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Abstract: A variety of myricetin derivatives bearing ferulic acid amide scaffolds were designed and
synthesized. The structures of all title compounds were determined by ! H NMR, * C NMR, © F
NMR and HRMS. Preliminary bioassays suggested that some of the target compounds exhibited
remarkable antiviral activities. In particular, compound 41 possessed significant protection activity
against tobacco mosaic virus (TMV), with an half maximal effective concentration (ECso) value of
196.11 ug/mL, which was better than commercial agent ningnamycin (447.92 ug/mL). Meanwhile,
microscale thermophoresis (MST) indicated that compound 41 have strong binding capability to
tobacco mosaic virus coat protein (TMV-CP) with dissociation constant (Ks) values of 0.34 umol/L,
which was better than ningnamycin (0.52 pmol/L). These results suggest that novel myricetin
derivatives bearing ferulic acid amide scaffolds may be considered as an activator for antiviral

agents.
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1. Introduction

Plant disease result in economic loss and decreases in the quality and quantity of agricultural
products around the world, such as tobacco mosaic virus (TMV), it can easily infect economic crops,
resulting in economic losses, people are obliged to spend millions of dollar to prevention and
quarantines it [1]. Unfortunately, traditional pesticide, such as ningnanmycin and ribavirin due to its
poor efficiency, high phytotoxicity, environment damage, pesticide residue and can even develop
resistant from pesticide, have been eliminated and banned gradually [2, 3]. It is an urgent need to
develop more greener and high-efficient promising pesticide to control and prevent plant disease.

Due to its low toxicity, easy decomposition, novel structure and environmental friendliness,
natural products are devoted to synthesis new pesticides [4-6]. Myricetin is a kind of natural product

which can extracted from several medicinal plant organs, vegetables and fruits [7], such as myrica

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.
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rubra Sieb [8], Abelmoschus manihot [9] and onions [10]. Literature survey revealed that myricetin has
various biological activities, like antiviral [11, 12], antibacterial [13, 14], antioxidant [15], anticancer
[16, 17] and so on. In our previous study, we have reported a series of myricetin derivatives with
appreciable bioactivities against TMV [11].

Ferulic acid is a phenolic acid present in many plants, such as Angelica sinensis, Cimicifuga
heracleifolia and Lignsticum chuangxiong [18]. According to reports, ferulic acid exhibits a wide range
of Dbioactivities, such as antiviral [19], antibacterial [20], anticancer [21, 22] and
attracted wide publicity in field of medicinal chemistry. In the further development of antiviral
agents, a series of novel myricetin derivatives containing a 1,3,4-thiadiazole moiety was found to
have excellent anti-TMV activity[12]. In this study, we aimed to use a ferulic acid amide to replace
the 1,3,4-thiadiazole system to build novel myricetin derivatives containing a ferulic acid amide
moiety for the development of antiviral agents. The preliminary bioassay results indicated that
some of target compounds showed excellent antiviral activity, Among them, compound 4l
possessed significant protection activity against TMV. Meanwhile, MST and molecular docking
indicated that compound 41 have strong binding capability to TMV-CP. To the best of our
knowledge, this is the first report on the synthesis and antiviral activity evaluation of myricetin

derivatives containing a ferulic acid amide moiety (Figure 1).

Myricetin derivatives Target compound

Myrica rubra Sieb. et Zucc

Figure 1. Design of novel myricetin derivatives containing ferulic acid amide scaffolds

2. Results and Discussion

2.1. Chemistry

A synthetic route to myricetin derivatives containing ferulic acid amide scaffolds was designed
and was shown in Scheme 1. According to previously reported methods [16, 23], (E)-3-(4-acetoxy
-3-methoxyphenyl)acrylic acid (intermediate 1) and 3-(bromomethoxy)-5,7-dimethoxy-2-(3,4,5-
trimethoxy phenyl)-4H-chromen-4-one (intermediate 3) could be obtained. The (E)-3-(4-hydroxy-
3-methoxyphenyl)-N-(substituted-phenyl) acryl amide intermediate 2 were prepared from
substituted aniline and hydrazine hydrate by reported procedures [19, 24]. Finally, the title
compounds 4a—4v were synthesized by intermediates 2 and intermediates 3 in the K2COs and DMF
at reflux for 5-7 h.

The structures of all title compounds were determined by ' H NMR, ¥ C NMR, ¥ F NMR and
HRMS, and the spectra data were shown in the Supplementary Materials. The data of 4a was
shown and discussed below. In the ' H NMR, multiplet signals at 6 8.01-6.36 ppm revealed the
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presence of nitrogen hydrogen bond, protons in olefinic bonds and aromatic nuclei, and triplet
singlets at 6 4.23 and 4.18 ppm indicate the presence of —CH>- group. In addition, the four
high-frequency single peaks and doublets peaks at 3.94-3.77 ppm revealed the presence of five
—OCHs, and double peak at 0 2.31 ppm indicate the presence of —-CHs groups. Absorption signals at
0 174.07, 164.12 and 20.91 ppm in 3C NMR spectra confirm the presences of -C=0- , -C=O-NH-
and —CHs groups, respectively. The high-resolution mass spectrometry (HRMS) spectra of title
compounds show characteristic absorption signals of [M + H]*ions, which is consistent with their

molecular weight.

da-4v  °

reation condition: a : acetic anhydride, 5%NaOH; b : R-PhNH,, HOBt, EDCI; ¢ :NH,NH,H,0, CH;CN:
d : DMF, K,CO;, CH;l, cone HCI; e :DMF, Br(CH,CH,),Br; f: DMF, K,CO4

4a:R=4-CH3;,n=3: 4b:R=4-0OCH3,n=3; 4¢:R=4-CH3;,n=4, 4d : R =4-OCHy, n = 4;
4e:R=3-Cl,n=3; 4:R=3-Cl,n=4; 4¢ :R=4-Cl,n=4; 4h:R=H,n=4;
4i:R=H,n=3; 4j : R=3.4-di-CHy,n=3; 4k: R =34-di-CH;,n=4; 4l:R=34-di-OCH3, n=3;
4m: R =34-di-OCHy,n=4 4n:R=4-Br,n=3; 40:R=4-Br.,n=4; 4p : R =3,4-di-Cl, n=3;
4q: R=34-di-Cl,n=44r: R=4-Cl,n=35; 4s; R=3-Cl,n=35; 4t: R =4-OCH3,n=

4u:R=2-F,n=3; 4v:R=2-F,n=4

Scheme 1. Synthesis of the title compounds 4a—4v.

2.2. Antiviral activity of title compounds against TMV in vivo

Using N. tabacun L. leaves under the same age as that of test subjects, the curative and
protective activities against TMV (in vivo) at a concentration of 500 ug/mL were evaluated by the
half-leaf blight spot methods [25, 26], and the obtained results were shown in Table 1. The
preliminary bioassay results indicated that the inhibitory rates of target compounds (4a—4v) against
TMYV ranged from 15.8 to 55.5 % in terms of their curative activities, while their protective activities
ranged from 5.3 to 62.1 %. Especially, compound 4n showed 55.5 % curative effects at 500 ug/mL,
which was better than that of myricetin (35.7 %) and ningnanmycin (53.2 %). In addition,
compound 4l exhibited significant protective activities against TMV at 500 ug/mL, the inhibition

rate was 62.1 %, which was even better than that of myricetin (41.5 %) and ningnanmycin (55.7 %).
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91
92 Table 1 Inhibition effect (%) of the compounds 4a—4v against TMV =
Compounds R n Curative Activity (%) Protection Activity (%)
da 4-CHs 3 33.0 11.6
4b 4-OCHs 3 42.1 35.6
4c 4-CHs 4 39.6 21.2
ad 4-OCHs 4 15.8 5.3
de 3-C1 3 37.5 51.6
af 3-Cl 4 32.1 52.3
4g 4-Cl 4 38.1 40.3
ih H 4 413 485
4 H 3 435 31.2
4 3,4-di-CHs 3 394 464
1k 3,4-di-CH> 4 21.1 25.9
a1 3,4-di-OCHs 3 374 62.1
im 3,4-di-OCH> 4 312 135
in 4-Br 3 555 53.3
4o 4-Br 4 284 19.5
4p 3,4-di-Cl 3 37.2 58.1
4q 3,4-di-Cl 4 34.2 439
ir 4-Cl 5 404 44.1
4s 3-C1 5 43.2 37.8
4t 4-OCHs 5 39.9 24.1
4u 2-F 3 37.0 41.1
4v 2-F 4 21.8 325
MY? - - 35.7 415
NNM ¢ - - 53.2 55.7
93 @ Average of three replicates;® The lead compound of myricetin; < The commercial antivirotics
94 (NNM, ningnamycin) was used for comparison of antiviral activity.
95 To confirm the potential inhibitory capacity of these compounds against TMV, on the basis of

96  our preliminary bioassay, we further evaluated the ECso of some title compounds against TMV.

