Preprint
Article

Machine Learning Algorithms for Soil Properties Prediction with Treated Vis–NIR Spectrums from the Itatiaia National Park

Altmetrics

Downloads

508

Views

436

Comments

0

Submitted:

04 November 2019

Posted:

06 November 2019

You are already at the latest version

Alerts
Abstract
Visible and near-infrared reflectance (Vis–NIR) techniques are a plausible method to soil analyses. The main objective of the study was to investigate the capacity to predicting soil properties Al, Ca, K, Mg, Na, P, pH, total carbon (TC), H and N, by using different spectral (350–2500 nm) pre-treatments and machine learning algorithms such as Artificial Neural Network (ANN), Random Forest (RF), Partial Least-squares Regression (PLSR) and Cubist (CB). The 300 soil samples were sampled in the upper part of the Itatiaia National Park (INP), located in Southeastern region of Brazil. The 10 K-fold cross validation was used with the models. The best spectral pre-treatment was the Inverse of Reflectance by a Factor of 104 (IRF4) for TC with CB, giving an averaged R² among the folds of 0.85, RMSE of 1.96; and 0.67 with 0.041 respectively for H. Into the K-folds models of TC, the highest prediction had a R² of 0.95. These results are relevant for the INP management plan, and also to similar environments. The good correlation with Vis–NIR techniques can be used for remote sense monitoring, especially in areas with very restricted access such as INP.
Keywords: 
Subject: Environmental and Earth Sciences  -   Environmental Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated