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Abstract: Postpartum depression (PPD), a condition that affects up to the 15% of mothers in 
high-income countries, reduces attention toward the needs of the child and it is among the first 
causes of infanticide. PPD is usually identified using self-report measures and therefore the diagnosis 
may not always be valid. Previous studies highlighted the presence of significant differences in the 
acoustical properties of the vocalizations of children of depressed and healthy mothers. In this study, 
cry episodes of infants of depressed and non-depressed mothers are analyzed to investigate the 
possibility that a machine learning model can identify PPD in mothers from the acoustical properties 
of infants’ vocalizations. Acoustic features (F0, F1-4, Intensity) are first extracted from recordings of 
crying infants, then novel cloud-based artificial intelligence models are employed to identify maternal 
depression versus non depression from estimated features. Trained model shows that commonly 
adopted acoustical features can be successfully used to individuate Post-Partum Depressed mothers 
with very high accuracy (89.5%).
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1. Introduction15

Cry is an innate behavior and constitutes the first form of communication newborns use to interact16

with their caregivers [1]. Similar to speech in adults, cry vocalizations are produced by the vibration17

of the vocal folds, which are controlled by the Central Nervous System (CNS). Therefore, acoustical18

analysis of cry can identify pathological conditions associated with the vocal tract, the brain, and the19

spinal cord, as demonstrated in previous research[2,3]. The functional utility of infant cry is to elicit a20

response in an infant’s caregiver, but, as proved by previous works, some situations and conditions21

diminish adults’ sensitivity and responsiveness to cry [4–8]. Mothers who suffer from Postpartum22

Depression (PPD), a condition that is reported by 10-15% of mothers in high-income countries [9,10],23

and up to 50% in low- and middle-income countries reduces the level of stimulation produced by24

infant cry and decreases mothers’ level of responsiveness toward the needs of their children [11–14].25

Infants of depressed mothers are therefore exposed to an increased developmental risk [15].26

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 December 2019                   doi:10.20944/preprints201912.0413.v1

©  2019 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Behavioral Sciences 2020, 10; doi:10.3390/bs10020055

http://www.mdpi.com
https://orcid.org/0000-0002-9846-5767
https://orcid.org/0000-0002-6810-8427
https://orcid.org/0000-0001-9798-2925
https://orcid.org/0000-0002-9442-0254
https://doi.org/10.20944/preprints201912.0413.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/bs10020055


2 of 7

1.1. Post-Partum Depression Identification27

Post-Partum Depression, a very common childbearing complication, is defined as a major28

depression condition that involves decreased interest or pleasure in activities, or sadness over an29

extended period of time [16]. Development of Post-Partum Depression is not only connected to30

previous episodes of depression, but it seems also to be more common when paired with other stressful31

events, or in women with a family history of mood disorder[9,17]. Rapid hormonal changes after32

delivery seem to play a primary role in the development of this disorder[18].33

Currently, the presence of Post-Partum Depression in new mothers is assessed through questionnaires,34

for example, the Edinburgh Postnatal Depression Scale, a 10-item questionnaire that uses 4-point Likert35

scale responses[19,20] and the Beck Depression Inventory (BDI-II), a 21-item self-report questionnaire36

of the presence and related degree of depressive symptoms, consistent with the DSM-IV. An alternative37

approach is the Structured Clinical Interview per DMS-IV Axis I disorders (SCID-I).38

Because identification is often based on self-reported measures or reports to interview questions, an39

estimated 60% of mothers with depressive symptoms receive no treatment or a clinical diagnosis [21].40

The development of a tool to identify PPD in mothers in an objective way may improve diagnosis and41

thereby enhance the quality of life of children of depressed mothers.42

1.2. Infant Cry43

Infants’ actively regulate acoustic information in their vocalizations to express specific needs. For44

example, acoustical analysis of cries has been used to identify the reason that induced a baby to cry,45

whether hunger, pain, or discomfort [22]. Similarly, babies vocalize differently according to their health46

status. Analysis of infants’ cries has shown that specific patterns of cry vocalizations reflect infants’47

health status [23]. For example, Sheinkopf et al. [24], found different patterns of acoustical properties48

of cry vocalizations in children at risk for ASD compared to vocalizations from a healthy control group.49

Likewise, Garcia & Garcia [25] distinguished cry samples collected from deaf and hearing infants.50

In a typical study, cry vocalizations are elicited in babies using a trigger (e.g., heel prick) and recorded51

on digital or analog sources [26]. Cry signals are then filtered to remove higher frequencies components.52

Finally, acoustic features are estimated from the signals. Commonly used acoustic features are the53

Fundamental Frequency (F0), which is the lowest pitch of the periodic signals, and its formants (F1-F4),54

which are frequency peaks which wavelength is a multiple of the fundamental frequency.55

Different techniques are used to estimate acoustic features from cry samples, automatically (by means56

of a peak detection algorithm) or manually (by visual inspection of the spectrogram). Estimated57

features are then compared using statistical methods (to investigate the existence of specific patterns58

associated with a pathology) or fed to a classifier (to investigate whether those differences are strong59

enough to be used to identify a clinical situation reliably).60

1.3. Aim and Hypothesis61

Because of depressed mothers’ reduced sensitivity and reactions to infants’ cries, children may62

regulate the frequencies of their vocalization to maximize the responses of their caregivers. Previous63

studies have reported significant differences between the vocalizations of infants of depressed and64

non-depressed mothers [12]. Therefore, an analysis of the acoustical properties of cry vocalizations65

could identify in an objective way mothers who suffer from PPD. In this study, we investigated the66

possibility of using cry samples to identify PPD in mothers. More specifically, we hypothesized that a67

Cloud Computing based model will be able to identify children of mothers suffering from PPD, by68

using recordings of their cry vocalizations.69
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2. Methods70

In this work, acoustical features (F0, F1-4, Intensity) have been estimated from cry vocalizations71

collected in a previous, Then, a cloud-based AI model has been trained and tested. A visual72

representation of the procedure is reported in Figure 173

Figure 1. Summary of the steps employed in the development of the model for the diagnosis of PPD
from infants’ cry vocalizations.

2.1. Data74

To test our hypothesis, we adopted a subset of a dataset used in a previous publication on75

the acoustical differences in cry vocalizations of children of depressed and healthy mothers [12].76

Vocalizations from children of depressed (N = 29, 8 infant girls) and non-depressed mothers (N =77

26, 7 infant girls) were collected at home when the infants were about 5 months of age (mean age =78

157.4 days ± 8.5). 57 mothers (mean age = 31.1 years ± 3.9) were recruited from the Washington DC79

metropolitan area by mailing lists and newspaper advertisements; they included European Americans80

(n = 36), African-American (n = 10), Asian Americans (n = 7), American Indians (n = 1), and Latin81

Americans (n = 3). The study was approved by the IRB of the Eunice Kennedy Shriver National82

Institute of Child Health and Human Development (protocol code: 02-CH-0278) and was conducted83

according to the principles expressed in the Declaration of Helsinki. Written informed consent was84

obtained from all the participants prior to each recording session. Additional information on the85

demographic information of the participants are reported in the original work [12].86

To increase the ecological validity of collected data, data were collected in the mothers’ homes and87

mothers were asked to behave as they normally would, ignoring the presence of the experimenters.88

Infants and mothers were audio and video-recorded for at least 50 min, an amount of time that89

according to Holden and Millers [27] falls in the optimal time-frame for mother-infant observation.90

PPD was assessed using the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-I) and91

the Beck Depression Inventory (BDI-II)[28], a 21-item survey which allows for a self-report of the92

presence and related degree of depressive symptoms, consistent with the DSM-IV. Mothers categorized93

as depressed had a high score on the BDI scale (>12) and had been diagnosed as having minor or major94

depression (SCID) by the time their infants were 5 months old. Collected cry samples (N = 715) were95

then digitalized in WAVE (wav file format, two channels) at 44.1kHz (16 bit). This format has been96

selected to preserve frequency information convoyed by the cry signals, as it is a lossless compression97

format [26]. Additional information on the data collection procedure, as well as the results of the98

statistical analysis, can be found in the original publication. [12].99
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2.2. Features extraction100

Collected cry samples (N = 715) were then digitalized in WAVE (wav file format, two channels) at101

44.1kHz (16 bit). This format has been selected to preserve frequency information convoyed by the102

cry signals, as it is a lossless compression format. Moreover, the sampling rate allows for analysis of103

frequencies up to 22kHz, which makes it suitable for a reliable analysis of up to the fourth formant. No104

further preprocessing was conducted on recorded signals to avoid alterations of frequency information105

conveyed within the signal.106

Features (F0-4) were extracted using Praat (v 6.0.50, Windows 64 bit), an open-source software design107

for voice analysis [29]. This software is based on the spectrographic analysis of a signal by means of108

a Long-Term Average Spectrum (LTAS). Specifically, the signal is first segmented into windows of a109

