Preprint
Article

Viscoelastic Behaviour from Complementary Forced-Oscillation and Micro-Creep Tests

Altmetrics

Downloads

207

Views

213

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

12 October 2019

Posted:

13 October 2019

You are already at the latest version

Alerts
Abstract
There is an important complementarity between experimental methods for the study of high-temperature viscoelasticity in the time and frequency domains, that has not always been fully exploited. Here we show that parallel processing of forced-oscillation data and microcreep records, involving consistent use of either Andrade or extended Burgers creep-function models, yields a robust composite modulus-dissipation dataset spanning a broader range of periods than either technique alone. In fitting this dataset, the alternative Andrade and extended Burgers models differ in their partitioning of strain between the anelastic and viscous contributions. The extended Burgers model is preferred because it involves a finite range of anelastic relaxation times, and accordingly a well-defined anelastic relaxation strength. The new strategy offers the prospect of better constraining the transition between transient and steady-state creep, or equivalently, between anelastic and viscous behaviour.
Keywords: 
Subject: Environmental and Earth Sciences  -   Geophysics and Geology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated