Preprint
Article

The Effect of Co-Doping at the A-Site on the Structure and Oxide Ion Conductivity in (Ba0.5-xSrx)La0.5InO3-δ: A Molecular Dynamics Study

Altmetrics

Downloads

264

Views

269

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

15 October 2019

Posted:

16 October 2019

You are already at the latest version

Alerts
Abstract
The molecular dynamics simulation has been used to investigate the structural and transport properties of (Ba0.5-xSrx)La0.5InO3-δ (x=0, 0.1, 0.2) oxygen-ion conductor. The previous studies reported that the ionic conductivity of Ba-doped LaInO3 decreases because Ba dopant forms narrow oxygen path in the lattice, which could hinder the diffusion of oxygen ion. In this study, we reveal the mechanism to improve the ionic conductivity by Ba and Sr co-doping on La site in LaInO3 perovskite oxide. The results show that the ionic conductivity of (Ba0.5-xSrx)La0.5InO3-δ increases with increasing numbers of Sr ions, which oxygen diffusion paths including Sr ion have larger critical radius than Ba ions. The RDF calculations showed the heights of peak in composition including Sr ions is lower and broaden, so oxygen ions moved easily into other oxygen sites.
Keywords: 
Subject: Chemistry and Materials Science  -   Electrochemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated