Preprint
Article

Chemometrics-Assisted Monitoring in Raman Spectroscopy for the Biodegradation Process of an Aqueous Polyfluoroalkyl Ether from a Fire-Fighting Foam in an Environmental Matrix

Altmetrics

Downloads

236

Views

211

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

06 November 2019

Posted:

08 November 2019

You are already at the latest version

Alerts
Abstract
Surfactants based on polyfluoroalky ethers are commonly used in fire-fighting foams on airport platforms, including for training sessions. Because of their persistence into the environment, their toxicity and their bioaccumulation, abnormal amounts can be found in ground and surface water following operations of airport platforms. As many other anthropogenic organic compounds, some concerns raised about their biodegradation. That is why the OECD 301 F protocol was implemented to appreciate the oxygen consumption during the biodegradation of a commercial fire-fighting foam. However, a Raman spectroscopic monitoring of the process was also attached to this experimental procedure to evaluate to what extent a polyfluoroalkyl ether disappeared from the environmental matrix. The relevance of our approach is to use chemometrics, including the Principal Component Analysis (PCA) and the Partial Least Square (PLS), in order to monitor the kinetics of the biodegradation reaction of one fire-fighting foam, Tridol S3B, containing a polyfluoroalkyl ether. This study provided a better appreciation of the partial biodegradation of some polyfluoroalkyl ethers by coupling Raman spectroscopy and chemometrics. This will ultimately facilitates the design of a future purification and remediation devices for the airport platforms.
Keywords: 
Subject: Environmental and Earth Sciences  -   Environmental Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated