In order to reveal the mechanism and influencing factors of high pressure jet cavitation of nozzle in submerged environment, this study focused on the evolutionary process of cavitation bubbles and combined finite volume method and mixed multi-phase flow model to analyze the cavitation, velocity distribution and experimental cavitation intensity of fishing net cleaning equipment. Results show that the cavitation inception, growth and collapse mainly occurred in the peripheral region of the flow field. Ring-shaped cavitation erosion zone appeared on the test sample target. A lot of small dense erosion pits were densely distributed in the ring-shaped erosion zone, erosion marks were observed in the center. The cavitation erosion intensity was greatly affected by the nozzle structure. As the diameter of nozzle increased from 0.6 mm to 1 mm, the maximum gas volume fraction increased by 8.53%. The nozzle outlet enlargement angle greatly increased the cavitation intensity. The nozzle with an outlet angle of 30° exhibited the optimal cavitation erosion performance . The cavitation volume fraction of the nozzle with short necking structure was slightly larger than that of the nozzle with long necking structure at the same level in the necking length rang of 3mm to 7mm. In terms of the influence of nozzle structure on the cavitation erosion effect, the nozzle diameter D ranked the first, followed by the outlet angle α, and the necking length L was at the last.
Keywords:
Subject: Engineering - Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.