Preprint
Article

Essential Oils with High Activity Against Stationary Phase Bartonella Henselae

Altmetrics

Downloads

2700

Views

3822

Comments

0

This version is not peer-reviewed

Submitted:

14 October 2019

Posted:

16 October 2019

You are already at the latest version

Alerts
Abstract
Bartonella henselae is a fastidious Gram-negative intracellular bacterium which can cause cat scratch disease, endocarditis in humans and animals as well as other complications, leading to acute or chronic infections. The current treatment for Bartonella infections is not very effective due to antibiotic resistance and also persistence. To develop better therapies for persistent and chronic Bartonella infections, in this study, with the help of SYBR Green I/PI viability assay, we performed a high-throughput screening of an essential oil library against stationary phase B. henselae. We successfully identified 32 essential oils that had high activity, including four essential oils extracted from Citrus plants, three from Origanum, three from Cinnamomum, two from Pelargonium and two from Melaleuca, as well as frankincense, ylang ylang, fir needle, mountain savory (winter), citronella, spearmint, elemi, vetiver, clove bud, allspice and cedarwood essential oils. The minimal inhibitory concentration (MIC) determination of these 32 top hits indicated they were not only active against stationary phase non-growing B. henselae but also had good activity against log phase growing B. henselae. The time-kill curve by drug exposure assay showed 13 active hits, including essential oils of oregano, cinnamon bark, mountain savory (winter), cinnamon leaf, geranium, clove bud, allspice, geranium bourbon, ylang ylang, citronella, elemi and vetiver, could eradicate all stationary phase B. henselae cells within 7 days at the concentration of 0.032% (v/v). Two active ingredients, carvacrol and cinnamaldehyde, of oregano and cinnamon bark essential oils, respectively, were shown to be very active against stationary phase B. henselae such that they were able to eradicate all the bacterial cells even at the concentration ≤ 0.01% (v/v). Our finding of active essential oils may help to develop more effective treatments for persistent Bartonella infections.
Keywords: 
Subject: Medicine and Pharmacology  -   Pharmacology and Toxicology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated