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1 Background

The Pathway Analysis module combines results from powerful pathway enrichment analysis with pathway
topology analysis to help researchers identify the most relevant pathways involved in the conditions under
study.

There are many commercial pathway analysis software tools such as Pathway Studio, MetaCore,
or Ingenuity Pathway Analysis (IPA), etc. Compared to these commercial tools, the pathway analy-
sis module was specifically developed for metabolomics studies. It uses high-quality KEGG metabolic
pathways as the backend knowledgebase. This module integrates many well-established (i.e. univariate
analysis, over-representation analysis) methods, as well as novel algorithms and concepts (i.e. Global
Test, GlobalAncova, network topology analysis) into pathway analysis. Another feature is a Google-Map
style interactive visualization system to deliver the analysis results in an intuitive manner.

2 Data Input

The Pathway Analysis module accepts either a list of compound labels (common names, HMDB IDs
or KEGG IDs) with one compound per row, or a compound concentration table with samples in rows
and compounds in columns. The second column must be phenotype labels (binary, multi-group, or
continuous). The table is uploaded as comma separated values (.csv).

3 Compound Name Matching

The first step is to standardize the compound labels used in user uploaded data. This is a necessary
step since these compounds will be subsequently compared with compounds contained in the pathway
library. There are three outcomes from the step - exact match, approximate match (for common names
only), and no match. Users should click the textbfView button from the approximate matched results
to manually select the correct one. Compounds without match will be excluded from the subsequently
pathway analysis.

Table 1 shows the conversion results. Note: 1 indicates exact match, 2 indicates approximate match,
and 0 indicates no match. A text file contain the result can be found the downloaded file name map.csv

Table 1: Result from Compound Name Mapping

Query Match HMDB PubChem KEGG SMILES Comment
1 C00263 L-Homoserine HMDB0000719 12647 C00263 C(CO)[C@@H](C(=O)O)N 1
2 C19636 Turanose HMDB0011740 5460935 C19636 C([C@@H]1[C@H]([C@@H]([C@H]([C@H](O1)O[C@@H]([C@@H]([C@@H](CO)O)O)C(=O)CO)O)O)O)O 1
3 C00159 D-Mannose HMDB0000169 18950 C00159 C([C@@H]1[C@H]([C@@H]([C@@H](C(O1)O)O)O)O)O 1
4 C05402 Melibiose HMDB0000048 440658 C05402 C([C@@H]1[C@@H]([C@@H]([C@H]([C@H](O1)OC[C@@H]2[C@H]([C@@H]([C@H](C(O2)O)O)O)O)O)O)O)O 1
5 C01384 Maleic acid HMDB0000176 444266 C01384 C(=C\C(=O)O)\C(=O)O 1
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4 Pathway Analysis

In this step, users are asked to select a pathway library, as well as specify the algorithms for pathway
enrichment analysis and pathway topology analysis.

4.1 Pathway Library

There are 15 pathway libraries currently supported, with a total of 1173 pathways :

� Homo sapiens (human) [80]

� Mus musculus (mouse) [82]

� Rattus norvegicus (rat) [81]

� Bos taurus (cow) [81]

� Danio rerio (zebrafish) [81]

� Drosophila melanogaster (fruit fly) [79]

� Caenorhabditis elegans (nematode) [78]

� Saccharomyces cerevisiae (yeast) [65]

� Oryza sativa japonica (Japanese rice) [83]

� Arabidopsis thaliana (thale cress) [87]

� Escherichia coli K-12 MG1655 [87]

� Bacillus subtilis [80]

� Pseudomonas putida KT2440 [89]

� Staphylococcus aureus N315 (MRSA/VSSA)[73]

� Thermotoga maritima [57]

Your selected pathway library code is ath (KEGG organisms abbreviation).

4.2 Pathway Enrichment Analysis

Pathway enrichment analysis usually refers to quantitative enrichment analysis directly using the com-
pound concentration values, as compared to compound lists used by over-representation analysis. As a
result, it is more sensitive and has the potential to identify subtle but consistent changes amongst
compounds involved in the same biological pathway.

Many procedures have been developed in the last decade for quantitative enrichment analysis, the
most famous being the Gene Set Enrichment Analysis. Many new and improved methods have been
implemented since. The enrichment analysis is based on GlobalTest and GlobalAncova. Both methods
support enrichment analysis with binary, multi-group, as well as continuous phenotypes. The p-values
can be approximated based on the asymptotic distribution without using permutations which is com-
putationally very intensive and is not suitable for web applications. Please note, when sample sizes are
small, the approximated p values may be slightly less accurate compared to p values obtained by using
a permutation-based method (for details, please refer to the paper by Goeman, J.J. et al. 1 and by

1Jelle J. Goeman and Peter Buhlmann. Analyzing gene expression data in terms of gene sets: methodological issues,
Bioinformatics 2007 23(8):980-987
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Hummel, M. et al. 2) However, since our focus is to identify the most relevant pathways within the
pathways in the library, we are more interested in the rank of the pathway, not its absolute p-value.
Therefore, this disadvantage may be tolerated.

The selected pathway enrichment analysis method is Globaltest.

4.3 Pathway Topology Analysis

The structure of biological pathways represent our knowledge about the complex relationships among
molecules within a cell or a living organism. However, most pathway analysis algorithms fail to take
structural information into consideration when estimating which pathways are significantly changed under
conditions of study. It is well-known that changes in more important positions of a network will trigger
a more severe impact on the pathway than changes occurred in marginal or relatively isolated positions.

The pathway topology analysis uses two well-established node centrality measures to estimate node
importance - degree centrality and betweenness centrality. Degree centrality is defined as the
number of links occurred upon a node. For a directed graph there are two types of degree: in-degree for
links come from other nodes, and out-degree for links initiated from the current node. Metabolic networks
are directed graph. Here we only consider the out-degree for node importance measure. It is assumed that
nodes upstream will have regulatory roles for the downstream nodes, not vice versa. The betweenness
centrality measures the number of shortest paths going through the node. Since the metabolic network
is directed, we use the relative betweenness centrality for a metabolite as the importance measure. The
degree centrality measure focuses more on local connectivities, while the betweenness centrality measure
focuses more on global network topology. For more detailed discussions on various graph-based methods
for analyzing biological networks, please refer to the article by Tero Aittokallio, T. et al. 3

Please note, for comparison among different pathways, the node importance values calculated from
centrality measures are further normalized by the sum of the importance of the pathway. Therefore,
the total/maximum importance of each pathway is 1; the importance measure of each metabolite node is
actually the percentage w.r.t the total pathway importance, and the pathway impact value is the cumulative
percentage from the matched metabolite nodes.

Your selected node importance measure for topological analysis is relative betweenness centrality.

5 Pathway Analysis Result

The results from pathway analysis are presented graphically as well as in a detailed table.

A Google-map style interactive visualization system was implemented to facilitate data exploration.
The graphical output contains three levels of view: metabolome view, pathway view, and com-
pound view. Only the metabolome view is shown below. Pathway views and compound views are
generated dynamically based on your interactions with the visualization system. They are available in
your downloaded files.

2Manuela Hummel, Reinhard Meister and Ulrich Mansmann. GlobalANCOVA: exploration and assessment of gene
group effects, Bioinformatics 2008 24(1):78-85

3Tero Aittokallio and Benno Schwikowski. Graph-based methods for analyzing networks in cell biology, Briefings in
Bioinformatics 2006 7(3):243-255
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Figure 1: Summary of Pathway Analysis
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The table below shows the detailed results from the pathway analysis. Since we are testing many
pathways at the same time, the statistical p values from enrichment analysis are further adjusted for
multiple testings. In particular, the Total is the total number of compounds in the pathway; the Hits is
the actually matched number from the user uploaded data; the Raw p is the original p value calculated
from the enrichment analysis; the Holm p is the p value adjusted by Holm-Bonferroni method; the
FDR p is the p value adjusted using False Discovery Rate; the Impact is the pathway impact value
calculated from pathway topology analysis.

Table 2: Result from Pathway Analysis

Total Cmpd Hits Raw p -log(p) Holm adjust FDR Impact
Galactose metabolism 26 2 1.73E-04 8.66E+00 1.04E-03 1.04E-03 0.07
Glycine, serine and threonine metabolism 30 1 2.49E-03 6.00E+00 1.24E-02 3.73E-03 0.08
Cysteine and methionine metabolism 34 1 2.49E-03 6.00E+00 1.24E-02 3.73E-03 0.00
Lysine biosynthesis 10 1 2.49E-03 6.00E+00 1.24E-02 3.73E-03 0.00
Fructose and mannose metabolism 16 1 2.42E-02 3.72E+00 4.85E-02 2.42E-02 0.00
Amino sugar and nucleotide sugar
metabolism

41 1 2.42E-02 3.72E+00 4.85E-02 2.42E-02 0.00
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6 Appendix: R Command History

[1] "mSet<-InitDataObjects(\"conc\", \"pathqea\", FALSE)"

[2] "mSet<-Read.TextData(mSet, \"Replacing_with_your_file_path\", \"rowu\", \"disc\");"

[3] "mSet<-CrossReferencing(mSet, \"kegg\");"

[4] "mSet<-CreateMappingResultTable(mSet)"

[5] "mSet<-SanityCheckData(mSet)"

[6] "mSet<-ImputeVar(mSet, method=\"min\")"

[7] "mSet<-PreparePrenormData(mSet)"

[8] "mSet<-Normalization(mSet, \"NULL\", \"NULL\", \"ParetoNorm\", ratio=FALSE, ratioNum=20)"

[9] "mSet<-PlotNormSummary(mSet, \"norm_0_\", \"png\", 72, width=NA)"

[10] "mSet<-PlotSampleNormSummary(mSet, \"snorm_0_\", \"png\", 72, width=NA)"

[11] "mSet<-SetKEGG.PathLib(mSet, \"ath\")"

[12] "mSet<-SetMetabolomeFilter(mSet, F);"

[13] "mSet<-CalculateQeaScore(mSet, \"rbc\", \"gt\")"

[14] "mSet<-PlotPathSummary(mSet, \"path_view_0_\", \"png\", 72, width=NA)"

[15] "mSet<-PlotKEGGPath(mSet, \"Galactose metabolism\",528, 480, \"png\", NULL)"

[16] "mSet<-RerenderMetPAGraph(mSet, \"zoom1570467370948.png\",528.0, 480.0, 100.0)"

[17] "mSet<-PlotKEGGPath(mSet, \"Glycine, serine and threonine metabolism\",528, 480, \"png\", NULL)"

[18] "mSet<-SaveTransformedData(mSet)"

[19] "mSet<-PreparePDFReport(mSet, \"guest6387830825194072215\")\n"

——————————–

The report was generated on Mon Oct 7 16:56:58 2019 with R version 3.5.1 (2018-07-02).
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