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Abstract: Free Floating Car Sharing (FFCS) services are a flexible alternative to car ownership. These 
transportation services show highly dynamic usage both over different hours of the day, and across 
different city areas. In this work, we study the problem of predicting FFCS demand patterns – a 
problem of great importance to an adequate provisioning of the service. We tackle both the prediction 
of the demand i) over time and ii) over space. We rely on months of real FFCS rides in Vancouver, 
which constitute our ground truth. We enrich this data with detailed socio-demographic information 
obtained from large open-data repositories to predict usage patterns. Our aim is to offer a thorough 
comparison of several machine learning algorithms in terms of accuracy and easiness of training, 
and to assess the effectiveness of current state-of-art approaches to address the prediction problem. 
Our results show that it is possible to predict the future usage with relative errors down to 10%, and 
the spatial prediction can be estimated with relative errors of about 40%. Our study also uncovered 
the socio-demographic features that most strongly correlate with FFCS usage, providing interesting 
insights for providers opening service in new regions.13

1. Introduction14

Transportation in urban areas is among the top challenges to improve people quality of life and15

to reduce pollution. Historically, private vehicles have been the preferred transport means, with16

municipalities investing in public transportation systems to offer alternatives to reduce traffic and17

pollution. With the birth of the sharing economy, we are now assisting to a transition towards new18

forms of shared mobility, which have spurred the interest of both the research community and the19

private companies willing to start new businesses.20

Car sharing is an evolution of the classic car rental model where users can rent cars on-demand21

for a short period, e.g., a 20-minutes trip across town. In particular, Free Floating Car Sharing (FFCS)22

services let customers pick and return the cars everywhere inside a city. Customers reserve, unlock23

and return the car by using an application on their smartphones. One such service is Car2go 1, which24

currently operates in several cities in the world. In the FFCS implementation, the provider bills the25

user only for the time spent driving, with simple minute-based fares which factors all costs. Some26

studies demonstrated that a massive adoption of car sharing service can improve mobility quality and27

reduce cost and pollution (see for instance [1], [2] and [3]).28

1 https://www.car2go.com/
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To properly design and manage a FFCS service, a provider needs to know which is the demand of29

mobility over the different period of the day, and over the different areas of the city. The prediction of30

FFCS demand patterns is thus fundamental for an adequate provisioning of the service. Armed with31

good predictions, the provider can better plan long term system management, e.g., whether to extend32

the operative area to those neighborhoods with expected customer growth. Similarly, it can implement33

short term dynamic relocation policies to better meet the next hours demand [4–6].34

In this work we investigate the dynamics of usage of a real FFCS service. We aim at assessing how35

state-of-the-art machine learning algorithms can help FFCS providers and policy makers in predicting36

the demand, both over time and across different spatial regions. In more details we leverage a dataset37

of real rides from cities where Car2go is offering its FFCS service. We take as case study the city of38

Vancouver, Canada, the city with highest demand in our dataset. We rely on more than 1 million39

rentals covering 9 months in 2017 [7]. We augment the dataset by exploiting a rich and heterogeneous40

open dataset, namely the 2016 Vancouver Municipality census.2 This second dataset comprises more41

than 800 features, which span from detailed information about shops in each neighborhood to weather42

conditions, from information about residents to rate of emergency calls throughout the day. Our aim is43

to first assess to which extent it is possible to predict the FFCS demand, and second, which of this data44

has a higher prediction power.45

We focus on two scenarios: in the first one we investigate how to predict the demand in the46

future, only considering only past usage and weather conditions. This is fundamental for managing47

the FFCS fleet both in the short term (e.g., implementing relocation policies during service peak time),48

and in the long-term (e.g., to properly match the fleet size to the future system growth). To this49

end, we analyse machine learning algorithms that are considered state of art, from simple Linear50

Regression and traditional Seasonal Auto Regressive Integrated Moving Average (SARIMA) models,51

to Random Forests Regression (RFR), Support Vector Regression (SVR) and latest approaches based on52

Long Short-Term Memory Neural Networks (NN) [8,9]. With their increasing complexity, we aim at53

assessing not only how they perform in our target prediction task, but also to which extent one would54

need to embrace a complex model (such as NN) or rather simpler and more informative models (like55

linear regression and RFR).56

In the second scenario, we correlate socio-demographic indicators with FFCS demand. We predict57

the demand of cars in a neighborhood without past data, using only socio-demographic data. This58

problem is often referred to as a green field, or cold start, approach. In this case, and the operator is59

interested in knowing which could be the possible system usage in a new neighborhood (or even a new60

city) based only on socio-demographic data. We map the FFCS demand to Vancouver neighborhoods,61

and associate them to the socio-demographic data coming from the official Vancouver census. We62

then use again machine learning techniques to highlight the relationship between demographics and63

customers’ mobility. We aim at answering the following research questions: i) Using modern machine64

learning methodologies, and armed with a rich socio-demographic data, would one be able to predict65

the mobility pattern in a city? And ii) which would be the most important socio-demographic data to66

use for this task?67

Through a series of thorough experiments, we show that the temporal prediction of rentals can68

be solved with errors down to 10% when using modern machine learning algorithms. Interestingly,69

Random Forests turn out to perform stably better than the other models, including Neural Networks,70

for this task. When considering the mobility prediction using socio-demographic data only, we obtain71

errors in the 40-50% range. While possibly not accurate enough for a precise planning, this prediction72

still would be useful for operators willing to decide, e.g., to which new areas of the city to extend their73

service. Interestingly, our models allow us also to observe which features are the most useful for the74

prediction problem, a precious information for providers and regulators to understand FFCS systems,75

2 https://opendata.vancouver.ca/pages/home/
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for instance to decide in which new cities to start a new service (green field problem). For example,76

results show that the density of people commuting by walk and the number of emergency calls in a77

neighborhood are important factors for predicting the number of rentals that will start there. Instead,78

for the temporal prediction, knowing the weather conditions in the near future would help.79

After overviewing the related work in Sec. 2, we describe the data collection methodology we80

adopt in Sec. 3. Sec. 4 provides a characterization of the datasets, while Sec. 5 and Sec. 6 provide details81

about the methodologies we uses, and results for the temporal and spatial prediction, respectively.82

Finally, Sec. 7 summarizes our findings.83

2. Related work84

With the easiness of collecting data, and the ability to build and train machine learning solutions,85

researchers have started applying data driven approaches in the context of transportation. Authors86

of [10] are among the first to address the traffic modelling and prediction with real traffic data. The87

authors improved congestion prediction algorithm using a Kalman filtering approach, showing how88

traffic is stationary in time. Later, authors of [11] proposed a new approach based on a multivariate89

extension of non-parametric regression to predict traffic patterns, aiming at counteracting traffic90

congestion. While similar in spirit, our work focuses on FFCS services explicitly, and uses a much91

richer dataset as well as more advanced machine learning algorithms.92

Focusing on car sharing, early work focused on estimating demand using activity-based93

micro-simulation to model how agents move around in a city [12]. Later on, as data from operative car94

sharing platforms became available, researchers started using real data to analyze mobility demand.95

Authors of [13] proposed a demand model to forecast the modal split of the urban transport demand.96

Similarly, authors of [14] investigated the Mobility-as-a-Service market opportunities, where FFCS is97

one of the implementations, and pointed out how FFCS supply can push the users to avoid a new98

car purchase, leading to a reduction of CO2 emission [2]. Yet none of these prior studies focused99

on demand prediction. Similar in spirit, authors of [15] made a large survey covering a Swiss100

station-based car sharing service. The results confirmed that FFCS is preferred as a fast alternative101

to public transportation and the subscription depends on the different car sharing implementation.102

Complementarily, authors of [4] proposed a simple binary logistic model for predicting car sharing103

subscribers in Switzerland, considering the relationship between potential membership and service104

availability. Then, the authors used this prediction to locate unmet demand areas where to place a105

new car sharing station. Similarly, authors of [16,17] conducted a detailed characterization of a car106

sharing system in Munich and Berlin. Similarly to our work, they identified features correlated with107

the demand for shared cars in the analyzed cities. We here analyze a much larger set of features,108

including demographics and economic data, and consider multiple prediction models. We focus on109

demand prediction, facing both time and space dimensions, and provide a thorough comparison and110

guidelines for future directions.111

In our previous work [18] we analyzed in depth the usage of different car sharing systems in112

Vancouver. Based on this data we developed a model of FFCS usage and built a simulator to design113

new systems based on electric vehicles [5]. In particular we tackled the charging station placement114

problem, showing that the optimal placement requires few stations to satisfy charging requests in115

different cities [6].116

To the best of our knowledge, we are the first to face the FFCS demand prediction tackling both117

the temporal and spatial prediction. Moreover, we are the first to use a very large dataset including118

dozens of features to solve this problem. This let us provide also detailed insights on which of those119

features are the most important ones to solve our target prediction problem.120
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3. Data gathering methodology121

3.1. FFCS data collection122

We collect data from Car2go, a popular FFCS system offering service in more than 25 cities, with123

more than 25 millions rentals worldwide, and 3.6 millions customers. The Car2go service collects and124

shares the position of all cars in its fleet. A customer looks for and reserves a car by using a smartphone125

application. At the end of the ride, the customer parks and returns the car by notifying the FFCS126

system, using again the smartphone application. The backend system records the new position of127

the car, and makes it available for other customers. Car2go allows developers to interact with their128

services through a public Application Programming Interfaces (API).3 With these APIs, we can retrieve129

the current position of available cars in a given city. Each car is identified by its plate, so that it is130

possible to identify rentals by simply performing periodic queries. In our past work [7], we engineered131

UMAP – Urban Mobility Analysis Platform – which allows us to systematically collect precise data132

about car rentals in all cities where Car2go offers a service.133

In details, UMAP queries the Car2go API every minute to get the currently available cars. It then134

rebuilds the history of rentals of each car, identifying bookings and parkings. A booking is the time period135

in which a car is booked by a customer (or in maintenance). Conversely, a parking is the time period136

during which a car has been available for a ride to users. Since customers can reserve a car and then137

cancel the reservation afterwards without actually renting it, we consider a rental a booking having138

(i) distance between starting and final locations greater than 500 m; (ii) travel duration shorter than 1139

hour. In a nutshell, we discard those bookings which where not converted into rentals (i.e., when the140

user reserved the car without actually driving it), and those rentals where the car disappears for long141

periods (i.e., possibly due to maintenance). We refer the reader to [7] for a detailed analysis of these142

thresholds.143

Here we focus on Car2go rentals recorded in Vancouver, during 9 months of 2017. We chose144

Vancouver among the cities where Car2Go offers a service because of the high availability and richness145

of open data directly made available by its municipality, as discussed in the next section. In total, we146

collected more than 1 million rentals that we use as ground truth to train and test machine learning147

based algorithms to predict service demand.148

3.2. Socio-demographic, weather and other open data149

We also explore socio-demographic data that can be used as external inputs to car usage prediction150

algorithms. Specifically we consider Vancouver census open data.4 We use the Vancouver official151

neighborhood definition which identifies 22 neighborhoods. Per each neighborhood, the census dataset152

provides detailed socio-demographic information such as number of residents in a given range of age,153

with a certain income, household compositions and commuting habits. For each neighborhood the154

census reports also information about services that are located in it, e.g., shops, bus stops and parking155

places. In total, the census presents more than 800 socio-demographic and other spatial features.156

Among those, we manually selected 83 features that might be related to human mobility.5 Moreover,157

we also report: i) the distance to downtown – computed as the distance from the neighborhood to the158

downtown neighborhood (considered as the central area);6 ii) an indicator of human activity, measured159

by the number of emergency calls per time bin (obtained from the Vancouver census); and iii) the160

3 The use of the Car2go API (https://www.car2go.com/api/tou.htm) is subject to approval by Car2go. We got the approval
in September 2016 and continued the collection of data in January 2018.

4 https://opendata.vancouver.ca/pages/home/
5 The list of features is available at https://opendata.vancouver.ca/pages/census-local-area-profiles-2016-attributes/
6 We use the neighborhoods central points for distance computation.
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Figure 1. Time series of starting rentals in September 2017 aggregated per hour

hourly weather for Vancouver – as directly available from the OpenWeather project.7 For each of the161

22 neighborhoods, we normalize each numerical feature by the neighborhood total area.162

Our aim is to include a superset of features possibly correlated with human mobility and thus car163

rental prediction, so as to provide the machine learning algorithms with an input dataset as rich and164

diverse as possible to learn from.165

4. Dataset overview166

We first provide an overview of the data at our disposal offering insights into the diversity167

and heterogeneity present both in the temporal and spatial FFCS usage patterns as well as in the168

socio-demographic data.169

4.1. FFCS temporal characterization170

We start by showing the temporal evolution of rentals over time. Figure 1 shows the total number171

of starting rentals per hour in the whole city during September 2017. Even if we can spot some172

periodicity, there is a lot of variability that makes the prediction problem not straightforward. For173

our analyses, from now on we aggregate rentals both in time and in space. Specifically, given a174

neighborhood we consider the fraction of rentals starting and ending there. We aggregate the time series175

of rentals into 7 time bins per each day, namely from midnight to 6am (night period), and then every 3176

hours. This time granularity is typically used for system design and control [17]. The rationale is to177

provide the FFCS company that actionable information on the demand for cars, e.g., to schedule car178

maintenance or implement relocation policies. A one-hour period is often too short for the company to179

be able to respond to changes in demand.180

To give more details about the variability of the data, Figure 2a shows boxplots of the numbers of181

rentals starting in each time bin. Each boxplot represents the quartiles of the distribution, with outliers182

shown as points .8 The series shows large variability, with peaks during early mornings (6am-9am)183

and afternoon (3pm-6pm and 6pm-9pm), and with low values during nighttime (12am-6am). Figure 2b184

shows boxplots of the total numbers of rentals grouped per day of the week. The number of rentals185

peaks on Fridays, with significantly lower values registered on Sundays and Mondays. Again, we186

observe a quite sizeable variability over the days, as observed by in the sizes of the boxplots. Such187

7 https://openweathermap.org/history-bulk
8 We consider as outliers measures that are outside the mean ± 2.698 times the standard deviation range.
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(a) Boxplots of number of rentals starting in each time bin
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(b) Boxplots of number of rentals starting in each day of the week
Figure 2. Temporal characterization of number of rentals. Boxplots highlighting the variability over
the day for the same time bin of the day (top plot), and over different days (bottom plots)
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(a) 6am - 9am rental net flow
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(b) 6pm - 9pm rental net flow
Figure 3. Heatmap of net flow for each neighborhood in Vancouver. The more the area is red, the
higher are the arrivals with respect to the departures. Neighborhood numbering is shown (from 0 to
21)

variability in the number of rentals hints at the fact that prediction models have to be able to deal with188

sizeable temporal variations in the demand for cars.189

4.2. FFCS spatial characterization190

We now take a closer look into how these numbers vary across different areas of the city. Rather191

than providing a complete characterization of the origin/destination matrix (which is outside present192

scope), we here focus on particular examples to showcase the spatial variability in the demand of193

mobility. We focus on the morning and afternoon peak time bins (6am-9am and 6pm-9pm). For each194

neighborhood we compute the net flow defined as the difference between the number of rentals starting195

from that neighborhood, and the number of rentals arriving to that neighborhood during the specified196

time period. We consider the cumulative net flow in September 2017. Figure 3 depicts the results with197

a heat map. Darker red neighborhoods means that arrivals exceed departures, i.e., the neighborhood198

is attracting vehicles. Conversely, lighter colors imply that more vehicles are departing from that199

neighborhood than arriving in it. Numbers identify different neighborhoods. Downtown business200

area (number 3) attracts a lot of rides in the morning period (Figure 3a), while the opposite pattern201

is seen during the afternoon period (Figure 3b). In general, we can assert that the FFCS demand is202

higher in the peak hours towards downtown in the morning and residential areas in the afternoon,203

while sensibly lower at nighttime. This is clearly visible in Figure 4 which reports the net flow for two204

neighborhoods for each hour of the day, namely the downtown neighborhood (number 3), and the205

Grandview-Woodland (number 21) neighborhood, a residential area close to downtown.206
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Figure 4. Total net flow in September 2017 for Downtown (neighborhood 3) and Grandview-Woodland
(neighborhood 21) over different hours of the day
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Figure 5. Time series of weather conditions per hour during September 2017. Each point in the plot
represents an occurred weather type

4.3. Socio-demographic and weather data characterisation207

We now provide some examples of the socio-demographic and open data. Figure 5 reports the208

weather condition during the month of September 2017. Being it a categorical variable, we assign each209

weather condition combinations to a different value on the y-axis. As expected, the weather conditions210

change over time quite frequently. Moreover, comparing the weather conditions with the number of211

rentals in Figure 1, it is hard to find any evident correlation.212

Similarly, Figures 6a and 6b show the number of high-income households and the number of213

emergency calls per day for each neighborhood, respectively. Also in this case, it is hard to see any214

clear correlation with the net flow per neighborhood reported in Figures 3. The scenario is similar215

considering other socio-demographic features.216

Despite the not linear correlations between the socio-demographic data and rentals, it is possible217

that the combination of multiple features help the prediction of car rentals, as we will discuss in the218

next sections. This is exactly what the machine learning algorithms aim at, i.e., building a model219

from data, leveraging correlation from multiple variables that, considered together, carry enough220

information to predict system usage. In a nutshell, we let eventually the machine learning model to221

decide if and how to factor different features in the prediction model.222

5. Temporal predictions of rentals223

In this section, we describe our task of predicting the number of rentals in the whole city at a
target time in the future. Eventually, the same methodology could be applied for each neighborhood.
This prediction can exploit historical data, i.e., given the time series of rentals in the past, predict the
number of rentals in the future. If only the past time series are available, the problem falls in the
univariate regression class, i.e., the prediction is based only on past data of the same target variable.
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(a) Maximal income range density per neighborhood
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(b) Emergency calls per day per neighborhood
Figure 6. Heatmap of a sample of demographic (top) and socio-demographic (bottom) data at our
disposals. These two samples looks quite correlated

Let x(t) be our target variable, i.e., the number of rentals at time t. In the case of prediction with
historical data, we predict

x(t + j) = f (x(t), x(t− 1), . . . , x(t− k)), j > 0

as a function f () of the past k + 1 data of x itself, where j is the horizon of the prediction.224

If we also have other information, we can build a more generic model to consider the dependence
to other variables. We want to predict

x(t + j) = g(y1, y2, . . . , yl), j > 0,

where {yi} are different variables, possibly a time series themselves (including x) and g is the model225

that allows us to predict x at time t + j. This problem is a multivariate regression problem, where226

multiple features are used to predict the target variable x.227

Considering the time horizon of the prediction, we can formulate two versions of the problems:228

predict the long-term or short-term usage. In the first case, we build and train a single model using all229

data at our disposal to predict the system usage in the next months. In the short-term we target the230

prediction of the next time bin t + 1 only, i.e., j = 1. In this second case, we build and update a new231

model at each time bin by adding the latest recorded number of rentals to the train set as soon as it232

becomes available.233

Both predictions are important for the car sharing provider. For instance, the long-term predictions234

are important for the company to know if their fleet size is enough to keep up with the expected demand.235

The short-term is important for the company to know when to take a car down for maintenance, or236

when and where cars should be eventually relocated to those neighborhoods where the demand is237

expected to increase shortly. While for long-term prediction we use the time series of the rentals and238
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information about day of the week and hour of the day, for short prediction we can use also the near239

future weather condition information.240

In this work, we consider discrete time, i.e., we split time into fixed size time intervals as defined
in the aggregation step – see Section 4. We then build and train several machine learning models
to tackle each aforementioned problem. Our goal is to compare them in terms of accuracy of the
prediction and complexity of the model. At last, we are also interested in considering models that are
interpretable, i.e., that allow us to understand which are the most important features that affect car
sharing usage in large cities. We evaluate all models considering MAPE (mean absolute percentage
error) over the validation set, which is defined as

MAPE =
1
|V| ∑

ti∈V

| x(ti)− x̂(ti) |
x(ti)

,

where V is the validation set, x(ti) is the actual value of the data at moment ti and x̂(ti) is the predicted241

value.242

5.1. Prediction models243

We use off-the-shelf machine learning models both for the long-term and short-term scenarios.244

We evaluate univariate models: a simple baseline (BL) approach, the autoregressive moving average245

(ARIMA) and the seasonal autoregressive moving average (SARIMA) algorithms. Univariate models246

do not account for the influence of other time-variant factors such as weather conditions. To account247

for that, we also investigate the performance of linear regression, Random Forests Regression (RFR),248

Support Vector Regression (SVR), and long-term short-term memory neural networks (NN). With these249

algorithms we include categorical features (the day of the week and weather, for instance). Following250

correct practices [19], we represent each categorical feature as many binary variables, one for each251

category. For example, when representing a given weather type, the corresponding binary variable252

will be set to True while all the other weather-related variables to False. We used the algorithms253

implementation in Python libraries scikit-learn9 [20] and Keras10. Our code for the analysis is254

publicly available11. For details about each model, we refer the reader to [9]. Below we offer a high255

level description. For each model, we perform a hyper-parameter optimization, not reported here for256

the sake of brevity. Below we provide the final parameters we use for our experiments.257

Baseline. A simple approach to determine x(t + j) in a time bin is to take the average number of258

rentals in the same time bins in the available past days. We compare all our prediction models to this259

baseline.260

ARIMA. ARIMA (autoregressive integrated moving average) is widely used to predict time series261

data. ARIMA models are a combination of autoregressive models with moving average models. The262

creation of an ARIMA model involves specifying three parameters (p, d, q). The d parameter measures263

how many times we have to differentiate the data to obtain stationary data. After determining d,264

we use sample partial auto correlation function to get the value p. Finally, we determine the order q265

by looking at the sample auto correlation function of the differentiated data. We experimented with266

several combinations of values for the parameters (p, d, q) and the combination that gave us the best267

results is (p, d, q) = (2, 0, 1).268

SARIMA. A SARIMA model incorporates the known seasonality (periodicity) of the data into an269

ARIMA model, enhancing its predictive power. For instance, when modeling a time series, it is often270

the case that the data has a daily, weekly, or monthly periodicity. We used our previous ARIMA model271

9 https://scikit-learn.org/
10 https://keras.io/
11 https://github.com/dougct/carsharing-prediction
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Prediction MAPE [%] MAPE [%]
Model Average Standard Deviation

Baseline 40.05 44.95
ARIMA 25.53 19.68

SARIMA 21.51 21.74
Linear Regression 13.86 14.92

Support Vector Regression 14.14 16.80
Random Forest Regression 11.42 11.41

Neural Networks 16.36 17.68

Table 1. Long-term temporal prediction - Average and Standard Deviation of the Mean Absolute
Percentage Error (MAPE) for each prediction model in the validation set

with an additional explicit daily seasonal component (p = 7 as the number of time bins in a day in our272

case).273

Linear Regression. We fit a linear model, by finding the coefficients that multiplies each feature.274

SVR. In our experiments, we use a Support Vector Regression (SVR) model with the following275

combination of parameters, which produced the best results among the values we tested: C = 1000,276

γ = 0.1, and ε = 0.1, with the RBF kernel.277

RFR. Random Forest Regression is an ensemble learning method that can be used for regression.278

The decision is based on the outcome of many decision trees, each of which is built with a random279

subset of the features. One advantage of random forests over linear regression is that the forest model280

is able to capture the non-linearity. Another advantage of RFR is that they are interpretable models,281

i.e. they offer a ranking of the most important features for the prediction problem. Here, we use 50282

estimators (decision trees).283

Neural Networks. We also consider a Long Short-Term Memory (LSTM) Neural Network model.284

LSTMs have a memory that may help capturing past trends in the data, which may favor our prediction285

task. We experimented with several different architectures. The best results were obtained with a three286

layer architecture where the input layer has 64 neurons (one for each feature), the dense layer has 4287

neurons, and the output layer has one neuron. In our experiments, to balance prediction accuracy and288

training time, the model was trained for 50 epochs. Increasing the number of epochs has no significant289

impact on the accuracy of the model.290

5.2. Long-term predictions - Results291

Here we predict the FFCS demand for cars in the future months given a model built on the previous292

months. We use in our experiments the nine months of 2017 of car sharing usage of Vancouver. Given293

the volume of rentals in the training period, we try to predict the number of rentals in the validation294

period. For that, we use a model that is trained once and then used to perform all the predictions in295

the validation period. Our training set consists in the volume of rentals for six months in each bin of296

the day, and the validation data consists of volume of rentals for the next three months.297

Table 1 shows the average mean absolute percentage error (MAPE) and the standard deviation of298

the MAPE for each of the prediction models. The models that rely only on the time series (ARIMA and299

SARIMA) are able to capture some patterns in the data, as their performance is considerably better300

than the baseline. However, the multivariate models perform better, with Random Forest Regression301

reaching the best performances. In Figure 7 we show the comparison between the actual values and302

the prediction in one month of the validation set using the Random Forest Regression model (orange303

dashed line). Overall the model is able to predict quite well the daily and weekly periodicity of rentals,304

but in general slightly underestimates the actual number of rentals. This could be due to the fact the305

training period refers to the first six months of the year, during which the average number of rentals is306

lower than during the validation period in fall.307
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Figure 7. Long-term temporal prediction - Performance of the RFR model in one month of the validation
set

Expanding Window (starting: 28 days) Sliding Window (28 days)

MAPE [%] MAPE [%] MAPE [%] MAPE [%]
Average Standard Deviation Average Standard Deviation

Baseline 20.12 16.64 20.12 16.64
ARIMA 36.01 35.87 36.52 36.60

SARIMA 17.60 20.01 18.02 21.75
Linear Regression 18.28 20.38 18.11 20.55

Support Vector Regression 12.22 15.62 12.87 18.52
Random Forests Regression 9.71 8.34 10.08 12.23

Neural Networks 10.52 12.93 10.52 12.74

Table 2. Short-term temporal prediction - Average and Standard Deviation of the Mean Absolute
Percentage Error (MAPE) for each prediction model in the validation set

5.3. Short-term predictions - Results308

We now tackle the problem of predicting the demand of cars in a city in the next time bin.309

