

Article

On Car Sharing Usage Prediction with Open Socio-demographic Data

Michele Cocca^{2*}, Douglas Teixeira¹, Luca Vassio², Marco Mellia², Jussara M. Almeida¹, and Ana Paula Couto da Silva¹

¹ Departamento de Ciéncia da Computaçao, Universidade Federal de Minas Gerais, Brazil; {douglas,jussara,ana.coutosilva}@dcc.ufmg.br

² Department of Electronics and Telecommunications, Politecnico di Torino, Italy; {michele.cocca,luca.vassio,marco.mellia}@polito.it

* Correspondence: michele.cocca@polito.it

1 **Abstract:** Free Floating Car Sharing (FFCS) services are a flexible alternative to car ownership. These
2 transportation services show highly dynamic usage both over different hours of the day, and across
3 different city areas. In this work, we study the problem of predicting FFCS demand patterns – a
4 problem of great importance to an adequate provisioning of the service. We tackle both the prediction
5 of the demand i) over time and ii) over space. We rely on months of real FFCS rides in Vancouver,
6 which constitute our ground truth. We enrich this data with detailed socio-demographic information
7 obtained from large open-data repositories to predict usage patterns. Our aim is to offer a thorough
8 comparison of several machine learning algorithms in terms of accuracy and easiness of training,
9 and to assess the effectiveness of current state-of-art approaches to address the prediction problem.
10 Our results show that it is possible to predict the future usage with relative errors down to 10%, and
11 the spatial prediction can be estimated with relative errors of about 40%. Our study also uncovered
12 the socio-demographic features that most strongly correlate with FFCS usage, providing interesting
13 insights for providers opening service in new regions.

14 **1. Introduction**

15 Transportation in urban areas is among the top challenges to improve people quality of life and
16 to reduce pollution. Historically, private vehicles have been the preferred transport means, with
17 municipalities investing in public transportation systems to offer alternatives to reduce traffic and
18 pollution. With the birth of the sharing economy, we are now assisting to a transition towards new
19 forms of shared mobility, which have spurred the interest of both the research community and the
20 private companies willing to start new businesses.

21 Car sharing is an evolution of the classic car rental model where users can rent cars on-demand
22 for a short period, e.g., a 20-minutes trip across town. In particular, Free Floating Car Sharing (FFCS)
23 services let customers pick and return the cars everywhere inside a city. Customers reserve, unlock
24 and return the car by using an application on their smartphones. One such service is Car2go¹, which
25 currently operates in several cities in the world. In the FFCS implementation, the provider bills the
26 user only for the time spent driving, with simple minute-based fares which factors all costs. Some
27 studies demonstrated that a massive adoption of car sharing service can improve mobility quality and
28 reduce cost and pollution (see for instance [1], [2] and [3]).

1 <https://www.car2go.com/>

29 To properly design and manage a FFCS service, a provider needs to know which is the demand of
30 mobility over the different period of the day, and over the different areas of the city. The prediction of
31 FFCS demand patterns is thus fundamental for an adequate provisioning of the service. Armed with
32 good predictions, the provider can better plan long term system management, e.g., whether to extend
33 the operative area to those neighborhoods with expected customer growth. Similarly, it can implement
34 short term dynamic relocation policies to better meet the next hours demand [4–6].

35 In this work we investigate the dynamics of usage of a real FFCS service. We aim at assessing how
36 state-of-the-art machine learning algorithms can help FFCS providers and policy makers in predicting
37 the demand, both over time and across different spatial regions. In more details we leverage a dataset
38 of real rides from cities where Car2go is offering its FFCS service. We take as case study the city of
39 Vancouver, Canada, the city with highest demand in our dataset. We rely on more than 1 million
40 rentals covering 9 months in 2017 [7]. We augment the dataset by exploiting a rich and heterogeneous
41 open dataset, namely the 2016 Vancouver Municipality census.² This second dataset comprises more
42 than 800 features, which span from detailed information about shops in each neighborhood to weather
43 conditions, from information about residents to rate of emergency calls throughout the day. Our aim is
44 to first assess to which extent it is possible to predict the FFCS demand, and second, which of this data
45 has a higher prediction power.

46 We focus on two scenarios: in the first one we investigate how to predict the demand in the
47 future, only considering only past usage and weather conditions. This is fundamental for managing
48 the FFCS fleet both in the short term (e.g., implementing relocation policies during service peak time),
49 and in the long-term (e.g., to properly match the fleet size to the future system growth). To this
50 end, we analyse machine learning algorithms that are considered state of art, from simple Linear
51 Regression and traditional Seasonal Auto Regressive Integrated Moving Average (SARIMA) models,
52 to Random Forests Regression (RFR), Support Vector Regression (SVR) and latest approaches based on
53 Long Short-Term Memory Neural Networks (NN) [8,9]. With their increasing complexity, we aim at
54 assessing not only how they perform in our target prediction task, but also to which extent one would
55 need to embrace a complex model (such as NN) or rather simpler and more informative models (like
56 linear regression and RFR).

57 In the second scenario, we correlate socio-demographic indicators with FFCS demand. We predict
58 the demand of cars in a neighborhood without past data, using only socio-demographic data. This
59 problem is often referred to as a green field, or cold start, approach. In this case, and the operator is
60 interested in knowing which could be the possible system usage in a new neighborhood (or even a new
61 city) based only on socio-demographic data. We map the FFCS demand to Vancouver neighborhoods,
62 and associate them to the socio-demographic data coming from the official Vancouver census. We
63 then use again machine learning techniques to highlight the relationship between demographics and
64 customers' mobility. We aim at answering the following research questions: i) Using modern machine
65 learning methodologies, and armed with a rich socio-demographic data, would one be able to predict
66 the mobility pattern in a city? And ii) which would be the most important socio-demographic data to
67 use for this task?

68 Through a series of thorough experiments, we show that the temporal prediction of rentals can
69 be solved with errors down to 10% when using modern machine learning algorithms. Interestingly,
70 Random Forests turn out to perform stably better than the other models, including Neural Networks,
71 for this task. When considering the mobility prediction using socio-demographic data only, we obtain
72 errors in the 40–50% range. While possibly not accurate enough for a precise planning, this prediction
73 still would be useful for operators willing to decide, e.g., to which new areas of the city to extend their
74 service. Interestingly, our models allow us also to observe which features are the most useful for the
75 prediction problem, a precious information for providers and regulators to understand FFCS systems,

² <https://opendata.vancouver.ca/pages/home/>

76 for instance to decide in which new cities to start a new service (green field problem). For example,
77 results show that the density of people commuting by walk and the number of emergency calls in a
78 neighborhood are important factors for predicting the number of rentals that will start there. Instead,
79 for the temporal prediction, knowing the weather conditions in the near future would help.

80 After overviewing the related work in Sec. 2, we describe the data collection methodology we
81 adopt in Sec. 3. Sec. 4 provides a characterization of the datasets, while Sec. 5 and Sec. 6 provide details
82 about the methodologies we use, and results for the temporal and spatial prediction, respectively.
83 Finally, Sec. 7 summarizes our findings.

84 2. Related work

85 With the easiness of collecting data, and the ability to build and train machine learning solutions,
86 researchers have started applying data driven approaches in the context of transportation. Authors
87 of [10] are among the first to address the traffic modelling and prediction with real traffic data. The
88 authors improved congestion prediction algorithm using a Kalman filtering approach, showing how
89 traffic is stationary in time. Later, authors of [11] proposed a new approach based on a multivariate
90 extension of non-parametric regression to predict traffic patterns, aiming at counteracting traffic
91 congestion. While similar in spirit, our work focuses on FFCS services explicitly, and uses a much
92 richer dataset as well as more advanced machine learning algorithms.

93 Focusing on car sharing, early work focused on estimating demand using activity-based
94 micro-simulation to model how agents move around in a city [12]. Later on, as data from operative car
95 sharing platforms became available, researchers started using real data to analyze mobility demand.
96 Authors of [13] proposed a demand model to forecast the modal split of the urban transport demand.
97 Similarly, authors of [14] investigated the Mobility-as-a-Service market opportunities, where FFCS is
98 one of the implementations, and pointed out how FFCS supply can push the users to avoid a new
99 car purchase, leading to a reduction of CO₂ emission [2]. Yet none of these prior studies focused
100 on demand prediction. Similar in spirit, authors of [15] made a large survey covering a Swiss
101 station-based car sharing service. The results confirmed that FFCS is preferred as a fast alternative
102 to public transportation and the subscription depends on the different car sharing implementation.
103 Complementarily, authors of [4] proposed a simple binary logistic model for predicting car sharing
104 subscribers in Switzerland, considering the relationship between potential membership and service
105 availability. Then, the authors used this prediction to locate unmet demand areas where to place a
106 new car sharing station. Similarly, authors of [16,17] conducted a detailed characterization of a car
107 sharing system in Munich and Berlin. Similarly to our work, they identified features correlated with
108 the demand for shared cars in the analyzed cities. We here analyze a much larger set of features,
109 including demographics and economic data, and consider multiple prediction models. We focus on
110 demand prediction, facing both time and space dimensions, and provide a thorough comparison and
111 guidelines for future directions.

112 In our previous work [18] we analyzed in depth the usage of different car sharing systems in
113 Vancouver. Based on this data we developed a model of FFCS usage and built a simulator to design
114 new systems based on electric vehicles [5]. In particular we tackled the charging station placement
115 problem, showing that the optimal placement requires few stations to satisfy charging requests in
116 different cities [6].

117 To the best of our knowledge, we are the first to face the FFCS demand prediction tackling both
118 the temporal and spatial prediction. Moreover, we are the first to use a very large dataset including
119 dozens of features to solve this problem. This let us provide also detailed insights on which of those
120 features are the most important ones to solve our target prediction problem.

121 3. Data gathering methodology

122 3.1. FFCS data collection

123 We collect data from Car2go, a popular FFCS system offering service in more than 25 cities, with
124 more than 25 millions rentals worldwide, and 3.6 millions customers. The Car2go service collects and
125 shares the position of all cars in its fleet. A customer looks for and reserves a car by using a smartphone
126 application. At the end of the ride, the customer parks and returns the car by notifying the FFCS
127 system, using again the smartphone application. The backend system records the new position of
128 the car, and makes it available for other customers. Car2go allows developers to interact with their
129 services through a public Application Programming Interfaces (API).³ With these APIs, we can retrieve
130 the current position of available cars in a given city. Each car is identified by its plate, so that it is
131 possible to identify rentals by simply performing periodic queries. In our past work [7], we engineered
132 UMAP – Urban Mobility Analysis Platform – which allows us to systematically collect precise data
133 about car rentals in all cities where Car2go offers a service.

134 In details, UMAP queries the Car2go API every minute to get the currently available cars. It then
135 rebuilds the history of rentals of each car, identifying *bookings* and *parkings*. A *booking* is the time period
136 in which a car is booked by a customer (or in maintenance). Conversely, a *parking* is the time period
137 during which a car has been available for a ride to users. Since customers can reserve a car and then
138 cancel the reservation afterwards without actually renting it, we consider a *rental* a booking having
139 (i) distance between starting and final locations greater than 500 m; (ii) travel duration shorter than 1
140 hour. In a nutshell, we discard those bookings which were not converted into rentals (i.e., when the
141 user reserved the car without actually driving it), and those rentals where the car disappears for long
142 periods (i.e., possibly due to maintenance). We refer the reader to [7] for a detailed analysis of these
143 thresholds.

144 Here we focus on Car2go rentals recorded in Vancouver, during 9 months of 2017. We chose
145 Vancouver among the cities where Car2Go offers a service because of the high availability and richness
146 of open data directly made available by its municipality, as discussed in the next section. In total, we
147 collected more than 1 million rentals that we use as ground truth to train and test machine learning
148 based algorithms to predict service demand.

149 3.2. Socio-demographic, weather and other open data

150 We also explore socio-demographic data that can be used as external inputs to car usage prediction
151 algorithms. Specifically we consider Vancouver census open data.⁴ We use the Vancouver official
152 neighborhood definition which identifies 22 neighborhoods. Per each neighborhood, the census dataset
153 provides detailed socio-demographic information such as number of residents in a given range of age,
154 with a certain income, household compositions and commuting habits. For each neighborhood the
155 census reports also information about services that are located in it, e.g., shops, bus stops and parking
156 places. In total, the census presents more than 800 socio-demographic and other spatial features.
157 Among those, we manually selected 83 features that might be related to human mobility.⁵ Moreover,
158 we also report: i) the distance to downtown – computed as the distance from the neighborhood to the
159 downtown neighborhood (considered as the central area);⁶ ii) an indicator of human activity, measured
160 by the number of emergency calls per time bin (obtained from the Vancouver census); and iii) the

³ The use of the Car2go API (<https://www.car2go.com/api/tou.htm>) is subject to approval by Car2go. We got the approval in September 2016 and continued the collection of data in January 2018.

⁴ <https://opendata.vancouver.ca/pages/home/>

⁵ The list of features is available at <https://opendata.vancouver.ca/pages/census-local-area-profiles-2016-attributes/>

⁶ We use the neighborhoods central points for distance computation.

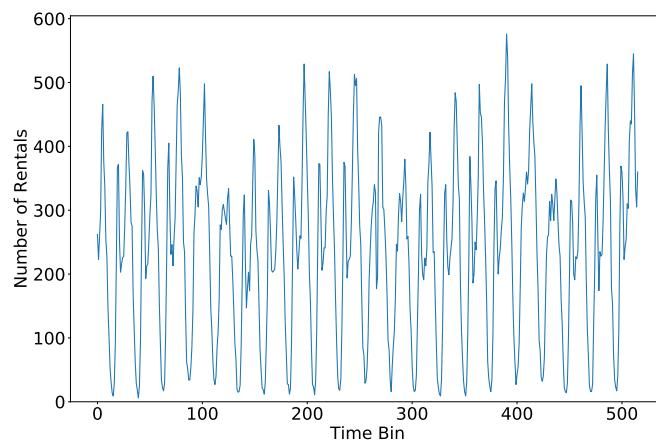


Figure 1. Time series of starting rentals in September 2017 aggregated per hour

161 hourly weather for Vancouver – as directly available from the OpenWeather project.⁷ For each of the
 162 22 neighborhoods, we normalize each numerical feature by the neighborhood total area.

163 Our aim is to include a superset of features possibly correlated with human mobility and thus car
 164 rental prediction, so as to provide the machine learning algorithms with an input dataset as rich and
 165 diverse as possible to learn from.

166 **4. Dataset overview**

167 We first provide an overview of the data at our disposal offering insights into the diversity
 168 and heterogeneity present both in the temporal and spatial FFCS usage patterns as well as in the
 169 socio-demographic data.

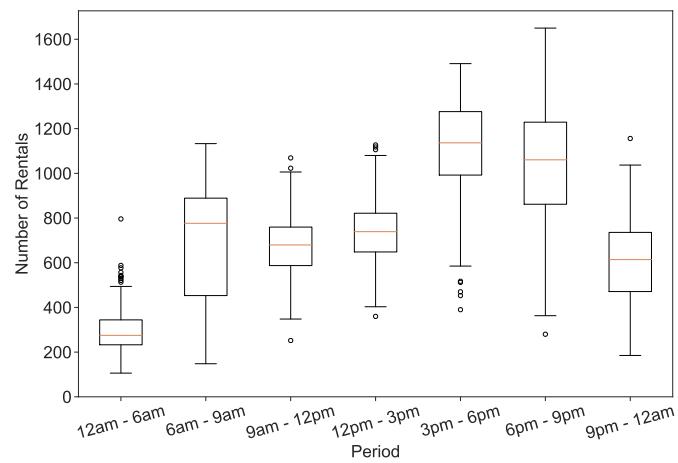
170 **4.1. FFCS temporal characterization**

171 We start by showing the temporal evolution of rentals over time. Figure 1 shows the total number
 172 of starting rentals per hour in the whole city during September 2017. Even if we can spot some
 173 periodicity, there is a lot of variability that makes the prediction problem not straightforward. For
 174 our analyses, from now on we aggregate rentals both in time and in space. Specifically, given a
 175 neighborhood we consider the fraction of rentals *starting* and *ending* there. We aggregate the time series
 176 of rentals into 7 time bins per each day, namely from midnight to 6am (night period), and then every 3
 177 hours. This time granularity is typically used for system design and control [17]. The rationale is to
 178 provide the FFCS company that actionable information on the demand for cars, e.g., to schedule car
 179 maintenance or implement relocation policies. A one-hour period is often too short for the company to
 180 be able to respond to changes in demand.

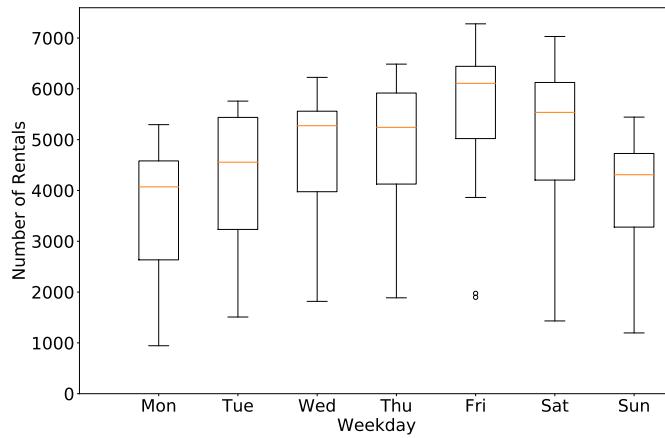
181 To give more details about the variability of the data, Figure 2a shows boxplots of the numbers of
 182 rentals starting in each time bin. Each boxplot represents the quartiles of the distribution, with outliers
 183 shown as points.⁸ The series shows large variability, with peaks during early mornings (6am-9am)
 184 and afternoon (3pm-6pm and 6pm-9pm), and with low values during nighttime (12am-6am). Figure 2b
 185 shows boxplots of the total numbers of rentals grouped per day of the week. The number of rentals
 186 peaks on Fridays, with significantly lower values registered on Sundays and Mondays. Again, we
 187 observe a quite sizeable variability over the days, as observed by in the sizes of the boxplots. Such

7 <https://openweathermap.org/history-bulk>

8 We consider as outliers measures that are outside the mean ± 2.698 times the standard deviation range.



(a) Boxplots of number of rentals starting in each time bin



(b) Boxplots of number of rentals starting in each day of the week

Figure 2. Temporal characterization of number of rentals. Boxplots highlighting the variability over the day for the same time bin of the day (top plot), and over different days (bottom plots)

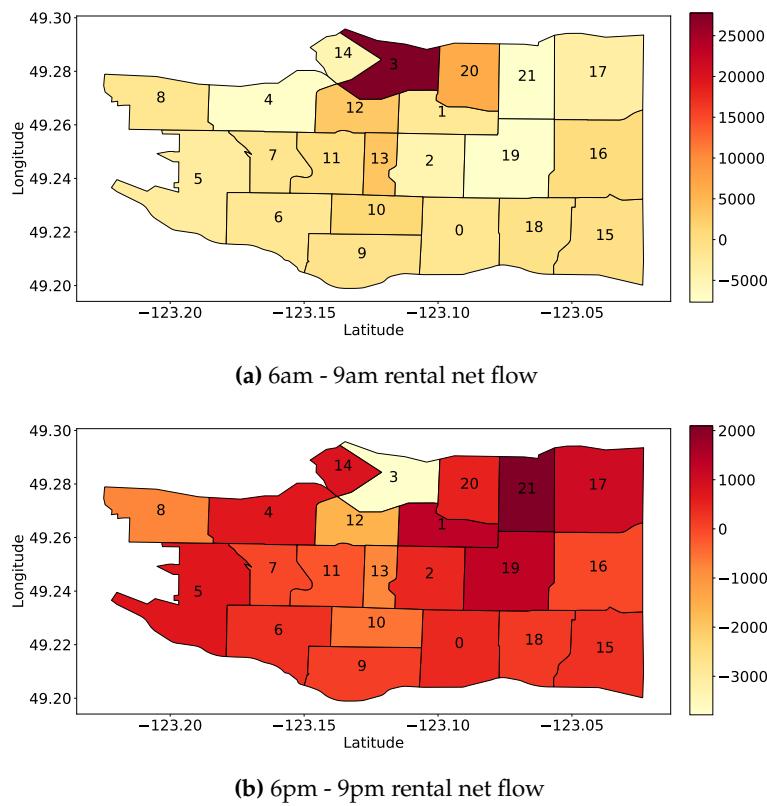


Figure 3. Heatmap of net flow for each neighborhood in Vancouver. The more the area is red, the higher are the arrivals with respect to the departures. Neighborhood numbering is shown (from 0 to 21)

variability in the number of rentals hints at the fact that prediction models have to be able to deal with sizeable temporal variations in the demand for cars.

4.2. FFCS spatial characterization

We now take a closer look into how these numbers vary across different areas of the city. Rather than providing a complete characterization of the origin/destination matrix (which is outside present scope), we here focus on particular examples to showcase the spatial variability in the demand of mobility. We focus on the morning and afternoon peak time bins (6am-9am and 6pm-9pm). For each neighborhood we compute the *net flow* defined as the difference between the number of rentals starting from that neighborhood, and the number of rentals arriving to that neighborhood during the specified time period. We consider the cumulative net flow in September 2017. Figure 3 depicts the results with a heat map. Darker red neighborhoods means that arrivals exceed departures, i.e., the neighborhood is attracting vehicles. Conversely, lighter colors imply that more vehicles are departing from that neighborhood than arriving in it. Numbers identify different neighborhoods. Downtown business area (number 3) attracts a lot of rides in the morning period (Figure 3a), while the opposite pattern is seen during the afternoon period (Figure 3b). In general, we can assert that the FFCS demand is higher in the peak hours towards downtown in the morning and residential areas in the afternoon, while sensibly lower at nighttime. This is clearly visible in Figure 4 which reports the net flow for two neighborhoods for each hour of the day, namely the downtown neighborhood (number 3), and the Grandview-Woodland (number 21) neighborhood, a residential area close to downtown.

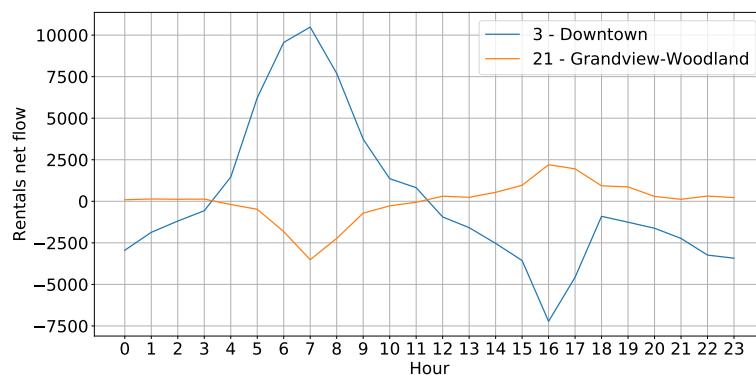


Figure 4. Total net flow in September 2017 for Downtown (neighborhood 3) and Grandview-Woodland (neighborhood 21) over different hours of the day

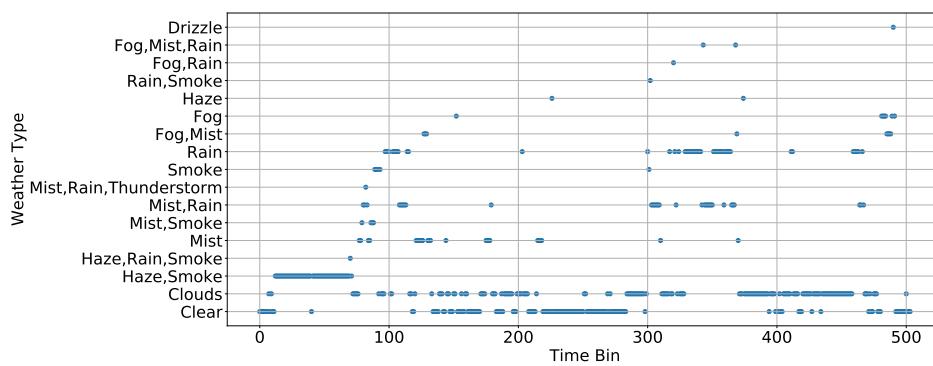


Figure 5. Time series of weather conditions per hour during September 2017. Each point in the plot represents an occurred weather type

207 4.3. Socio-demographic and weather data characterisation

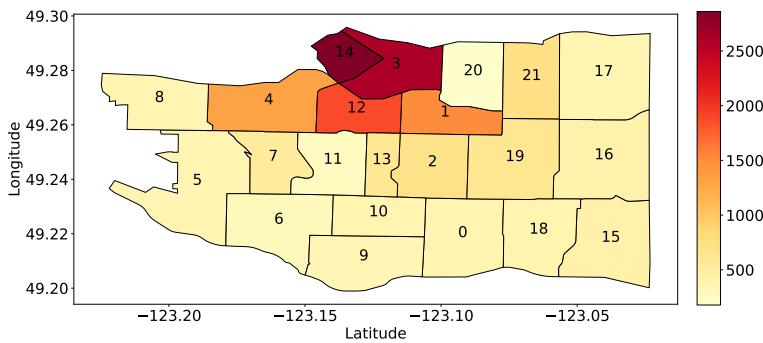
208 We now provide some examples of the socio-demographic and open data. Figure 5 reports the
 209 weather condition during the month of September 2017. Being it a categorical variable, we assign each
 210 weather condition combinations to a different value on the y-axis. As expected, the weather conditions
 211 change over time quite frequently. Moreover, comparing the weather conditions with the number of
 212 rentals in Figure 1, it is hard to find any evident correlation.

213 Similarly, Figures 6a and 6b show the number of high-income households and the number of
 214 emergency calls per day for each neighborhood, respectively. Also in this case, it is hard to see any
 215 clear correlation with the net flow per neighborhood reported in Figures 3. The scenario is similar
 216 considering other socio-demographic features.

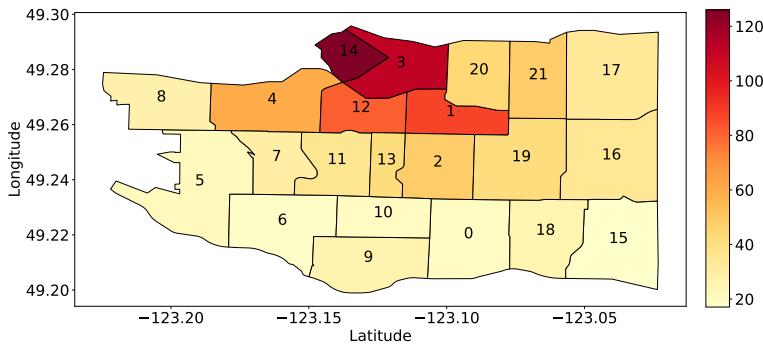
217 Despite the not linear correlations between the socio-demographic data and rentals, it is possible
 218 that the combination of multiple features help the prediction of car rentals, as we will discuss in the
 219 next sections. This is exactly what the machine learning algorithms aim at, i.e., building a model
 220 from data, leveraging correlation from multiple variables that, considered together, carry enough
 221 information to predict system usage. In a nutshell, we let eventually the machine learning model to
 222 decide if and how to factor different features in the prediction model.

223 5. Temporal predictions of rentals

In this section, we describe our task of predicting the number of rentals in the whole city at a target time in the future. Eventually, the same methodology could be applied for each neighborhood. This prediction can exploit historical data, i.e., given the time series of rentals in the past, predict the number of rentals in the future. If only the past time series are available, the problem falls in the univariate regression class, i.e., the prediction is based only on past data of the same target variable.



(a) Maximal income range density per neighborhood



(b) Emergency calls per day per neighborhood

Figure 6. Heatmap of a sample of demographic (top) and socio-demographic (bottom) data at our disposals. These two samples looks quite correlated

Let $x(t)$ be our target variable, i.e., the number of rentals at time t . In the case of prediction with historical data, we predict

$$x(t+j) = f(x(t), x(t-1), \dots, x(t-k)), j > 0$$

as a function $f()$ of the past $k+1$ data of x itself, where j is the horizon of the prediction.

If we also have other information, we can build a more generic model to consider the dependence to other variables. We want to predict

$$x(t+j) = g(y_1, y_2, \dots, y_l), j > 0,$$

where $\{y_i\}$ are different variables, possibly a time series themselves (including x) and g is the model that allows us to predict x at time $t+j$. This problem is a multivariate regression problem, where multiple features are used to predict the target variable x .

Considering the time horizon of the prediction, we can formulate two versions of the problems: predict the long-term or short-term usage. In the first case, we build and train a single model using all data at our disposal to predict the system usage in the next months. In the short-term we target the prediction of the next time bin $t+1$ only, i.e., $j = 1$. In this second case, we build and update a new model at each time bin by adding the latest recorded number of rentals to the train set as soon as it becomes available.

Both predictions are important for the car sharing provider. For instance, the long-term predictions are important for the company to know if their fleet size is enough to keep up with the expected demand. The short-term is important for the company to know when to take a car down for maintenance, or when and where cars should be eventually relocated to those neighborhoods where the demand is expected to increase shortly. While for long-term prediction we use the time series of the rentals and

239 information about day of the week and hour of the day, for short prediction we can use also the near
 240 future weather condition information.

In this work, we consider discrete time, i.e., we split time into fixed size time intervals as defined in the aggregation step – see Section 4. We then build and train several machine learning models to tackle each aforementioned problem. Our goal is to compare them in terms of accuracy of the prediction and complexity of the model. At last, we are also interested in considering models that are interpretable, i.e., that allow us to understand which are the most important features that affect car sharing usage in large cities. We evaluate all models considering MAPE (mean absolute percentage error) over the validation set, which is defined as

$$MAPE = \frac{1}{|V|} \sum_{t_i \in V} \frac{|x(t_i) - \hat{x}(t_i)|}{x(t_i)},$$

241 where V is the validation set, $x(t_i)$ is the actual value of the data at moment t_i and $\hat{x}(t_i)$ is the predicted
 242 value.

243 *5.1. Prediction models*

244 We use off-the-shelf machine learning models both for the long-term and short-term scenarios.
 245 We evaluate univariate models: a simple baseline (BL) approach, the autoregressive moving average
 246 (ARIMA) and the seasonal autoregressive moving average (SARIMA) algorithms. Univariate models
 247 do not account for the influence of other time-variant factors such as weather conditions. To account
 248 for that, we also investigate the performance of linear regression, Random Forests Regression (RFR),
 249 Support Vector Regression (SVR), and long-term short-term memory neural networks (NN). With these
 250 algorithms we include categorical features (the day of the week and weather, for instance). Following
 251 correct practices [19], we represent each categorical feature as many binary variables, one for each
 252 category. For example, when representing a given weather type, the corresponding binary variable
 253 will be set to *True* while all the other weather-related variables to *False*. We used the algorithms
 254 implementation in Python libraries scikit-learn⁹ [20] and Keras¹⁰. Our code for the analysis is
 255 publicly available¹¹. For details about each model, we refer the reader to [9]. Below we offer a high
 256 level description. For each model, we perform a hyper-parameter optimization, not reported here for
 257 the sake of brevity. Below we provide the final parameters we use for our experiments.

258 **Baseline.** A simple approach to determine $x(t + j)$ in a time bin is to take the average number of
 259 rentals in the same time bins in the available past days. We compare all our prediction models to this
 260 baseline.

261 **ARIMA.** ARIMA (autoregressive integrated moving average) is widely used to predict time series
 262 data. ARIMA models are a combination of autoregressive models with moving average models. The
 263 creation of an ARIMA model involves specifying three parameters (p, d, q). The d parameter measures
 264 how many times we have to differentiate the data to obtain stationary data. After determining d ,
 265 we use sample partial auto correlation function to get the value p . Finally, we determine the order q
 266 by looking at the sample auto correlation function of the differentiated data. We experimented with
 267 several combinations of values for the parameters (p, d, q) and the combination that gave us the best
 268 results is $(p, d, q) = (2, 0, 1)$.

269 **SARIMA.** A SARIMA model incorporates the known seasonality (periodicity) of the data into an
 270 ARIMA model, enhancing its predictive power. For instance, when modeling a time series, it is often
 271 the case that the data has a daily, weekly, or monthly periodicity. We used our previous ARIMA model

⁹ <https://scikit-learn.org/>

¹⁰ <https://keras.io/>

¹¹ <https://github.com/dougc/carsharing-prediction>

Prediction Model	MAPE [%] Average	MAPE [%] Standard Deviation
Baseline	40.05	44.95
ARIMA	25.53	19.68
SARIMA	21.51	21.74
Linear Regression	13.86	14.92
Support Vector Regression	14.14	16.80
Random Forest Regression	11.42	11.41
Neural Networks	16.36	17.68

Table 1. Long-term temporal prediction - Average and Standard Deviation of the Mean Absolute Percentage Error (MAPE) for each prediction model in the validation set

272 with an additional explicit daily seasonal component ($p = 7$ as the number of time bins in a day in our
273 case).

274 **Linear Regression.** We fit a linear model, by finding the coefficients that multiplies each feature.
275 **SVR.** In our experiments, we use a Support Vector Regression (SVR) model with the following
276 combination of parameters, which produced the best results among the values we tested: $C = 1000$,
277 $\gamma = 0.1$, and $\epsilon = 0.1$, with the RBF kernel.

278 **RFR.** Random Forest Regression is an ensemble learning method that can be used for regression.
279 The decision is based on the outcome of many decision trees, each of which is built with a random
280 subset of the features. One advantage of random forests over linear regression is that the forest model
281 is able to capture the non-linearity. Another advantage of RFR is that they are interpretable models,
282 i.e. they offer a ranking of the most important features for the prediction problem. Here, we use 50
283 estimators (decision trees).

284 **Neural Networks.** We also consider a Long Short-Term Memory (LSTM) Neural Network model.
285 LSTMs have a memory that may help capturing past trends in the data, which may favor our prediction
286 task. We experimented with several different architectures. The best results were obtained with a three
287 layer architecture where the input layer has 64 neurons (one for each feature), the dense layer has 4
288 neurons, and the output layer has one neuron. In our experiments, to balance prediction accuracy and
289 training time, the model was trained for 50 epochs. Increasing the number of epochs has no significant
290 impact on the accuracy of the model.

291 5.2. Long-term predictions - Results

292 Here we predict the FFCS demand for cars in the future months given a model built on the previous
293 months. We use in our experiments the nine months of 2017 of car sharing usage of Vancouver. Given
294 the volume of rentals in the training period, we try to predict the number of rentals in the validation
295 period. For that, we use a model that is trained once and then used to perform all the predictions in
296 the validation period. Our training set consists in the volume of rentals for six months in each bin of
297 the day, and the validation data consists of volume of rentals for the next three months.

298 Table 1 shows the average mean absolute percentage error (MAPE) and the standard deviation of
299 the MAPE for each of the prediction models. The models that rely only on the time series (ARIMA and
300 SARIMA) are able to capture some patterns in the data, as their performance is considerably better
301 than the baseline. However, the multivariate models perform better, with Random Forest Regression
302 reaching the best performances. In Figure 7 we show the comparison between the actual values and
303 the prediction in one month of the validation set using the Random Forest Regression model (orange
304 dashed line). Overall the model is able to predict quite well the daily and weekly periodicity of rentals,
305 but in general slightly underestimates the actual number of rentals. This could be due to the fact the
306 training period refers to the first six months of the year, during which the average number of rentals is
307 lower than during the validation period in fall.

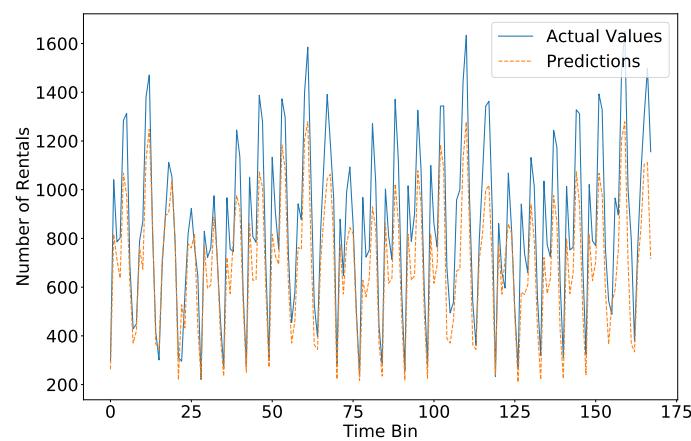


Figure 7. Long-term temporal prediction - Performance of the RFR model in one month of the validation set

	Expanding Window (starting: 28 days)		Sliding Window (28 days)	
	MAPE [%] Average	MAPE [%] Standard Deviation	MAPE [%] Average	MAPE [%] Standard Deviation
Baseline	20.12	16.64	20.12	16.64
ARIMA	36.01	35.87	36.52	36.60
SARIMA	17.60	20.01	18.02	21.75
Linear Regression	18.28	20.38	18.11	20.55
Support Vector Regression	12.22	15.62	12.87	18.52
Random Forests Regression	9.71	8.34	10.08	12.23
Neural Networks	10.52	12.93	10.52	12.74

Table 2. Short-term temporal prediction - Average and Standard Deviation of the Mean Absolute Percentage Error (MAPE) for each prediction model in the validation set

308 5.3. Short-term predictions - Results

309 We now tackle the problem of predicting the demand of cars in a city in the next time bin.
 310 Differently from the long-term predictions we use adaptive models, hence the model is re-trained
 311 every time new data is made available, so then we can add it to the training set. We here focus on the
 312 following prediction task: given the volume of rentals per time bin period for a specific number of past
 313 days and the weather conditions, we wish to predict the number of rentals just in the next time bin
 314 period.

315 We study this prediction task using two approaches: expanding window and sliding window.
 316 In the *expanding window* approach, after making the first prediction we add the actual value to the
 317 training set, therefore increasing the amount of data available for training in the next step. To train
 318 our models, we first set aside 21 days of data for validation, and start with 28 days of training data.
 319 In the *sliding window* approach, after making the prediction we remove the oldest training data and
 320 add the actual value to the training set. Therefore, the training set size is always the same during the
 321 evaluation of the models. To train our models, we consider different sliding windows sizes (from 7 to
 322 28 days), and validate on the same validation set of 21 days as with the expanding window.

323 In Table 2, we compare the performance of all models using the two approaches. The best results
 324 for the sliding window approach were obtained with the largest possible window (28 days). The
 325 expanding window approach offers slightly better results, likely because the model can exploit more
 326 data and the patterns are not changing rapidly in time. Again, the multivariate models and in particular

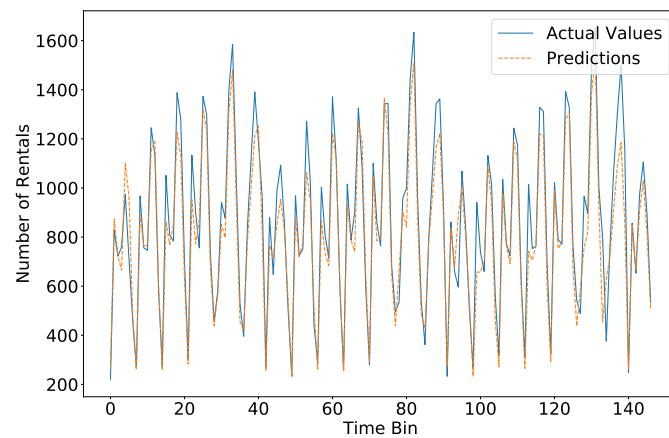


Figure 8. Short-term temporal prediction - Performance of the RFR model with expanding window in the validation set (21 days)

327 the Random Forest Regression models reach the best performance. Interestingly, the Neural Network
 328 model performs similarly to other models, suggesting that, for this specific use case, a simple and
 329 more interpretable model like a RFR is enough. We show in Figure 8 the performance of the best
 330 model, i.e., RFR with expanding window. In this short-term formulation of the problem the prediction
 331 naturally adapts to changes over time, obtaining better predictions with respect to long-term prediction.
 332 Moreover, the weather condition information also add useful information.

333 We now explore the importance of each feature for the model, by analyzing the RFR feature
 334 ranking. When training a tree, it can be computed how much each feature decreases the weighted
 335 impurity in a tree. For a forest, the impurity decrease from each feature can be averaged and the
 336 features can be ranked according to this measure. This gives a simple and interpretable feedback on
 337 which features are most useful for the prediction. We find that the most important features that impact
 338 the model are: (i) if we are in the daily peaks from 3 pm to 9 pm, (ii) during the night (0 am - 6 am) or
 339 (iii) if we are on a Friday and Saturday. Interestingly, the most important weather condition for the
 340 regressors is the presence of clouds, while the second one is a (rare) condition of presence of fog, mist
 341 and rain in the considered time bin.

342 6. Spatial prediction of rentals with socio-demographic data

343 We now shift our attention to predict the demand of cars in a neighborhood without using past
 344 data as features. In other words, given only socio-demographic data in the neighborhoods, we want
 345 to predict the number of rentals that would start and end in others neighborhoods, and during each
 346 different period of the day. This problem is often referred to as a green field, or cold start, approach. In
 347 this case, no historical data is available, and the operator is interested in knowing which could be the
 348 possible system usage in a new neighborhood (or even a new city) based only on socio-demographic
 349 data.

350 Since we have very few data points for the training step (22 neighborhoods), we performed
 351 a leave-one-out validation. Given a target neighborhood, we consider information from all other
 352 neighborhoods for training the learning model, and consider the neighborhood that we left for
 353 validation.

354 We manually selected 83 socio-demographic features that we think might be related to human
 355 mobility. Here, we only apply Support Vector Regression and Random Forest Regressions models,
 356 since here we are not dealing anymore with time series and RFR and SVR were the best performing in
 357 the temporal prediction. We discarded neural networks since these usually do not work well with a

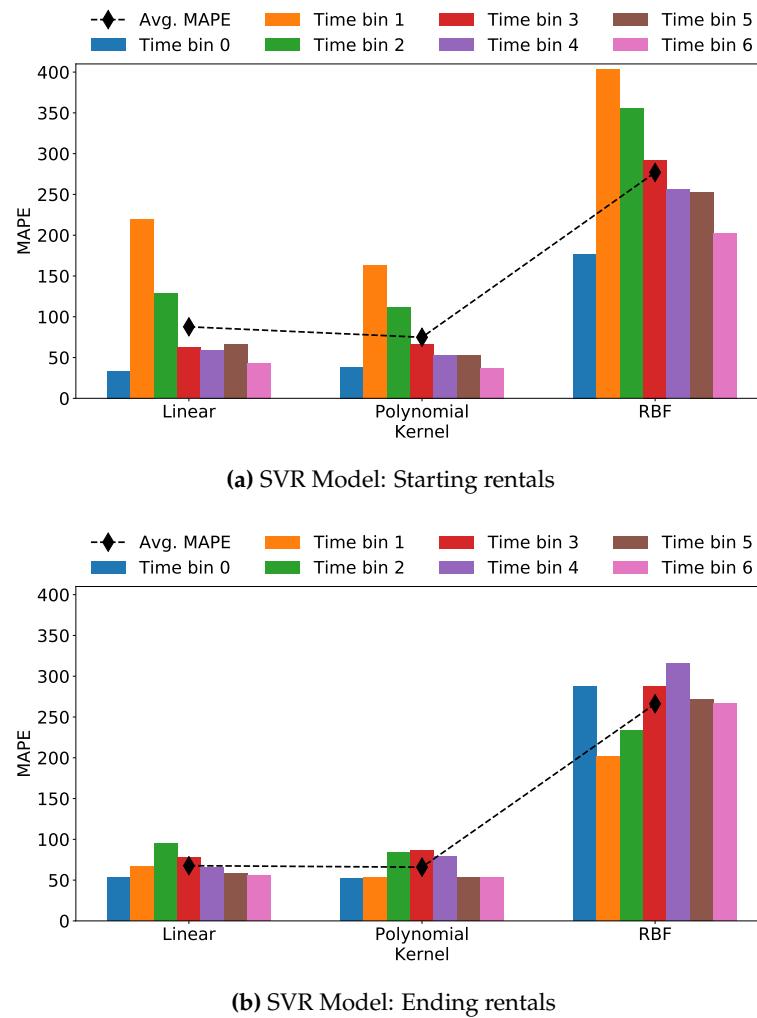
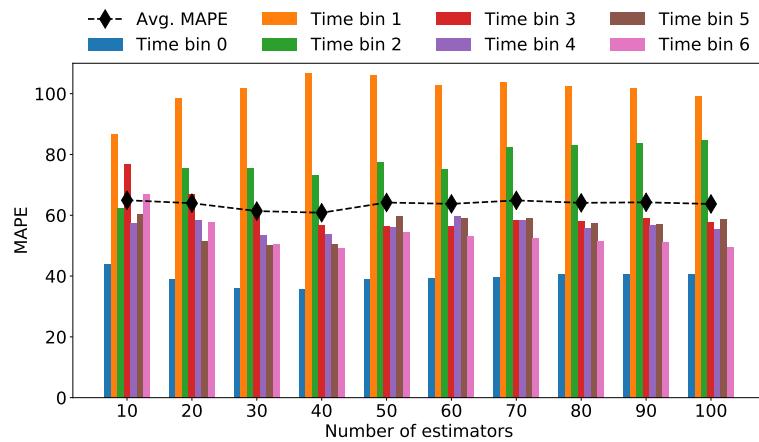


Figure 9. Spatial prediction - MAPE for Support Vector Regression models for different kernels

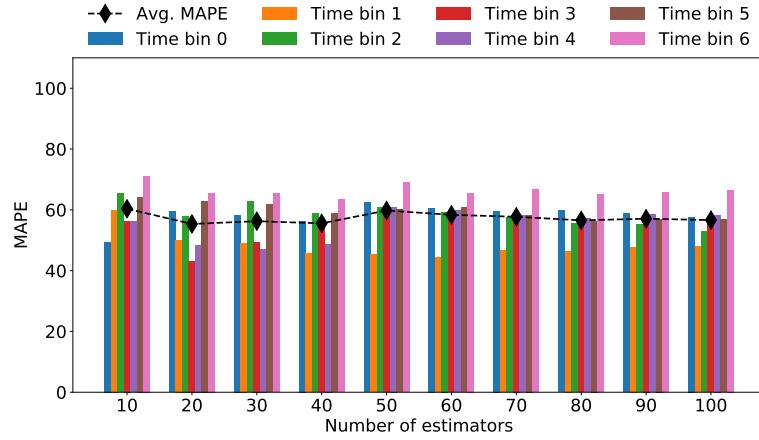
358 very small training set as in this case. For SVR, we tried 3 different kernels (linear, polynomial and
 359 RBF), with different combinations of parameters. The best performances were obtained for $\epsilon = 0.1$,
 360 $C = 100$ ($C = 10$ for RBF), and $\gamma = \frac{1}{\#features}$ ($\gamma = 1$ for RBF). For RFR, we tried number of estimators
 361 ranging from 10 to 100.

362 Figures 9a and 10b show the SVR prediction accuracy of the number of starting and ending rentals,
 363 respectively. For each kernel type, we report the average MAPE over the 22 neighborhoods for each
 364 time bin we considered in our analyses. SVR model performs poorly regardless the parameter setting
 365 we used or the time bin we target for prediction task. Best accuracy results occur with polynomial
 366 kernel, obtaining MAPE 70%, for starting rentals predictions and MAPE 64%, for ending rentals
 367 prediction. Time bin from 0 am to 6 am is the one with the best performances.

368 Random Forest Regression model results are shown in Figures 10a and 10b. For a given time bin
 369 and varying the number of trees MAPE does not vary that much, indicating that even 10 trees could
 370 be enough. Predictions for ending rentals perform better than those for starting rentals: the best case
 371 is the one with number of trees equals to 40 for predicting starting rentals, reaching MAPE 59% (20
 372 trees for ending rentals, with MAPE 56%). Again, in the time bin from 0 am to 6 am we obtain the best
 373 predictions while the worst are obtained from 6 am to 9 am for starting rentals prediction. Differently
 374 from the starting rentals predictions, MAPE does not suffer from high fluctuation.



(a) RFR Model: Starting Rentals



(b) RFR Model: Ending Rentals

Figure 10. Spatial prediction - MAPE for Random Forests Regression models for different values of estimators

Rank	Feature	Relevance
1	Number of emergency calls	0.0717
2	Distance from downtown	0.0481
3	People commuting by walk	0.0381
4	People commuting within Vancouver	0.0342
5	People with income between 100 000 and 149 999 \$CAD	0.0298
6	People with income between 60 000 and 69 999 \$CAD	0.0286
7	People legally recognized as couple	0.0281
8	People with income more than 150 000 \$CAD	0.0274
9	People divorced	0.0261
10	People commuting within the same neighborhood	0.0249
11	Couples having more than 3 children	0.0239
12	People with age between 50 and 54 years	0.0233
13	Unemployed people	0.0231
14	People never married	0.0217
15	People with income between 80 000 and 89 999 \$CAD	0.0211

Table 3. Spatial prediction - Most relevant features and their importance for the prediction using Random Forest Regression. The first 7 are the ones that for obtain the best overall model

375 6.1. Feature ranking and selection

376 As in the previous section, we analyze the RFR ranking of the features. Table 3 reports the top-15
 377 most relevant features. Hence, thanks to the RFR model, we hint at which data the operator should
 378 focus on when considering new neighborhood of the city to implement the FFCS. Such ranking allows
 379 us to reduce the number of features to train the model itself by selecting the most important ones. We
 380 run again the RFR with increasing number of features, chosen according to the given rank. We chose
 381 a-priori the number of trees, according to the best average MAPE obtained in Figure 10a and 10b.
 382 Thus, we choose 40 trees for the starting and 20 for the ending rentals prediction. Figure 11 shows the
 383 results. The horizontal axes represents the number of used features, while the vertical axes reports
 384 the MAPE. Notice the U-shaped curve of the average MAPE (dashed black line). Intuitively, too few
 385 features worsen the regression performances due to lack of information. Too many features also reduce
 386 the performance since the training is more complicated. In the following, we select the best number of
 387 features that minimize the average MAPE, which results to selecting the top 7 features in Table 1. With
 388 this subset, the average MAPE is 41% for starting rentals, 39% for arrivals.

389 At last, we explore the spatial prediction error, i.e., we look if there are neighborhoods that present
 390 significantly higher errors than others. Figure 12 depicts the heatmap of the MAPE per neighborhood,
 391 averaged over all time bins. The more the area is red the higher the MAPE is. Each green dot represents
 392 actual positions of starting or arrival rentals as recorded in the original trace. The areas having
 393 the highest error are the one labelled 15, 18, 11 and 0. We can see that most of these are periphery
 394 neighborhoods that only partially intersect with the rental area of the FFCS operator. This mismatch
 395 confuses the prediction since our model assumes the operative area coincides with the total area
 396 of each neighborhood. In a nutshell, our model predict much higher rentals (reflecting the whole
 397 neighborhood area) than the ones that are actually done (reflecting the restricted operational area).
 398 This offers the FFCS operator the opportunity to consider in which areas to extend the service.

399 7. Conclusions

400 This paper studied the problem of predicting FFCS demand patterns, which is relevant to an
 401 adequate provisioning of the service. Relying on data from real FFCS rides in Vancouver as well as
 402 the municipality socio-demographic information, we investigated to which extent modern machine
 403 learning based solutions allow one to predict the transportation demand.

