Preprint
Article

Classification of Hyperspectral Image Based on Double-Branch Dual-Attention Mechanism Network

Altmetrics

Downloads

674

Views

678

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

04 December 2019

Posted:

05 December 2019

Read the latest preprint version here

Alerts
Abstract
In recent years, more and more researchers have gradually paid attention to Hyperspectral Image (HSI) classification. It is significant to implement researches on how to use HSI's sufficient spectral and spatial information to its fullest potential. To capture spectral and spatial features, we propose a Double-Branch Dual-Attention mechanism network (DBDA) for HSI classification in this paper, Two branches aer designed to extract spectral and spatial features separately to reduce the interferences between these two kinds of features. What is more, because distinguishing characteristics exist in the two branches, two types of attention mechanisms are applied in two branches above separately, ensuring to exploit spectral and spatial features more discriminatively. Finally, the extracted features are fused for classification. A series of empirical studies have been conducted on four hyperspectral datasets, and the results show that the proposed method performs better than the state-of-the-art method.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Vision and Graphics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated