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1 Abstract: Postpartum depression (PPD), a condition that affects up to the 15% of mothers in
= high-income countries, reduces attention toward the needs of the child and it is among the first
s causes of infanticide. PPD is usually identified using self-report measures and therefore the diagnosis
. may not always be valid. Previous studies highlighted the presence of significant differences in the
s acoustical properties of the vocalizations of children of depressed and healthy mothers. In this study,
s cry episodes of infants of depressed and non-depressed mothers are analyzed to investigate the
»  possibility that a machine learning model can identify PPD in mothers from the acoustical properties
s of infants’ vocalizations. Acoustic features (Fy, Fi_4, Intensity) are first extracted from recordings of
o  crying infants, then novel cloud-based artificial intelligence models are employed to identify maternal
10 depression versus non depression from estimated features. Trained model shows that commonly
1 adopted acoustical features can be successfully used to individuate Post-Partum Depressed mothers
1z with very high accuracy (89.5%).

13 Dataset License: CC-BY-NC
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s 1. Introduction

-

16 Cry is an innate behavior and constitutes the first form of communication newborns use to interact
1z with their caregivers [1]. Similar to speech in adults, cry vocalizations are produced by the vibration
e of the vocal folds, which are controlled by the Central Nervous System (CNS). Therefore, acoustical
1o analysis of cry can identify pathological conditions associated with the vocal tract, the brain, and the
20 spinal cord, as demonstrated in previous research[2,3]. The functional utility of infant cry is to elicit a
=z response in an infant’s caregiver, but, as proved by previous works, some situations and conditions
22 diminish adults’ sensitivity and responsiveness to cry [4-8]. Mothers who suffer from Postpartum
2 Depression (PPD), a condition that is reported by 10-15% of mothers in high-income countries [9,10],
24 and up to 50% in low- and middle-income countries reduces the level of stimulation produced by
= infant cry and decreases mothers’ level of responsiveness toward the needs of their children [11-14].
26 Infants of depressed mothers are therefore exposed to an increased developmental risk [15].
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2z 1.1. Post-Partum Depression Identification

28 Post-Partum Depression, a very common childbearing complication, is defined as a major
20 depression condition that involves decreased interest or pleasure in activities, or sadness over an
3o extended period of time [16]. Development of Post-Partum Depression is not only connected to
a1 previous episodes of depression, but it seems also to be more common when paired with other stressful
2 events, or in women with a family history of mood disorder[9,17]. Rapid hormonal changes after
33 delivery seem to play a primary role in the development of this disorder[18].

sa  Currently, the presence of Post-Partum Depression in new mothers is assessed through questionnaires,
35 for example, the Edinburgh Postnatal Depression Scale, a 10-item questionnaire that uses 4-point Likert
36 scale responses[19,20] and the Beck Depression Inventory (BDI-II), a 21-item self-report questionnaire
sz of the presence and related degree of depressive symptoms, consistent with the DSM-IV. An alternative
ss approach is the Structured Clinical Interview per DMS-IV Axis I disorders (SCID-I).

s Because identification is often based on self-reported measures or reports to interview questions, an
s estimated 60% of mothers with depressive symptoms receive no treatment or a clinical diagnosis [21].
a1 The development of a tool to identify PPD in mothers in an objective way may improve diagnosis and
a2 thereby enhance the quality of life of children of depressed mothers.

s 1.2, Infant Cry

s Infants” actively regulate acoustic information in their vocalizations to express specific needs. For
«s example, acoustical analysis of cries has been used to identify the reason that induced a baby to cry,
s whether hunger, pain, or discomfort [22]. Similarly, babies vocalize differently according to their health
4«7 status. Analysis of infants’ cries has shown that specific patterns of cry vocalizations reflect infants’
«s health status [23]. For example, Sheinkopf et al. [24], found different patterns of acoustical properties
4 of cry vocalizations in children at risk for ASD compared to vocalizations from a healthy control group.
so Likewise, Garcia & Garcia [25] distinguished cry samples collected from deaf and hearing infants.

s In a typical study, cry vocalizations are elicited in babies using a trigger (e.g., heel prick) and recorded
s on digital or analog sources [26]. Cry signals are then filtered to remove higher frequencies components.
ss Finally, acoustic features are estimated from the signals. Commonly used acoustic features are the
s« Fundamental Frequency (F0), which is the lowest pitch of the periodic signals, and its formants (F;-Fy),
ss  which are frequency peaks which wavelength is a multiple of the fundamental frequency.

s Different techniques are used to estimate acoustic features from cry samples, automatically (by means
sz of a peak detection algorithm) or manually (by visual inspection of the spectrogram). Estimated
ss features are then compared using statistical methods (to investigate the existence of specific patterns
s associated with a pathology) or fed to a classifier (to investigate whether those differences are strong
s enough to be used to identify a clinical situation reliably).

e 1.3. Aim and Hypothesis

62 Because of depressed mothers’ reduced sensitivity and reactions to infants’ cries, children may
es regulate the frequencies of their vocalization to maximize the responses of their caregivers. Previous
es studies have reported significant differences between the vocalizations of infants of depressed and
es non-depressed mothers [12]. Therefore, an analysis of the acoustical properties of cry vocalizations
ss could identify in an objective way mothers who suffer from PPD. In this study, we investigated the
ez possibility of using cry samples to identify PPD in mothers. More specifically, we hypothesized that a
es Cloud Computing based model will be able to identify children of mothers suffering from PPD, by
e using recordings of their cry vocalizations.
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o 2. Methods

~

7 In this work, acoustical features (Fy, F1.4, Intensity) have been estimated from cry vocalizations
2 collected in a previous, Then, a cloud-based Al model has been trained and tested. A visual
s representation of the procedure is reported in Figure 1

~

~
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Figure 1. Summary of the steps employed in the development of the model for the diagnosis of PPD
from infants’ cry vocalizations.

7za 2.1. Data

75 To test our hypothesis, we adopted a subset of a dataset used in a previous publication on
76 the acoustical differences in cry vocalizations of children of depressed and healthy mothers [12].
7z Vocalizations from children of depressed (N = 29, 8 infant girls) and non-depressed mothers (N =
7e 26,7 infant girls) were collected at home when the infants were about 5 months of age (mean age =
70 157.4 days =+ 8.5). 57 mothers (mean age = 31.1 years =+ 3.9) were recruited from the Washington DC
so metropolitan area by mailing lists and newspaper advertisements; they included European Americans
a1 (n = 36), African-American (n = 10), Asian Americans (n = 7), American Indians (n = 1), and Latin
s2 Americans (n = 3). The study was approved by the IRB of the Eunice Kennedy Shriver National
es Institute of Child Health and Human Development (protocol code: 02-CH-0278) and was conducted
s« according to the principles expressed in the Declaration of Helsinki. Written informed consent was
es Obtained from all the participants prior to each recording session. Additional information on the
es demographic information of the participants are reported in the original work [12].

ez To increase the ecological validity of collected data, data were collected in the mothers” homes and
ss mothers were asked to behave as they normally would, ignoring the presence of the experimenters.
ss Infants and mothers were audio and video-recorded for at least 50 min, an amount of time that
o0 according to Holden and Millers [27] falls in the optimal time-frame for mother-infant observation.
o1 PPD was assessed using the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) and
o2 the Beck Depression Inventory (BDI-II)[28], a 21-item survey which allows for a self-report of the
o3 presence and related degree of depressive symptoms, consistent with the DSM-IV. Mothers categorized
o« as depressed had a high score on the BDI scale (>12) and had been diagnosed as having minor or major
s depression (SCID) by the time their infants were 5 months old. Collected cry samples (N = 715) were
os then digitalized in WAVE (wav file format, two channels) at 44.1kHz (16 bit). This format has been
oz selected to preserve frequency information convoyed by the cry signals, as it is a lossless compression
os format [26]. Additional information on the data collection procedure, as well as the results of the
o statistical analysis, can be found in the original publication. [12].
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1o 2.2. Features extraction

101 Collected cry samples (N = 715) were then digitalized in WAVE (wav file format, two channels) at
102 44.1kHz (16 bit). This format has been selected to preserve frequency information convoyed by the
103 Cry signals, as it is a lossless compression format. Moreover, the sampling rate allows for analysis of
10 frequencies up to 22kHz, which makes it suitable for a reliable analysis of up to the fourth formant. No
105 further preprocessing was conducted on recorded signals to avoid alterations of frequency information
16 conveyed within the signal.

17 Features (Fy4) were extracted using Praat (v 6.0.50, Windows 64 bit), an open-source software design
1s  for voice analysis [29]. This software is based on the spectrographic analysis of a signal by means of
100 a Long-Term Average Spectrum (LTAS). Specifically, the signal is first segmented into windows of a
1o pre-specified length, then each segment is analyzed by means of an auto-correlation algorithm that
11 works in the lag-domain (or T — domain).

12 Software’s settings were adapted to correctly identify Fy (Lower cutoff = 250Hz, upper cutoff = 800Hz)
13 and the first four harmonics (Number of harmonics = 5, upper cutoff = 6000Hz) in a range that covers
ua  the spectrum in which cry vocalizations properties usually lie [30]. A copy of the script used for feature
s estimation is available online [31].

us To investigate the possibility of using advanced Cloud Computing techniques to verify whether novel
1z machine learning and neural networking techniques could be used to verify the presence of PPD in
us mothers, we relied on the Google Cloud Platform: Google AutoML Tables' [32]. A binary classification
e model was employed to discriminate between the cries of infants of mothers suffering from PPD from
120 those of healthy infants. AutoML Tables were configured so that 80% of imported data was used for
1z training, 10% for validation, and 10% for testing. The model was executed for up to two node hours
122 (total running time of the training phase spread across the different machines that compose a node).
123 Accuracy of the model was evaluated in terms of Precision (expressed in percentage), Area under the
124 precision-recall curve (AUC PR, a value between 0 and 1, such that the higher the value, the higher the
125 quality of the model), area under the curve of the receiver operative characteristics (AUC ROC, a value
126 between 0 and 1, such that the higher the value, the higher the quality of the model), and logarithmic
127 loss (a value between 0 and 1, such that the lower the value, the higher the quality of the model

12s  Data Augmentation

120 AutoML Tables requires at least 1000 samples to executed (Beta version), therefore a data
130 augmentation technique was applied to increase the number of samples of the dataset. Additive
1:1 White Gaussian Noise (£15TD) [33,34] was applied to a copy of the dataset and then merged with
122 the original samples to obtain a dataset about twice the size of the original set of data (N = 1413).
133 Augmented data, containing both acoustic (Fy, F1.4, and Intensity) and demographic information
134 (infants” gender, mothers” age) were employed for classification purposes. A copy of the final dataset
135 is available online on the data repository of the Nanyang Technological University[31].

136 3. Results

137 Model’s training stopped after 0.916 node hours, reporting an average accuracy on the test set of
138 89.5%, as well as robust values for AUC PR (0.954), AUC ROC (0.969), and Logarithmic Loss (0.250).
130 Overall, the model achieved more than the 90% of precision (90.4%), with a true positive recall of
150 88.8% and an almost null false positive rate (0.09). Metrics of the score of the different evaluations are
11 reported in Table 1.

12 For what concerns the model’s error distribution, the confusion matrix of the model is reported in
s Table 2.

1 https://cloud.google.com/automl-tables/
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Metric Score
AUCPR 0,954
AUC ROC 0,969
Logarithmic Loss 0,250
Accuracy 89,5%
Precision 90.4%
True positive rate (Recall)  88.8%
False positive rate 0.090
Table 1. Google’s AutoML Model Evaluation Metrics.
Predicted Label
True Label False True
False 88% 12%
True 9% 91%
Table 2. Google’s AutoML Model Confusion Matrix.
142 4. Discussion and Conclusions
145 In this work, we tested the possibility of using machine learning models to identify Post-Partum

14s  Depression in mothers from their infants” vocalizations.

17 Results of the model trained on Google’s cloud computing service demonstrate the robustness of the
e method based on infants’ cry analysis. The model, based on estimated acoustical properties of cry,
140 identified at a high level of accuracy (89.5%) the children of depressed mothers. Our results suggest
150 that machine learning models, trained in cloud environments, can support clinicians in the diagnosis
152 of PPD.

152 Despite these promising results, some limitations need to be addressed. First, our model has been
153 tested on a single dataset. Future studies should address the performance of models on data collected
1ss from different participants to verify the broader utility of the methods. Moreover, we trained the
15 models using only acoustical features and demographic information about mothers (age) and infants
16 (gender). Future studies might also address how including additional data, such as the questionnaires
157 score (BDI) or the gestational age of the baby at birth, might improve predictive models by reducing
1se  the ratio of false positives and false negatives.

1s In conclusion, we show the possibility of using an objective measure of infants” cries subjected to
160 machine learning models to advance beyond commonly used subjective reports to identify infants of
161 Post-Partum depressed mothers.
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17z Abbreviations
17o  The following abbreviations are used in this manuscript:
180

PPD Post-Partum Depression

CNS Central Nervous System

SvC Support Vector Machine
' LTAS Long-Term Average Spectrum

AUC PR Area Under the Curve: Precision-Recall

AUCROC  Area Under the Curve: Receiver Operative Characteristics
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