Differently from the long-term predictions we use adaptive models, hence the model is re-trained310

every time new data is made available, so then we can add it to the training set. We here focus on the311

following prediction task: given the volume of rentals per time bin period for a specific number of past312

days and the weather conditions, we wish to predict the number of rentals just in the next time bin313

period.314

We study this prediction task using two approaches: expanding window and sliding window.315

In the expanding window approach, after making the first prediction we add the actual value to the316

training set, therefore increasing the amount of data available for training in the next step. To train317

our models, we first set aside 21 days of data for validation, and start with 28 days of training data.318

In the sliding window approach, after making the prediction we remove the oldest training data and319

add the actual value to the training set. Therefore, the training set size is always the same during the320

evaluation of the models. To train our models, we consider different sliding windows sizes (from 7 to321

28 days), and validate on the same validation set of 21 days as with the expanding window.322

In Table 2, we compare the performance of all models using the two approaches. The best results323

for the sliding window approach were obtained with the largest possible window (28 days). The324

expanding window approach offers slightly better results, likely because the model can exploit more325

data and the patterns are not changing rapidly in time. Again, the multivariate models and in particular326
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Figure 8. Short-term temporal prediction - Performance of the RFR model with expanding window in
the validation set (21 days)

the Random Forest Regression models reach the best performance. Interestingly, the Neural Network327

model performs similarly to other models, suggesting that, for this specific use case, a simple and328

more interpretable model like a RFR is enough. We show in Figure 8 the performance of the best329

model, i.e., RFR with expanding window. In this short-term formulation of the problem the prediction330

naturally adapts to changes over time, obtaining better predictions with respect to long-term prediction.331

Moreover, the weather condition information also add useful information.332

We now explore the importance of each feature for the model, by analyzing the RFR feature333

ranking. When training a tree, it can be computed how much each feature decreases the weighted334

impurity in a tree. For a forest, the impurity decrease from each feature can be averaged and the335

features can be ranked according to this measure. This gives a simple and interpretable feedback on336

which features are most useful for the prediction. We find that the most important features that impact337

the model are: (i) if we are in the daily peaks from 3 pm to 9 pm, (ii) during the night (0 am - 6 am) or338

(iii) if we are on a Friday and Saturday. Interestingly, the most important weather condition for the339

regressors is the presence of clouds, while the second one is a (rare) condition of presence of fog, mist340

and rain in the considered time bin.341

6. Spatial prediction of rentals with socio-demographic data342

We now shift our attention to predict the demand of cars in a neighborhood without using past343

data as features. In other words, given only socio-demographic data in the neighborhoods, we want344

to predict the number of rentals that would start and end in others neighborhoods, and during each345

different period of the day. This problem is often referred to as a green field, or cold start, approach. In346

this case, no historical data is available, and the operator is interested in knowing which could be the347

possible system usage in a new neighborhood (or even a new city) based only on socio-demographic348

data.349

Since we have very few data points for the training step (22 neighborhoods), we performed350

a leave-one-out validation. Given a target neighborhood, we consider information from all other351

neighborhoods for training the learning model, and consider the neighborhood that we left for352

validation.353

We manually selected 83 socio-demographic features that we think might be related to human354

mobility. Here, we only apply Support Vector Regression and Random Forest Regressions models,355

since here we are not dealing anymore with time series and RFR and SVR were the best performing in356

the temporal prediction. We discarded neural networks since these usually do not work well with a357
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(a) SVR Model: Starting rentals
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(b) SVR Model: Ending rentals
Figure 9. Spatial prediction - MAPE for Support Vector Regression models for different kernels

very small training set as in this case. For SVR, we tried 3 different kernels (linear, polynomial and358

RBF), with different combinations of parameters. The best performances were obtained for ε = 0.1,359

C = 100 (C = 10 for RBF), and γ = 1
# f eatures (γ = 1 for RBF). For RFR, we tried number of estimators360

ranging from 10 to 100.361

Figures 9a and 10b show the SVR prediction accuracy of the number of starting and ending rentals,362

respectively. For each kernel type, we report the average MAPE over the 22 neighborhoods for each363

time bin we considered in our analyses. SVR model performs poorly regardless the parameter setting364

we used or the time bin we target for prediction task. Best accuracy results occur with polynomial365

kernel, obtaining MAPE 70%, for starting rentals predictions and MAPE 64%, for ending rentals366

prediction. Time bin from 0 am to 6 am is the one with the best performances.367

Random Forest Regression model results are shown in Figures 10a and 10b. For a given time bin368

and varying the number of trees MAPE does not vary that much, indicating that even 10 trees could369

be enough. Predictions for ending rentals perform better than those for starting rentals: the best case370

is the one with number of trees equals to 40 for predicting starting rentals, reaching MAPE 59% (20371

trees for ending rentals, with MAPE 56%). Again, in the time bin from 0 am to 6 am we obtain the best372

predictions while the worst are obtained from 6 am to 9 am for starting rentals prediction. Differently373

from the starting rentals predictions, MAPE does not suffer from high fluctuation.374
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(a) RFR Model: Starting Rentals
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(b) RFR Model: Ending Rentals
Figure 10. Spatial prediction - MAPE for Random Forests Regression models for different values of
estimators
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Rank Feature Relevance

