Preprint
Article

Financial Market Prediction Using Recurrence Plot and Convolutional Neural Network

Altmetrics

Downloads

1289

Views

422

Comments

0

This version is not peer-reviewed

Submitted:

17 December 2019

Posted:

19 December 2019

You are already at the latest version

Alerts
Abstract
An application of deep convolutional neural network and recurrence plot for financial market movement prediction is presented. Though it is challenging and subjective to interpret its information, the pattern formed by a recurrence plot provide a useful insight into the dy- namical system. We used a recurrence plot of seven financial time series to train a deep neural network for financial market movement predic- tion. Our approach is tested on our dataset and achieved an average of 53.25% classification accuracy. The result suggests that a well trained deep convolutional neural network can learn a recurrence plot and pre- dict a financial market direction.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated