α in the kidney, and 336 
promotes the binding of PGC-1α to its own promoter [78]. Activation of this mechanism in podocytes 337 
improves mitochondrial function and reduces apoptosis as well as endoplasmic reticulum stress in 338 
diabetic nephropathy [78,79]. In acute kidney injury, the TNF-related weak inducer of apoptosis 339 
(TWEAK) stimulates HDAC recruitment to nuclear factor κB (NF-κB) on the PGC-1α promoter, 340 
resulting in histone deacetylation and repression of PGC-1α gene transcription [80]. Thereby, an 341 
inflammatory response is boosted while mitochondrial function is repressed in this pathological 342 
context. 343 

 344 

 345 

Figure 3. Overview of the epigenetic changes on the PGC-1α in a pathological 346 
contexts: Increased methylation of the PGC-1α promoter has been found to occur in 347 
Obesity, Diabetes, NAFLD and Parkinson. Obesity and decreased FAD levels lead to 348 
a loss of histone 3 acetylation and thus a decreased gene expression of PGC-1α. 349 
Exposure to TNFα or FFA (free fatty acids) leads to a hypermethylation of the PGC-350 
1α promoter by the activation of DNMNT3b. In NAFLD, a decreased expression of 351 
PGC1α target genes was associated with higher methylation of the respective 352 
promoters. In kidney diseases, the micro RNA TUG1 promotes the binding of PGC-353 
1α to its own promoter. In acute kidney injury, HDAC recruitment to nuclear factor 354 
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κB (NF-κB) on the PGC-1α promoter promotes deacetylation and thus repression of 355 
PGC1α. Increased methylation of the PGC-1α promoter has been found to occur in 356 
Diabetes, NAFLD and Parkinson. 357 

 358 
 359 
5. Conclusion and perspectives 360 
 361 

With the inclusion of transient, short-term changes, the traditional distinction between 362 
epigenetics and transcriptional regulation becomes blurry. It thus is of little surprise that a strong 363 
transcriptional regulator such as PGC-1α is not only controlled by, but also uses various epigenetic 364 
mechanisms to modulate complex transcriptional networks in acute settings. The more persistent 365 
changes in PGC-1α promoter methylation in numerous diseases however hint at a more long-term 366 
control of PGC-1α to be important for health and disease. Future studies will hopefully aim at 367 
elucidating these effects not only in the pathological, but also physiological context. For example, 368 
even though clear evidence exists, the hereditary aspects of exercise training remain enigmatic [5,81]. 369 
Intriguingly, the selection of high- and low-capacity runners of rats demonstrated the heritability of 370 
treadmill exercise, and was associated with higher PGC-1α protein levels in the muscles of high- 371 
compared to low-capacity runners [82]. It will be interesting to study whether epigenetic regulation 372 
of PGC-1α underlies this effect. These and similar studies will ultimately help to understand cell 373 
plasticity over different time scales in health and disease. 374 
 375 
 376 
 377 
  378 
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