97  As shown in Table 2, compounds 41, 4n and 4p exhibits excellent protection activities against TMV

98  with the ECso values of 196.1, 4253 and 386.7 ug/mL respectively, which were superior to

99  ningnamycin (447.9 pg/mL). Compound 4n shows good curative activity against TMV the ECso
100  value is 472.4 ug/mL, which was near to ningnamycin (428.8 pig/mL).

101 Table 2 The ECso values of 41, 4n and 4p against TMV @
Toxic regression
Compounds R n ) r ECso ug/mL
. L equation
Curative Activity (%)

4n 4-Br 3 y=1.4582x+1.1002 0.9902 472.4

NNM b - - y=0.7650x+2.9863 0.9830 428.8

41 3,4-di-OCHs 3 y=2.0488x-0.3031 0.9891 196.1

Protection 4n 4-Br 3 y=1.7099x+1.7002 0.9888 425.3

Activity(%) 4p 3,4-di-Cl 3 y=1.4133x+2.3311 0.9970 386.7

NNM b - - y=1.5482x+0.8954 0.9819 4479
102 @ Average of three replicates;® The commercial antivirotics (NNM, ningnamycin) was used for comparison of

103 antiviral activity.
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2.3. Structure activity relationship (SAR) of the title compounds against TMV

As indicated in Tables 1 and 2, the antiviral effects of target compounds were greatly affected
by structural variations. Some structure—activity relationships (SAR) analyses were discussed as
below. The presence of 4-Br, 3-Cl, 4-OCHs and H groups at the R position greatly increased the
curative activities of the target compounds against TMV. For instance, the target compounds
4b(4-OCHs, n=3), 4i (H, n=3 ), 4n (4-Br, n=3) and 4s (3-Cl, n=5) showed important antiviral
activities against TMV, with inhibition rates of 42.1, 43.5, 55.5 and 43.2 %, respectively.
Furthermore, when R was 3-Cl, 3,4-di-OCHs and 3,4-di-Cl groups, the protective activities of the
relevant compounds 4f, 41 and 4p at 500 ug/mL were 52.3, 62.1, and 58.1 %, respectively, which were

superior to other substituent groups.

2.4. Binding sites of 41, 4m, myricetin and ningnanmycin to TMV-CP

To further analyze the interactions between the compounds 41, 4m, myricetin and
ningnanmycin and TMV-CP, MST analysis was used [27-29]. The MST results as summarized in
Figure 2 and Table 3 indicated that the binding of compounds 41, 4m, myricetin and ningnanmycin
to TMV-CP protein yielded Ka values of 0.34 + 0.09 umol/L, 2.30 + 0.77 umol/L, 92.23 + 47.54 umol/L
and 0.52 + 0.25 pmol/L, respectively. As showed in MST, compound 41 (K+~0.34 + 0.09 ymol/L) share
strong affinity, which was better than that of controlled drug ningnanmycin (Ks=0.52 + 0.25 ymol/L)
and lead compound myricetin (K~=92.23 + 47.54 ymol/L). Based on anti-TMV activities and MST
results, we can predict that the structural modification of the lead compound myricetin, such as the

introduction of the active groups ferulic acid amide, could greatly improved the antiviral activities.

112419

—_ A Rde034 1009 . . .
T gouts . T sws B Kd=23020
-E E TiB3S
S5 June 5 N
o [#]
M o ii ST
c [ =
g 32419 'Q 51835
;
E 12413 (L e

- 07581 «DR165

o= [} 1 m 120 1000 i1 a1 1 bLi] 100 1000
Ligand Concentration Ligand Concentration
#2300082 4 D . . g

yuts | € Kd=922324754 . Ed =052 2023
.L. 62816 83107082 .
-E 52816 E .
g fI816 i 51 B DIOET
M s E
5 22816 Ea::mag?
E 13818 L
E o818 S5 07082
i

07184 .

~17184 813 00082

Qo Q1 1 1 1) 1000 01 01 1 i} 100 leei]
Ligand Concentration Ligand Concentration

Figure 2. Microscale thermophoresis results of compounds 41 (A), 4m (B),

myricetin (C) and ningnamycin (D)
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Table 3. The dissociation constant of 41, 4m, myricetin and ningnanmycin with TMV- CP.

Compounds K (umol/L)
41 0.34£0.09
4m 2.30+0.77
myricetin 92.23 +47.54
ningnanmycin 0.52+0.25

2.5. Molecular docking of 41 and myricetin with TMV-CP

To identify the 41 and myricetin recognition sites in TMV-CP (Protein Data Bank (PDB) code:
1EI7),we performed molecular docking using the gold method with 200 cycles [27, 29, 30]. As was
shown in the Figure 3, the compound 41 was well-embedded between the two subunits of TMV-CP.
Previous reports have showed that these residues play key roles in the self-assembly of TMV
particles[31]. The binding orientation of compound 41 was clearly shown in Figure 3(A and B), it
forms one hydrogen bond with ARG-46, with the highest docking score (1.909 A) among the
designed molecules. Besides, compound 41 deep into the active pocket formed by amino-acid
residue, including ARG-90, CLN-38 and THR-37. These interactions between small molecules and
the TMV-CP may impair the interaction of twoTMV-CP subunits, hence preventing self-assembly of
the TMV particle. As was shown in the Figure 3, The hydrogen bond strength of compound 41 was
stronger than that of myricetin (C and D). Based on molecular docking results of compound 41 and
myricetin, we can predict that the structural modification of the lead compound myricetin, could

greatly improved the antiviral activities.

Figure 3 Molecular docking studies of compounds 41 (A-B) and myricetin (C-D)
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3. Experimental

The melting points were determined by X-4B microscopic melting point meter (Shanghai Yi
Dian Physical Optics Instrument Co., Ltd. China); proton nuclear magnetic resonance (NMR) spectra
were obtained on JEOL-ECX500 NMR spectrometer (JEOL, Tokyo, Japan) and Bruker Ascend-400
spectrometer (Bruker, Germany) with DMSO-ds or CDCls as the solvent and TMS as the internal
standard. High-resolution mass spectral (HRMS) data were performed with Thermo Scientific Q
Exactive (Thermo Scientific, USA ). The micro thermophoresis of the compound and TMV CP was
determined by a micro thermophoresis instrument (NanoTemper Tchnologies GmbH, Germany);
the fluorescence spectroscopy of the compound interacting with TMV CP was determined by
FluoroMax-4 fluorescence spectrometer (HORIBA Scientific, France). All reagents (analytical grade)

were purchased from commercial suppliers.
3.1. Chemistry

3.1.1. General synthesis procedure for intermediate 1

Ferulic acid (3.01 g, 15.45 mmol) were added into bottom flask and dissolved it by 10 % NaOH
(30 mL), then added acetic anhydride (1.97 g, 19.31 mmol). The mixture was stirred at room
temperature for 1 h. Then added 200 mL H2O to the reaction mixture and adjust pH to 4-5 by 10 %
HC], filtering the mixture and washing the precipitate by H20 to obtained the intermediate 1 [16].

3.1.2. General synthesis procedure for intermediate 2

Intermediate 1 (0.55 g, 2.33 mmol), 1-Hydroxybenzotriazole (0.38 g, 2.79 mmol) and 1-ethyl-3-
(3-dimethylaminopropyl) carbodiimide hydrochloride (0.54 g, 2.79 mmol) were dropped into
acetonitrile (20 mL), the mixture was stirred at room temperature for 3 h. Then acetonitrile (20 mL)
containing substituted aniline (0.27 g, 2.56 mmol) was dropped slowly to the mixture, stirred and
refluxed at 90 °C for 5 h until the reaction was completed (monitor by TLC: V ety acetate: Vinethanot = 10:1).
Then the reaction mixture was extracted by ethyl acetate and evaporated under reduced pressure.
The product was dissolved in acetonitrile again, added hydrazine hydrate (0.24 g, 4.66 mmol), and

stirred at room temperature for 2 h to obtained the intermediate 2 [19, 24].

3.1.3. General synthesis procedure for intermediate 3

Preparation of the intermediate 3 has been previously described [23, 32]. The mixture of
myricitrin (0.55 g, 5.01 mmol), CHsl (2.02 g, 60.02 mmol), and K2COs (0.19 g, 6.13 mmol) was
dissolved in N,N-dimethyl formamide (DMF; 30 mL), and stirred at 40 °C for 2 d until the reaction
was complete (as indicated by TLC analysis). The reaction mixtures were then filtered, and the
filtrate was dissolved in 50 mL water and finally extracted three times with dichloromethane (30
mLx3), combined the dichloromethane and concentrated under reduced pressure. The concentrated
solution was diluted with 20 mL of absolute ethanol, stirred, and refluxed for 1 h. The concentrated
hydrochloric acid (3 mL) was slowly added to the above obtained, for 2 h in reflux. The solid was
precipitated from the clear solution. After cooling to room temperature, the reaction mixture was
filtered, and the obtained solid product was dried at 40 °C for 2 h. Finally, dibromoalkanes and
DMF were added reflux 6h to obtained intermediate 3.
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3.1.4. General synthesis procedure for target compound 4a—4v.

A mixture of intermediate 2 (0.31 g, 1.08 mmol ), anhydrous K2COs(0.41 g, 2.94 mmol) in DMF
(30 mL) was stirred at 85 °C for 1 h, then DMF (20 mL) containing intermediate 3 (0.50 g, 0.98 mmol)
was dropped slowly to the mixture and reacted at 105 °C for 6 h. After cooling to the room
temperature, the reaction mixture was added about 200 mL H2O and adjusted pH to 4-5 by 10 %
HC], filtered and washed by H:0. Finally, compounds 4 was gained by re-crystallization from
methanol.

(E)-3-(4-(3-((5,7-dimethoxy-4-ox0-2-(3,4,5-trimethoxyphenyl)-4H-chromen-3-yl)oxy)propoxy)-3-
methoxyphenyl)-N-(p-tolyl)acrylamide (4a): gray solid, m. p. 215.4-215.5, yield: 58.68 %, 'H NMR
(400 MHz, CDCls) 6 8.01 (s, 1H, NH), 7.63 (t, ] = 11.8 Hz, 1H, Ph-H), 7.57 (d, | = 7.1 Hz, 2H, Ph-2H),
7.32 (s, 2H, Ph-2H), 7.13 (d, ] = 8.2 Hz, 2H, Ph-2H), 7.00 (d, ] = 8.3 Hz, 1H, CO-CH=CH), 6.95 (s, 1H,
Ph-H), 6.74 (d, ] = 8.3 Hz, 1H, Ph-H), 6.51 (d, | =2.1 Hz, 1H, Ph-H), 6.47 (s, 1H, CO-CH=), 6.36 (d, ] =
2.2 Hz, 1H, Ph-H), 4.23 (t, ] = 5.9 Hz, 2H, CH-2), 4.18 (t, | = 6.7 Hz, 2H, CH>), 3.94 (s, 3H, OCHs), 3.92
(d, ] = 3.4 Hz, 6H, 2xOCHs), 3.88 (s, 6H, 2xOCHs), 3.77 (s, 3H, OCHs), 2.31 (d, ] = 9.9 Hz, 3H, CH3),
2.25 (dd, | = 12.6, 6.3 Hz, 2H, CH2), *C NMR (101 MHz, CDCls) o 174.07, 164.12, 163.82, 160.99,
158.83, 153.02, 152.77, 150.00, 149.22, 141.68, 140.56, 140.00, 129.51, 127.77, 125.94, 121.78, 119.88,
112.61, 110.41, 109.35, 105.91, 95.89, 92.49, 69.26, 66.00, 61.01, 56.38, 56.30, 55.86, 55.77, 30.13, 20.91,
HRMS calcd for CsoHaNOu[M+H]*: 712.2753, found 712.2752.

3.2. Antiviral activities in vitro

3.2.1. Purification of TMV

The upper leaves of N. tabacum cv. Kss were selected and inoculated with TMV, using

previously reported methods for TMV purification[33].

3.2.2. Curative activity of the target compounds against TMV in vivo

Growing N. tabacum L. leaves of the same age were selected. The leaves were inoculated with
TMV (concentration of 6x10? mg/mL) by dipping and brushing the whole leaves, which had
previously been scattered with silicon carbide. The leaves were then washed with water after
inoculation for 0.5 h. The compound solution was smeared on the left side of the leaves, and the
solvent was smeared on the right side as the control. The number of local lesions was counted and

recorded 34 d after inoculation. Three replicates were set up for each[25, 26].

3.2.3. Protection activity of the target compounds against TMV in vivo

The compound solutions were smeared on the left side of the N. tabacum L. leaves, and the
solvents were smeared on the right side as the control sample for growing N. tabacum L. leaves. After
12 h, crude TMV (concentration of 6x102 mg/mL) was inoculated on whole leaves at the same
concentration on each side of the leaves, which were previously scattered with silicon carbide. After
0.5 h, the leaves were washed with water and then dried. The number of local lesions was recorded
3-4 d after inoculation[25, 26]. Three replicates were used for each compound. The inhibitory rate
(I %) of the compound was calculated according to the following formula:

(I %)= (Coum = Thum)/ Crumx 100 %

Thum: average local lesion number smeared with drugs
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Crum: average local lesion number of control(not treated with compounds)

3.3 Expression and purification of TMV-CP

The expression vector, pET28a-TMV-CP, containing the full-length TMV-CP gene, was stored at
-80 °C in our lab. A freshly transformed overnight culture of Escherichia coli strain BL21(DE3)
containing the plasmid pET28a-TMV-CP was transferred to 1L Luria broth. The cells were grown at
37 °C in Luria-Bertani medium supplemented with 50 pg/mL kanamycin, and with an ODsoo of 0.8.
The cells were shaken at 200 rpm. Then protein expression was induced with 0.8 mmol IPTG at 16 °C
overnight. The cells were harvested by centrifugation and then stored at -80 °C. When analyzed, the
cells were resuspended in lysis buffer (20 mmol PB, 500 mmol NaCl, 30 mmol imidazole, 5 mmol
p-mercaptoethanol and 5 % glycerol, pH=7.2) and then lysed at 4 °C by sonication. The lysate was
clarified by centrifugation at 12, 000 g for 30 min at 4 °C, the soluble supernatants were loaded onto a
5 mL Ni-NTA column (GE Healthcare, USA), and the protein was eluted with a linear gradient of
30-350 mmol imidazole (pH=7.2). The crude protein was performed at 4 °C using a desalting column
(GE Healthcare, USA) attached to an AKTA purifier protein liquid chromatography system (GE
Healthcare, USA), and the fractions containing target protein with His-tags were pooled,
concentrated to a suitable concentration by ultrafiltration (10 kDa cut-off). The dealt protein
concentration was determined using a Genequant 100 (GE Healthcare, USA), and stored at -80 °C

until further analysis [27-29].

3.4. Interaction studies between 41 or myricetin and TMV-CP

The binding was calculated for MST Monolith NT. 115 (Nano Temper Technologies, Germany).
A range of ligands from 0 to 5 umol were incubated with 0.5 umol of purified recombinant proteins
for 5 min with a NT-647 dye (Nano Temper Technologies, Germany) and was used in the
thermophoresis experiment at a final concentration of 20 nmol. A 16 point dilution series was made
for selected compounds in DMSO. Each compound dilution series was subsequently transferred to
protein solutions in 10 pmol Tris-HCI and 100 mmol sodium chloride pH=7.5, 0.05 % Tween-20.
After a 15 min incubation of the labeled TMV-CP with each dilution point (1:1 mix) at room
temperature, samples were filled into standard capillaries (NanoTemper Technologies, Germany).
Measurements were taken on a Monolith NT.115 microscale thermophoresis system (NanoTemper
Technologies, Germany) under a setting of 20 % LED and 40 % IR laser. Laser on time was set at 30 s,
and laser-off time was set at 5 s. The K« values were calculated from the duplicate reads of three

separate experiments using the mass action equation in the Nano Temper software[28].

3.5. Molecular docking

The molecular docking was performed by using DS-CDocker implemented in Discovery Studio
(version 4.5). The coat protein subunit amino acid sequence of tobacco mosaic virus (TMV) was
searched by the UniProt database. The Protein BLAST server was used to search the template
protein and the homologies of TMV-CP sequences were aligned. Homology modeling of TMV-CP
was carried out using Create Homology Models, which is a module integrated in Discovery Studio.
The obtained models were evaluated by Ramachandran plots. The 3D structures of the compounds
were constructed using the Sketching module and optimized by the Full Minimization module. All

parameters are default during the docking process[27, 29, 30].
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4. Conclusions

A series of myricetin derivatives bearing ferulic acid amide scaffolds were designed and
synthesized. Preliminary bioassays suggested that these compounds exhibited favorable curative
and protective activities against TMV. Among them, compound 4l showed remarkable protective
activity against TMV, with the ECso values of 196.11 ug/mL, which was superior to ningnamycin
(447.92 pg/mL). Further the microscale thermophoresis studies revealed that compound 41 have
strong binding capability with TMV-CP, and the molecular docking studies were consistent with
the experimental results. All these results support that the myricetin derivatives bearing ferulic acid
amide scaffolds possess antiviral activities, and thus could be further studied as potential

alternative templates in the search for novel antiviral agents.
Supplementary Materials: The following are available online. The data and spectrogram of compounds 4a—4v.
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