1 Number of emergency calls 0.0717
2 Distance from downtown 0.0481
3 People commuting by walk 0.0381
4 People commuting within Vancouver 0.0342
5 People with income between 100 000 and 149 999 $CAD 0.0298
6 People with income between 60 000 and 69 999 $CAD 0.0286
7 People legally recognized as couple 0.0281
8 People with income more than 150 000 $CAD 0.0274
9 People divorced 0.0261
10 People commuting within the same neighborhood 0.0249
11 Couples having more than 3 children 0.0239
12 People with age between 50 and 54 years 0.0233
13 Unemployed people 0.0231
14 People never married 0.0217
15 People with income between 80 000 and 89 999 $CAD 0.0211

Table 3. Spatial prediction - Most relevant features and their importance for the prediction using
Random Forest Regression. The first 7 are the ones that for obtain the best overall model

6.1. Feature ranking and selection375

As in the previous section, we analyze the RFR ranking of the features. Table 3 reports the top-15376

most relevant features. Hence, thanks to the RFR model, we hint at which data the operator should377

focus on when considering new neighborhood of the city to implement the FFCS. Such ranking allows378

us to reduce the number of features to train the model itself by selecting the most important ones. We379

run again the RFR with increasing number of features, chosen according to the given rank. We chose380

a-priori the number of trees, according to the best average MAPE obtained in Figure 10a and 10b.381

Thus, we choose 40 trees for the starting and 20 for the ending rentals prediction. Figure 11 shows the382

results. The horizontal axes represents the number of used features, while the vertical axes reports383

the MAPE. Notice the U-shaped curve of the average MAPE (dashed black line). Intuitively, too few384

features worsen the regression performances due to lack of information. Too many features also reduce385

the performance since the training is more complicated. In the following, we select the best number of386

features that minimize the average MAPE, which results to selecting the top 7 features in Table 1. With387

this subset, the average MAPE is 41% for starting rentals, 39% for arrivals.388

At last, we explore the spatial prediction error, i.e., we look if there are neighborhoods that present389

significantly higher errors than others. Figure 12 depicts the heatmap of the MAPE per neighborhood,390

averaged over all time bins. The more the area is red the higher the MAPE is. Each green dot represents391

actual positions of starting or arrival rentals as recorded in the original trace. The areas having392

the highest error are the one labelled 15, 18, 11 and 0. We can see that most of these are periphery393

neighborhoods that only partially intersect with the rental area of the FFCS operator. This mismatch394

confuses the prediction since our model assumes the operative area coincides with the total area395

of each neighborhood. In a nutshell, our model predict much higher rentals (reflecting the whole396

neighborhood area) than the ones that are actually done (reflecting the restricted operational area).397

This offers the FFCS operator the opportunity to consider in which areas to extend the service.398

7. Conclusions399

This paper studied the problem of predicting FFCS demand patterns, which is relevant to an400

adequate provisioning of the service. Relying on data from real FFCS rides in Vancouver as well as401

the municipality socio-demographic information, we investigated to which extent modern machine402

learning based solutions allow one to predict the transportation demand.403

Our results showed that the temporal prediction of rentals can be solved with relative errors404

down to 10%. Here a simple Random Forests Regression performs consistently among the best models,405
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(b) Rentals arrivals
Figure 11. Spatial prediction - MAPE in the different time bins by selecting the most relevant features
in RFR

Figure 12. Spatial distribution - Heatmap of average MAPE per neighborhood. Rentals are shown on
the map as green points
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and allowing us also to discover which features are mostly affecting the prediction. When considering406

the mobility spatial prediction using socio-demographic data only, we obtain relative errors around407

40%, after feature selection. Again, using a Random Forest Regression model, we can observe which408

features are the most useful for the prediction, a precious information for providers and regulators to409

understand FFCS systems and to provide a high-quality service that benefits both providers and its410

costumers.411
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