pre-specified length, then each segment is analyzed by means of an auto-correlation algorithm that110

works in the lag-domain (or τ − domain).111

Software’s settings were adapted to correctly identify F0 (Lower cutoff = 250Hz, upper cutoff = 800Hz)112

and the first four harmonics (Number of harmonics = 5, upper cutoff = 6000Hz) in a range that covers113

the spectrum in which cry vocalizations properties usually lie [30]. A copy of the script used for feature114

estimation is available online [31].115

To investigate the possibility of using advanced Cloud Computing techniques to verify whether novel116

machine learning and neural networking techniques could be used to verify the presence of PPD in117

mothers, we relied on the Google Cloud Platform: Google AutoML Tables1 [32]. A binary classification118

model was employed to discriminate between the cries of infants of mothers suffering from PPD from119

those of healthy infants. AutoML Tables were configured so that 80% of imported data was used for120

training, 10% for validation, and 10% for testing. The model was executed for up to two node hours121

(total running time of the training phase spread across the different machines that compose a node).122

Accuracy of the model was evaluated in terms of Precision (expressed in percentage), Area under the123

precision-recall curve (AUC PR, a value between 0 and 1, such that the higher the value, the higher the124

quality of the model), area under the curve of the receiver operative characteristics (AUC ROC, a value125

between 0 and 1, such that the higher the value, the higher the quality of the model), and logarithmic126

loss (a value between 0 and 1, such that the lower the value, the higher the quality of the model127

Data Augmentation128

AutoML Tables requires at least 1000 samples to executed (Beta version), therefore a data129

augmentation technique was applied to increase the number of samples of the dataset. Additive130

White Gaussian Noise (±1STD) [33,34] was applied to a copy of the dataset and then merged with131

the original samples to obtain a dataset about twice the size of the original set of data (N = 1413).132

Augmented data, containing both acoustic (F0, F1-4, and Intensity) and demographic information133

(infants’ gender, mothers’ age) were employed for classification purposes. A copy of the final dataset134

is available online on the data repository of the Nanyang Technological University[31].135

3. Results136

Model’s training stopped after 0.916 node hours, reporting an average accuracy on the test set of137

89.5%, as well as robust values for AUC PR (0.954), AUC ROC (0.969), and Logarithmic Loss (0.250).138

Overall, the model achieved more than the 90% of precision (90.4%), with a true positive recall of139

88.8% and an almost null false positive rate (0.09). Metrics of the score of the different evaluations are140

reported in Table 1.141

For what concerns the model’s error distribution, the confusion matrix of the model is reported in142

Table 2.143

1 https://cloud.google.com/automl-tables/
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Metric Score
AUC PR 0,954

AUC ROC 0,969
Logarithmic Loss 0,250

Accuracy 89,5%
Precision 90.4%

True positive rate (Recall) 88.8%
False positive rate 0.090

Table 1. Google’s AutoML Model Evaluation Metrics.

Predicted Label
True Label False True

False 88% 12%
True 9% 91%

Table 2. Google’s AutoML Model Confusion Matrix.

4. Discussion and Conclusions144

In this work, we tested the possibility of using machine learning models to identify Post-Partum145

Depression in mothers from their infants’ vocalizations.146

Results of the model trained on Google’s cloud computing service demonstrate the robustness of the147

method based on infants’ cry analysis. The model, based on estimated acoustical properties of cry,148

identified at a high level of accuracy (89.5%) the children of depressed mothers. Our results suggest149

that machine learning models, trained in cloud environments, can support clinicians in the diagnosis150

of PPD.151

Despite these promising results, some limitations need to be addressed. First, our model has been152

tested on a single dataset. Future studies should address the performance of models on data collected153

from different participants to verify the broader utility of the methods. Moreover, we trained the154

models using only acoustical features and demographic information about mothers (age) and infants155

(gender). Future studies might also address how including additional data, such as the questionnaires156

score (BDI) or the gestational age of the baby at birth, might improve predictive models by reducing157

the ratio of false positives and false negatives.158

In conclusion, we show the possibility of using an objective measure of infants’ cries subjected to159

machine learning models to advance beyond commonly used subjective reports to identify infants of160

Post-Partum depressed mothers.161
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Abbreviations178

The following abbreviations are used in this manuscript:179

180

PPD Post-Partum Depression
CNS Central Nervous System
SVC Support Vector Machine
LTAS Long-Term Average Spectrum
AUC PR Area Under the Curve: Precision-Recall
AUC ROC Area Under the Curve: Receiver Operative Characteristics
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