404 Our results showed that the temporal prediction of rentals can be solved with relative errors
 405 down to 10%. Here a simple Random Forests Regression performs consistently among the best models,

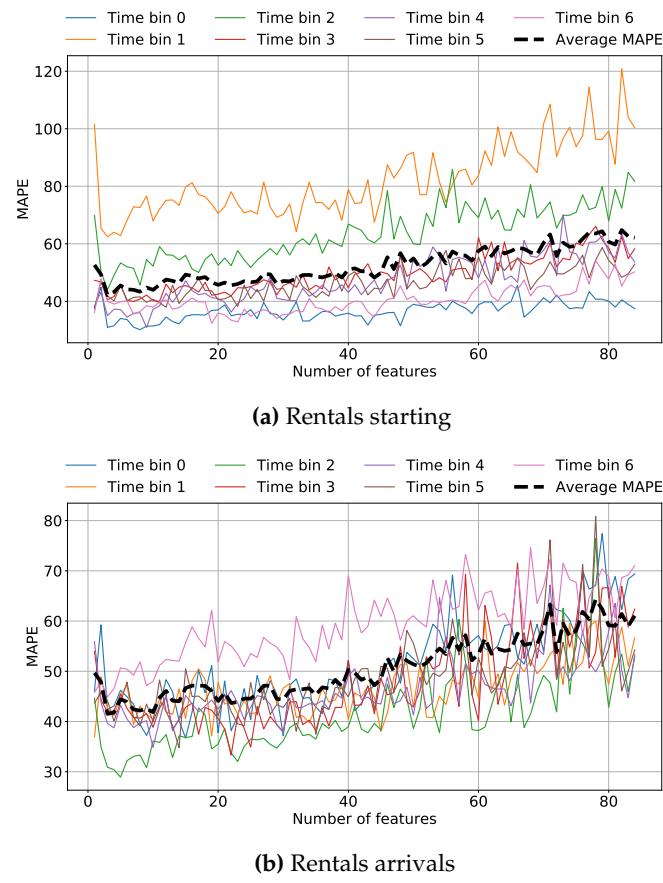


Figure 11. Spatial prediction - MAPE in the different time bins by selecting the most relevant features in RFR

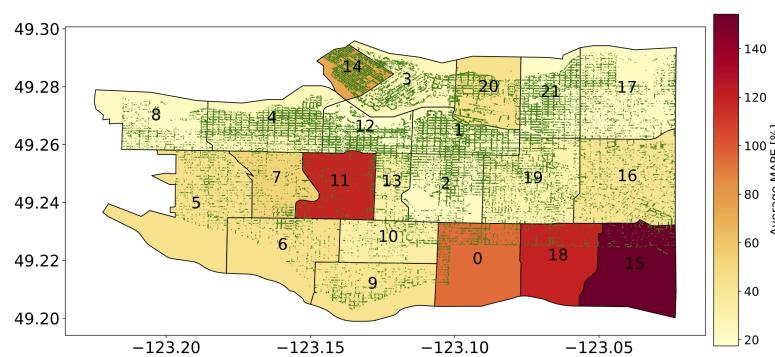


Figure 12. Spatial distribution - Heatmap of average MAPE per neighborhood. Rentals are shown on the map as green points

406 and allowing us also to discover which features are mostly affecting the prediction. When considering
407 the mobility spatial prediction using socio-demographic data only, we obtain relative errors around
408 40%, after feature selection. Again, using a Random Forest Regression model, we can observe which
409 features are the most useful for the prediction, a precious information for providers and regulators to
410 understand FFCS systems and to provide a high-quality service that benefits both providers and its
411 costumers.

412 References

- 413 1. Litman, T. Evaluating Carsharing Benefits. *Transportation Research Record* **2000**, *1702*, 31–35.
- 414 2. Firnkorn, J.; Müller, M. What will be the environmental effects of new free-floating car-sharing systems?
415 The case of car2go in Ulm. *Ecological Economics* **2011**, *70*, 1519–1528.
- 416 3. Firnkorn, J.; Müller, M. Selling mobility instead of cars: new business strategies of automakers and the
417 impact on private vehicle holding. *Business Strategy and the environment* **2012**, *21*, 264–280.
- 418 4. Ciari, F.; Weis, C.; Balac, M. Evaluating the influence of carsharing stations' location on potential
419 membership: a Swiss case study. *EURO Journal on Transportation and Logistics* **2016**, *5*, 345–369.
- 420 5. Cocca, M.; Giordano, D.; Mellia, M.; Vassio, L. Free Floating Electric Car Sharing: A Data Driven
421 Approach for System Design. *IEEE Transactions on Intelligent Transportation Systems* **2019**, pp. 1–13.
422 doi:10.1109/TITS.2019.2932809.
- 423 6. Cocca, M.; Giordano, D.; Mellia, M.; Vassio, L. Free floating electric car sharing design: Data driven
424 optimisation. *Pervasive and Mobile Computing* **2019**, *55*, 59 – 75. doi:10.1016/j.pmcj.2019.02.007.
- 425 7. Ciociola, A.; Cocca, M.; Giordano, D.; Mellia, M.; Morichetta, A.; Putina, A.; Salutari, F. UMAP: Urban
426 Mobility Analysis Platform to Harvest Car Sharing Data. Procedings of IEEE Smart City Innovations,
427 2017.
- 428 8. Brockwell, P.J.; Davis, R.A. *Introduction to time series and forecasting*; Springer, 2016.
- 429 9. Bishop, C.M. *Pattern Recognition and Machine Learning (Information Science and Statistics)*; Springer-Verlag:
430 Berlin, Heidelberg, 2006.
- 431 10. Okutani, I.; Stephanedes, Y.J. Dynamic prediction of traffic volume through Kalman filtering theory.
432 *Transportation Research Part B: Methodological* **1984**, *18*, 1–11.
- 433 11. Clark, S. Traffic prediction using multivariate nonparametric regression. *Journal of transportation engineering*
434 **2003**, *129*, 161–168.
- 435 12. Ciari, F.; Schuessler, N.; Axhausen, K.W. Estimation of carsharing demand using an activity-based
436 microsimulation approach: model discussion and some results. *International Journal of Sustainable
437 Transportation* **2013**, *7*, 70–84.
- 438 13. Catalano, M.; Casto, B.L.; Migliore, M. Car sharing demand estimation and urban transport demand
439 modelling using stated preference techniques. *European Transport* **2008**, *40*, 33–50.
- 440 14. Firnkorn, J.; Müller, M. Selling mobility instead of cars: new business strategies of automakers and the
441 impact on private vehicle holding. *Business Strategy and the environment* **2012**, *21*, 264–280.
- 442 15. Becker, H.; Ciari, F.; Axhausen, K.W. Comparing car-sharing schemes in Switzerland: User groups and
443 usage patterns. *Transportation Research Part A: Policy and Practice* **2017**, *97*, 17–29.
- 444 16. Schmöller, S.; Bogenberger, K. Analyzing external factors on the spatial and temporal demand of car
445 sharing systems. *Procedia-Social and Behavioral Sciences* **2014**, *111*, 8–17.
- 446 17. Schmöller, S.; Weikl, S.; Müller, J.; Bogenberger, K. Empirical analysis of free-floating carsharing usage:
447 The Munich and Berlin case. *Transportation Research Part C: Emerging Technologies* **2015**, *56*, 34–51.
- 448 18. Alencar, V.A.; Rooke, F.; Cocca, M.; Vassio, L.; Almeida, J.; Vieira, A.B. Characterizing client
449 usage patterns and service demand for car-sharing systems. *Information Systems* **2019**, p. 101448.
450 doi:https://doi.org/10.1016/j.is.2019.101448.
- 451 19. Jain, R. *The art of computer systems performance analysis: techniques for experimental design, measurement,
452 simulation, and modeling*; John Wiley & Sons, 1990.
- 453 20. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
454 Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E.
455 Scikit-learn: Machine Learning in Python. *Journal of Machine Learning Research* **2011**, *12*, 2825–2830.