Preprint
Article

Implications and Applications of Fermi Scale Quantum Gravity

Altmetrics

Downloads

302

Views

195

Comments

0

This version is not peer-reviewed

Submitted:

12 November 2019

Posted:

12 November 2019

You are already at the latest version

Alerts
Abstract
To understand the mystery of final unification, in our earlier publications, we proposed two bold concepts: 1) There exist three atomic gravitational constants associated with electroweak, strong and electromagnetic interactions. 2) There exists a strong elementary charge in such a way that its squared ratio with normal elementary charge is close to reciprocal of the strong coupling constant. In this paper we propose that, can be considered as a compound physical constant associated with proton mass, electron mass and the three atomic gravitational constants. With these ideas, an attempt is made to understand nuclear stability and binding energy. In this new approach, nuclear binding energy can be fitted with four simple terms having one unique energy coefficient with a formula, where is an estimated mean stable mass number. With this new approach, Newtonian gravitational constant can be estimated in a verifiable approach with a model relation of the form, where is the Fine structure constant. Estimated and is 62 ppm higher than the CODATA recommended It needs further investigation. Proceeding further, an attempt is made to fit the recommended quark masses.
Keywords: 
Subject: Physical Sciences  -   Nuclear and High Energy Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated