

Article

Safety Lighting Sensor Robots Communicate in the Middle of the Highway/Roads

Mingu Lee ^{1,*}, Jongyoun Won ², Jimi Kim ³, Hyejin Jeon ⁴, InKyoung Hong ⁵, Eunji Jung ⁶, Taehwan Jin ⁷, Seowoo Jeong ⁸, Seok-Hyun Ga ⁹, Chan-Jong Kim ¹⁰ and Juhyun Eune ^{11,*}

¹ Graduate School of Convergence Science and Technology/Dept. of Earth Science Education, School of Education, Seoul National University, Seoul 08826, Korea; hybop@snu.ac.kr (M.L.)

² Division of Design, Incheon National University, Incheon 02447, Korea; jywon@inu.ac.kr (J.W.)

³ Dept. of Statistics, Chung-Ang University, Seoul 06974, Korea; kjm0623v@cau.ac.kr (J.K.)

⁴ Dept. of Business Administration, Korea Polytechnic University, Siheung 15073, Korea; terry04@kpu.ac.kr (H.J.)

⁵ National Institute of Horticultural and Herbal Science, Wanju 55365, Korea; Inkyoung63@korea.kr (I.H.)

⁶ Dept. of Visual Information Design, Kyunghee University, Yong-in 17104, Korea; ejung483@khu.ac.kr (E.J.)

⁷ Midea Group Laundry Appliances Business Division, Wuxi 214028, China; taehwan.jin@midea.com (T.J.)

⁸ College of Fine Arts, Hongik University, Seoul 04066, Korea; seowoo0618@gmail.com (S.J.)

⁹ Dept. of Earth Science Education, School of Education, Seoul National University, Seoul 08826/Dept. of Computer Science, Korea National Open University, Seoul 03087, Korea; shga@snu.ac.kr (S.G.)

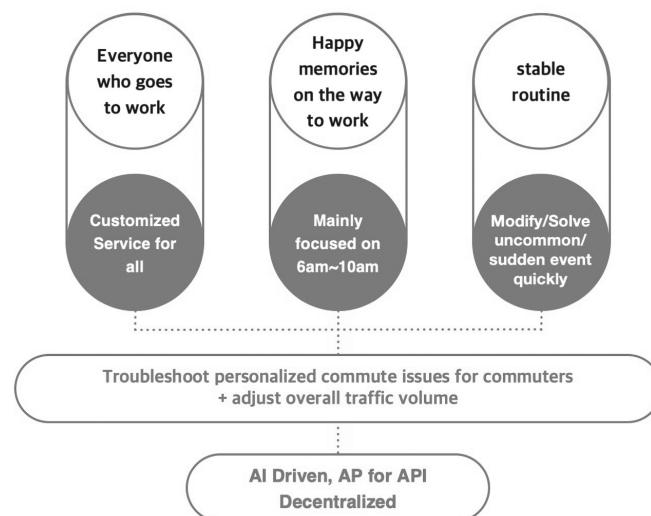
¹⁰ Dept. of Earth Science Education, School of Education, Seoul National University, Seoul 08826, Korea; chajokim@snu.ac.kr (C.K.)

¹¹ Dept. of Craft and Design, Intermedia Lab, Seoul National University, Seoul 08826, Korea; jheune@snu.ac.kr (J.E.)

* Correspondence: hybop@snu.ac.kr; jheune@snu.ac.kr; Tel.: +82-2-880-7518

1 **Abstract:** The object of this research is designing of new robot-to-robot communication system
2 working in the middle of highway/roads to support mobile safety for approaching vehicles. The
3 result of research project directs to a group of safety robot devices which induce a vehicle on a bypass
4 route, as a vehicle guidance method using the same, and a vehicle safety guidance system. According
5 to an embodiment of the present invention, a safety device includes a detector configured to detect a
6 vehicle approaching the safety device, and an image projector configured to project an image onto a
7 road surface approaching the vehicle when the detector recognizes an approach of the vehicle. It can
8 include. According to the present invention, when it is necessary to guide the vehicle to the bypass
9 route, the driver of the vehicle can grasp the detour route in time and move the vehicle to the next
10 lane.

11 **Keywords:** sensor robot; causal inference; robot communication; safety lighting; mobile application;
12 ad-hoc network


13 1. Introduction

14 Car accidents in recent years, have their own logs based on data including situation information.
15 There has been increasing interest in predicting/preventing the car accident in the middle of the
16 highway/roads. A lot of traffic research projects have been focused not on users(drivers), but on
17 vehicles. On the other perspective, commuters in metropolitan/urban areas tend to keep safety in their
18 journey out of car accidents of others.

19 The research on smart highway was triggered by Korean government which supports a convenient
20 and intelligent driver context to decrease accidents by facilitating vehicle, environmental, road

21 information.[1] Hong et al.[2] also suggested safety light module also working as localized sensor unit
 22 of intelligent transportation systems[3] in the middle of the highway.

23 Software as well as device has widely developed for road safety over a variety of countries. Most
 24 recently, advanced model for real-time vehicle traffic applications[4] were proposed in the sensor
 25 network. For former examples, roadside warning[5] sensor had developed in its application and
 26 emerging technology enables vehicle control in more automated[6] way even in emergent contexts.

Figure 1. Target: user experience concepts and principles.

27 The aims of the research is proposing multiple access point robots in the highway/roads,
 28 to provide useful information simultaneously with safety and convenience for users. Real-time
 29 communicative sensor robot system request users, firstly to detour busy road to prevent secondary
 30 vehicle accident, or secondly to select alternatives among other transportation matters in their enhanced
 31 experiences. For these purposes, mobile application simultaneously connecting with open APIs become
 32 useful for providing information.

33 **2. Research Background and Understanding Context**

34 As an example of a road that requires a detour of a vehicle, there can be a damaged section[7]
 35 in which a road used by the vehicle is temporarily unavailable. In this case, the driver of the vehicle
 36 must know the route to be detoured and detour the vehicle to the route. For another instance, when a
 37 road is under construction or there is a traffic accident, the driver of a vehicle approaching the section
 38 needs to identify a route that can be bypassed. In this case, it is usually all that the safety personnel or
 39 safety mannequins are arranged. This is a problem that increases the time-consuming risk of accident
 40 because the driver of the vehicle can't grasp the bypass route in time.

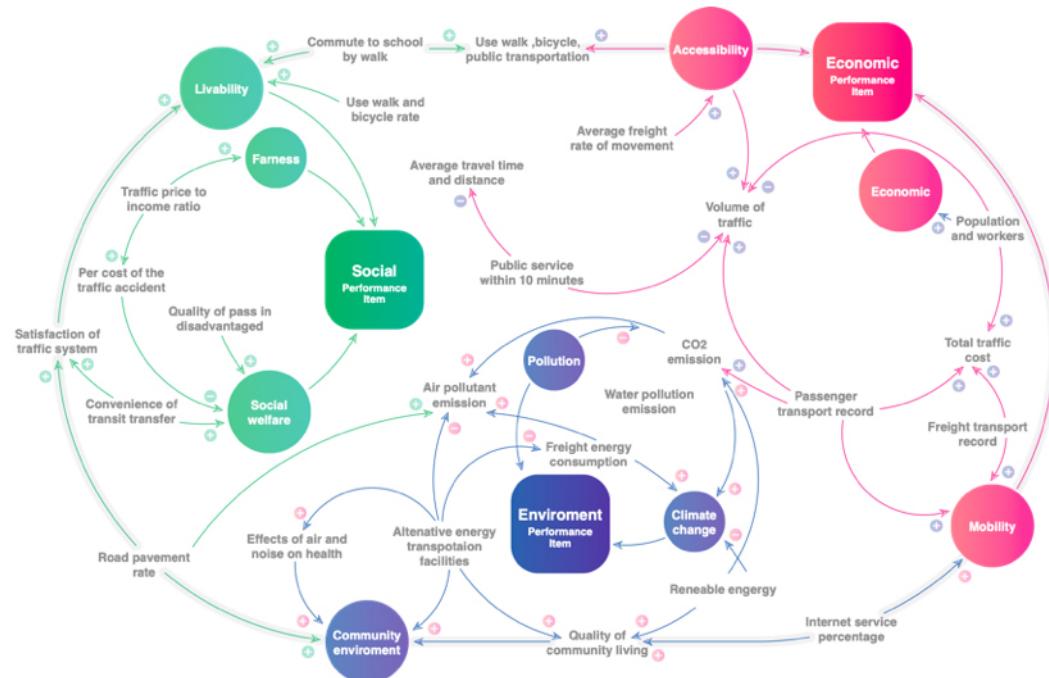


Figure 2. First draft version of safety lighting device as a function module of robot communication.[2]

41 We previously designed a draft version of safety lighting device for generating a relative narrow,
 42 intense light beam to prevent car accidents while driving at night.[2] One more research has an object
 43 to enable the driver of the vehicle to timely determine the bypass path to move the vehicle to the
 44 bypass path when it is necessary to guide the vehicle to the bypass path. In addition, the research has
 45 a goal to efficiently recognize the driver of the vehicle that the road is in an unusable state.

46 **2.1. Data Science in the Road**

47 **2.1.1. Causal inference**

Figure 3. System Dynamics Diagram: Social, economic, environment around mobility industry.[10]

48 A considerable amount of research has been carried out regarding the road safety with causality.
 49 To answer the question if some factors has any effect in reducing the number of road traffic crashes,
 50 most of the published paper used regression models with observational data. The low pavement
 51 marking visibility can cause for rate of accidents at night than during the day, comparing of two
 52 popular methods:

53 • Potential Outcomes Framework
 54 • Causal Diagrams framework

55 In the field of road safety, data are restricted to drivers and vehicles involved in road accidents
 56 only. To solve selection bias problem, responsibility analyses to evaluate the effect of a given factor on
 57 the risk of accident. [18]

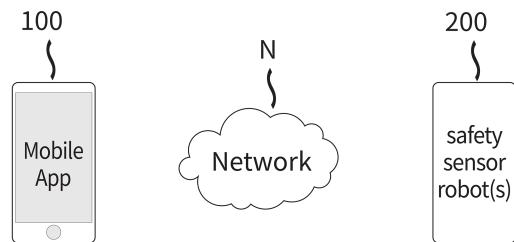
58 **2.1.2. Sensor communication system for user in the road**

59 For the purpose of interacting between sign systems and driver having contextual knowledge,
 60 there is a need for a technique for solving the above problems. Previously from the construction place,
 61 automated behavior system discloses a traffic guide mannequin robot device. However, it still does
 62 not solve the dangerous spot identifying problem above. According to the additional research, in order
 63 to identify the safe section, and in order to manage the place risk of high accident rate, worker/driver
 64 safety problems are existing in the highway road work ahead.

65 Against problems, present research results have object to, according to any one of the problem
 66 solving methods of the present invention results, which are possible to:

67 • Improve the visibility of recognizing the information that the driver of the vehicle to move to the
 68 bypass path when it is necessary to guide the vehicle to the bypass path at night.
 69 • Increase the level of safety and accident prevention when road management.
 70 • Inform the driver of the detour route efficiently to bypass the unusable road so that the safe
 71 driving, and enable the driver to try to avoid the unavailable road to effectively inform the detour
 72 route to drive safely.

Figure 4. Insights from voice-of-customer besides car accidental area.


73 2.1.3. Technical answers to the situational problems

74 As a technical answers for achieving the above contextual problems, according to a first aspect of
 75 the research, as a robot device, a recognizing unit for detecting a vehicle approaching the robot device
 76 and the vehicle when the recognizing unit detects the approach of the vehicle It can include an image
 77 projection unit for projecting an image on the approaching road surface.

78 Second, there is provided a vehicle guidance method performed by a robot device, the method
 79 comprising: detecting a vehicle approaching the robot device, and detecting the approach of the vehicle
 80 to display an image on a road surface approaching the vehicle; Projecting can include.

81 At last, in a vehicle guidance system including a plurality of robot devices, sensing the approach
 82 of the vehicle to project a warning image on the road surface, at least one other robot device of the
 83 plurality of robot devices It can include a first robot device for transmitting the access information and
 84 a second robot device for receiving the access information from the first robot device and projecting
 85 the detour path image.

86 According to any one of the above-described problem solving means of the present research,
 87 when a device meet the needs to guide the vehicle to the bypass path, the driver of the vehicle can
 88 timely determine the bypass path and move the vehicle to the bypass path. Further, it is possible to
 89 efficiently inform the driver of the vehicle that the road is in an unusable state.

Figure 5. A vehicle guidance network according to robot-cloud-app communication.

90 2.2. User Research on Vehicle Guide System in the Road

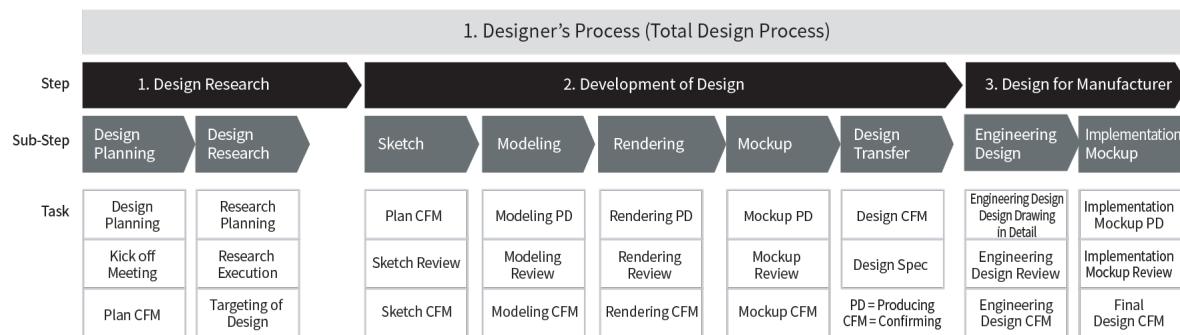
91 To bypass the path on risk, the drivers have to be informed via personal information channel(e.g.
 92 mobile phone application) from vehicle guidance system network.

Table 1. User observation research with interview.

Goal		Observation Details
Observation	To identify inconvenience	Observe the behavioral flow
Interview	Contextual interviews to identify hidden inconveniences	Ask participants about the reason

93 **3. Problem Definition**

94 The “Vehicle Guidance Network” began with the need for classifying traffic jams, enabling AI
 95 driven problem solving so that it can make your commute feel good. This background starts with the
 96 serious traffic jam during rush hour which is critical for individual work efficiency. For both drivers
 97 and public transport users, safety sensor robot was designed to become guidance system for urban
 98 commuters. Requirements and needs for the guidance system can be extracted from a series of design
 99 processes.

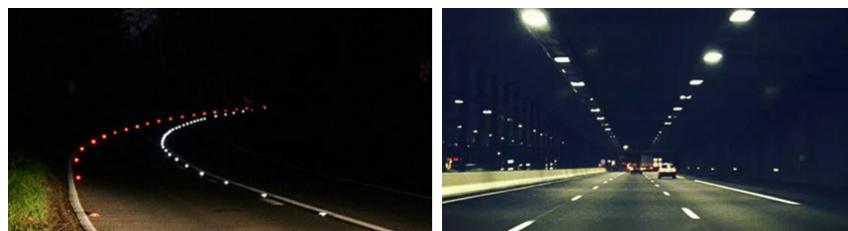

100 **3.1. Design Process for Preliminary Research**

101 We observed and interviewed several commuters with the method of town-watching and IDI.
 102 The purpose of the observation is to identify the inconvenience caused by lack of information on
 103 the morning commute and to find ways to improve the information. We also observed the flow of
 104 behaviors that led to decision making in the participants' daily schedule. In addition, a contextual
 105 interview was conducted to find the hidden inconveniences that participants felt during the morning
 106 commute. We inquired about the reasons for the decision at the decision stage in the participant's daily
 107 schedule.

108 Through observation and context interviews, we were able to find five types of prints on our way
 109 to work. If there is an accident on the road, hold on until the insurance company gets the scene of the
 110 accident.

111 **3.2. Total Design Process: From Design Research to Development and Implementation**

112 Design process from planning to implementation is shown on Figure 7.


Figure 6. Total design process of access point robot in the highway/roads.

113 **3.3. On-road-construction Site Studies for Collecting User Insight**

114 In the context of the road construction work, maintaining sufficient distance to secure the field
 115 of view, ensuring visibility for beginner drivers and securing safety for construction workers were
 116 important needs. Previous research has shown consequent direction[2] like below :

117 • “Driving at night narrows your field of view. If you’re driving on unlit roads, you’ll only see the
 118 headlight range(100m up and 40m down), so it takes longer than daytime to find pedestrians and
 119 objects passing by.”

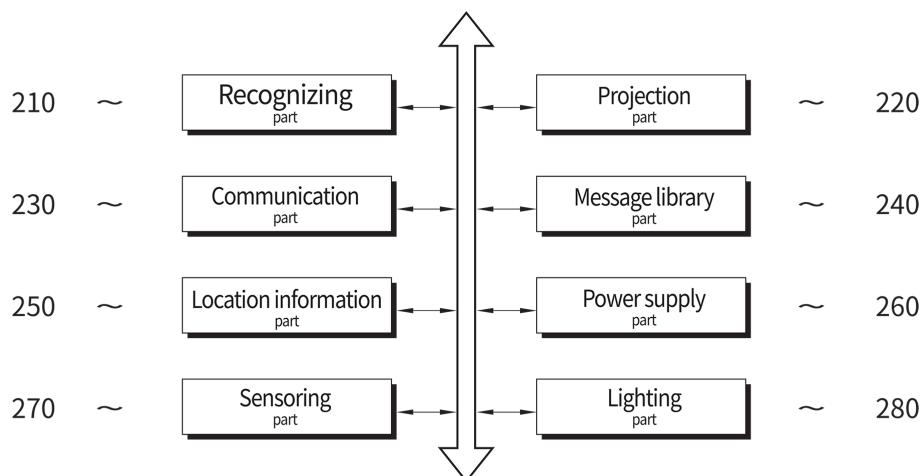

120 • “In night road construction, it is important to focus on road blocking issues due to the driver’s
 121 neglect to look forward. Even the process of installing lavacons to focus attention is at risk.”

Figure 7. Road on work equipped with a series of lamps/lavacons.

122 **4. Sensor Robot as Access Point**

123 The above-mentioned background has technical information that the inventors possessed for the
 124 derivation of the present invention or acquired in the derivation process of the present invention. It is
 125 not necessarily a publicly known technique disclosed to the general public before the application of
 126 the present invention.

Figure 8. Block diagram of multiple functions(wireless access point and safety) in robot device.

127 According to Figure 8. representing block diagram showing an access point robot device, the
 128 robot body includes a recognizing part unit(210) in itself as the sensing detector. The robot device
 129 include a communication unit(230) and an image management unit(240) to be projected by the image
 130 projector(220).

131 *4.1. Recognizing unit: For sensing vehicles*

132 The recognition unit(210) can use an ultrasonic sensor to measure a distance to the vehicle
 133 approaching the robot device(200). The detector (210) may detect a vehicle approaching the robot
 134 apparatus (200) by measuring a distance from the vehicle approaching the robot apparatus (200) using
 135 an ultrasonic sensor. In addition, the recognition unit(210) can detect whether the vehicle is close
 136 to the robot device(200) by measuring a distance from the vehicle. It can detect the position of the
 137 vehicle near the installed robotic device. Because the detector includes a sensor for detecting a vehicle
 138 approaching the device. The sensor is equipped with a position-sensitive detector (PSD) sensor, a
 139 charge-coupled device(CCD) image sensor, an ultrasonic sensor, and an infrared (red) sensor to identify
 140 the presence and distance of the vehicle. In addition, any additional sensor capable of measuring the
 141 distance between objects is possible.

142 For example, the identification unit(210) includes an ultrasonic sensor to a RADAR sensor, which
143 uses a frequency band in a range of 20 KHz to 79 GHz to measure a distance from an object. In
144 particular, the frequency band of the ultrasonic sensor used as the identification unit is not limited to
145 the above-mentioned frequency band.

146 The recognition unit(210) periodically measures the distance between the robot device(200) and
147 the vehicle, and when the measured distance between the vehicles is close to 600m and 500m, the
148 vehicle approaches the robot device. The recognition unit(210) generates access information when
149 a vehicle approaching the robot device(200) is detected. Here, the "access information" refers to
150 information about the detection of the approach of the vehicle to the robot device(200), and includes
151 at least one of the unique identification information of the robot. Device(200), distance information
152 and approaching time information of the approaching vehicle.

153 *4.2. Image projector: For alerting signals to vehicles*

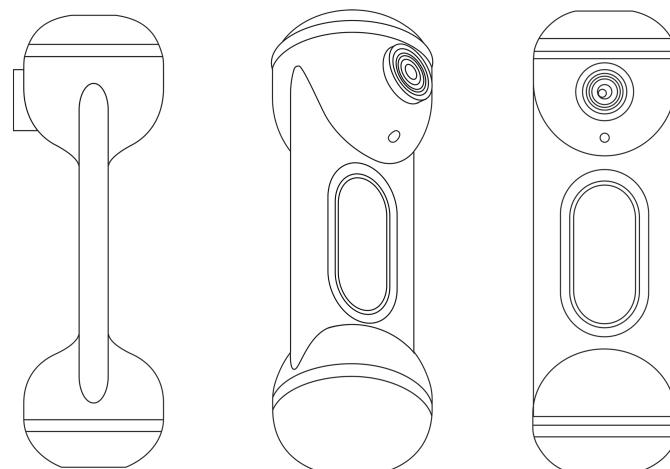
154 On the other hand, the robot device(200) includes an image projector(220). It project an image
155 onto a road surface to which the vehicle approaches when the detector(210) detects the approach of
156 the vehicle. Here, the 'image' can include a message for notifying a driver of the vehicle of a road
157 condition or a detour route, and can be a video or an image. In addition, the 'image' can include a
158 warning image including a message indicating the state of the road. For example, the "warning video"
159 can include a message indicating the state of the road, such as "under construction" and "incident
160 section." In addition, the 'image' can include a detour route image including a message indicating a
161 detour route. For example, the 'detour route image' can include a message indicating a direction in
162 which the vehicle should bypass, such as '>' and '>>'. In this case, the image to be projected can be set
163 by the image manager(240) to be described later.

164 The image projector(220) can project an image on a road surface approaching the vehicle when
165 the distance measured by the detector(210) is within a preset range. In addition, when the distance
166 from the vehicle measured by the recognizing unit(210) using the ultrasonic sensor is within a preset
167 range, the image can be projected onto the road surface to which the vehicle approaches. For example,
168 when the distance from the vehicle is detected to be less than 500m, the image can be projected on the
169 road surface approaching the vehicle. The image projector(220) can stop projecting an image when
170 there is no vehicle approaching the robot device(200) by the sensor 210. Projecting images only when
171 there is an approaching vehicle can improve battery usage efficiency.

172 The image projector(220) can include a light source unit inside the package. The light source unit
173 can include at least one of a red laser diode, a green laser diode, and a blue laser diode. Here, the red
174 laser diode is a light emitting device that emits red light, and the green laser diode is a light emitting
175 device that emits green light. In addition, a blue laser diode is a light emitting element which emits
176 blue light. In this case, the plurality of light emitting devices can emit color by combining at least one
177 white beam. The light source unit can emit light generated in each of the laser diodes by a driving
178 current applied from the power supply unit(260) to be described later according to a predetermined
179 driving signal. The image projector(220) can project light emitted from the light source unit to the road
180 surface approaching the vehicle. When the image projecting unit(220) projects an image on a road
181 surface approaching the vehicle, the image projection unit(220) controls the projection angle to project
182 the image to project the image on the road surface within the distance measured by the detection
183 unit(210).

184 Here, the projection angle controller can control the projection angle to project the image to the
185 front of the vehicle when the vehicle continuously approaches the robot device 200. The projection
186 angle controller rotates at least a portion of the robot device(200) horizontally horizontally to the
187 vertical axis relative to the road surface so that the image projector(220) can project an image on the
188 road surface approaching the vehicle. You can. For example, the projection angle controller controls
189 the image projector(220) to project an image on a road surface within a distance from the vehicle
190 measured by the detector 210, based on a vertical axis with respect to the road surface. At least a part

191 of the robot device(200) can be horizontally rotated to control the projection angle. For example, when
192 the image projecting unit(220) projects an image in a direction opposite to an approaching vehicle, at
193 least a part of the robot device(200) is rotated horizontally by 180 degrees to the left on the vertical axis
194 of the road surface. The projection angle can be controlled to project an image in a vehicle direction.


195 *4.3. Communication unit: For sharing information each other*

196 The robot device includes a communication unit(230). The communicator(230) can
197 transmit/receive data with the operator terminal(100) or other robot devices. In detail, the
198 communication unit(230) operates a mobile communication module, a short range communication
199 band. The mobile communication module can transmit/receive wireless data not only with operator
200 terminal, but also with other robot devices on the network(N). The near field communication module
201 is a module for near field communication, and includes Bluetooth, Radio wifi Direct(WFD) NFC
202 universal serial bus (USB) internally equipped. The robot device can configure an ad-hoc network
203 with the operator terminal(100) or at least one other robot device(200) through the communication
204 unit(230) which transmit the access information generated by the recognizing unit(210) to the operator
205 terminal(100) or other robot devices.

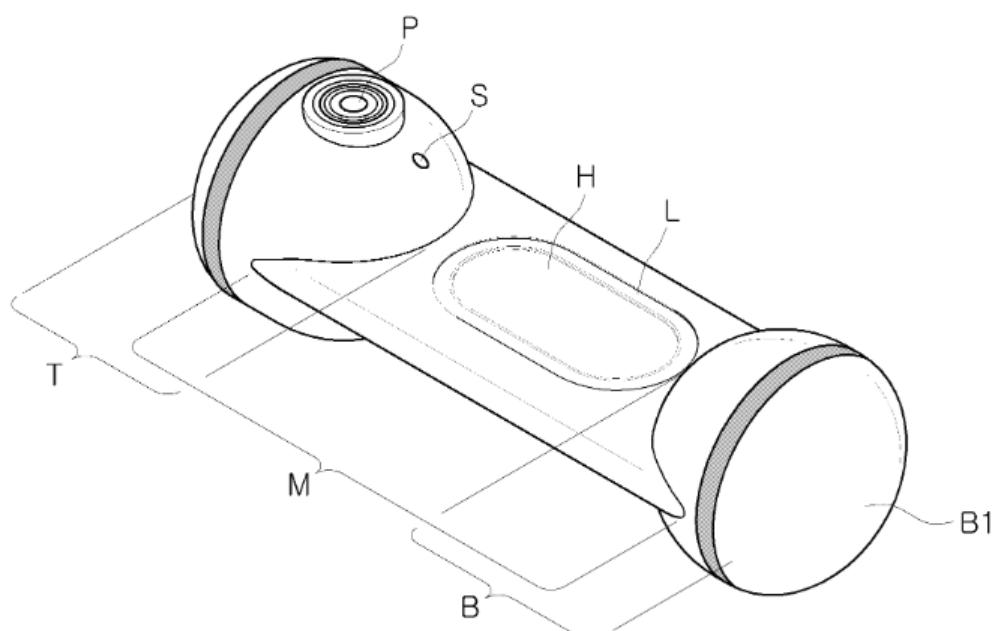
206 *4.4. Message library part: Image manager stores at least one image.*

207 Image manager(240) can include a module for managing an external storage device to manage at
208 least one image stored in the external storage device. The external storage device can be a Universal
209 Serial Bus (USB) memory. Accordingly, the image manager(240) can store at least one image in an
210 external storage device.

211 Also, message library part(240) can set an image to be projected by the image projector(220) among
212 at least one image. For example, the image to be projected by the image projector(220) can be set based
213 on the image setting information received from the operator terminal(100) through the communication
214 unit 230. Here, the image setting information includes identification information of an image to be
215 projected according to unique identification information of each of the plurality of robot devices 200.
216 The identification information of the image can be a combination of numbers or letters as information
217 for distinguishing each of at least one or more images. For example, the image can include a warning
218 image and a bypass path image. When identification information of an image including a 'under
219 construction' message among warning images is received from the operator terminal(100) through
220 the communication unit 230, the image management unit The image projector(220) can be configured
221 to project a warning image including a 'under construction' message matching the identification
222 information of the received image.

Figure 9. (a) Side view; (b) perspective view; (c) front view showing an individual robot device.

223 4.5. Location information unit: Determined by GPS.


224 The image manager includes an input unit(interface) capable of receiving image setting
225 information. When the operator inputs image setting information through the input unit, the image
226 manager(240) can include one or more images. The image to be projected by the image projector(220)
227 can be set. Also, the image manager(240) can set an image to be projected by the image projector(220)
228 among at least one image based on the image setting information stored in the external storage device.
229 The operation is based on the location information of the robot device(200) obtained by the location
230 information unit(250).

231 For example, when it is determined that the robot device is within a preset range at the traffic
232 accident point based on the acquired location information, the image manager(240) views the warning
233 image to be projected by the image projector(220) in an 'accident occurrence'. 'Can be set to the image
234 containing the message. For another example, the image manager(240) can determine that the robot
235 device(200) is located closer to the vehicle approaching direction than the other robot devices(200)
236 based on the acquired location information. Can be set to one of the warning images.

237 In addition, the location information unit(250) can acquire location information of the robot device
238 200. The location information can be longitude and latitude information. For example, the location
239 information unit(250) can obtain location information from at least one of a global positioning system
240 (GPS) and an outdoor positioning system (IPS). In addition, the location information of the robot
241 device(200) can be obtained through a media access control (MAC) address of a connected wifi access
242 point.

243 4.6. Power supply unit: Rechargeable and replaceable battery.

244 The robot device(200) includes a power supply unit 260. The power supply unit(260) can receive
245 an external power source or an internal power source to supply power required for each component
246 of the robot device 200. For its structure, the power supply unit(260) include a general rechargeable
247 battery, which is built-in replaceable inside the robot.

Figure 10. Distinguished unit sections in the robot device.

248 The robot include an upper end (T), the body (M), the lower end (B). The upper end portion T can
249 be positioned above the body M and can include a projection module P for projecting an image. In

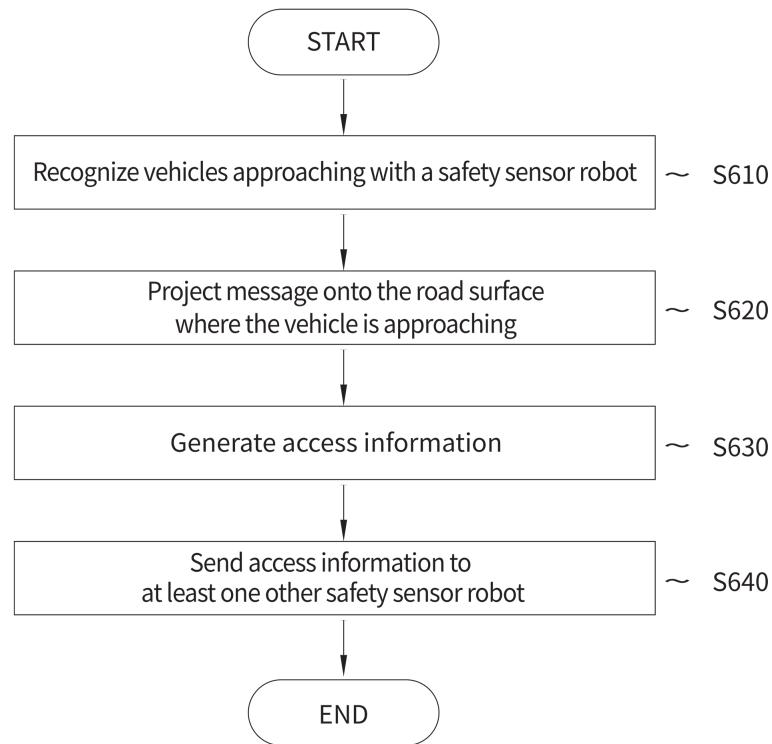
250 addition, the upper end (T) can include a sensor module(S) for detecting the approach of the vehicle.
251 Wherein the projection module(P) can be at least one of the configuration of the image projection
252 unit(220) of the robot device 200, the detection sensor module(S) of the configuration of the detection
253 unit(210) of the robot device(200) There can be at least one.

254 The body M can be positioned above the lower portion B, and can be positioned below the upper
255 portion T to support the upper portion T, and can include a light emitting device L. The light emitting
256 device L can include at least one of the components of the light emitting unit(280) of the robot device
257 200. In addition, the body M can include at least one hole H. Hole(H) can be formed in an elliptical
258 shape long in the vertical direction from the center of the body (M). In this case, the hole H can function
259 as a handle when the operator moves the robot device 200. In addition, the body (M) can include a
260 control device for controlling each configuration of the robot device(200). For example, the control
261 unit(230) can include at least one of the communication unit 230, the image manager 240, the location
262 information unit 250, and the status checker 270.

263 The lower end portion B can have a hemispherical shape, but at least a portion thereof can include
264 a bottom surface B1 abutting the road surface. For example, the lower end portion B can have a
265 hemispherical shape, at least a portion of which is convex downward, and can include a bottom
266 surface B1 at least a portion of which is in contact with the road surface. In addition, the lower portion
267 (B) has a weight greater than the weight of the upper portion (T) and the body (M) so that it can move
268 like portable machine, when the robot device(200) is installed even if the robot device(200) falls down
269 You can stand. In addition, the lower end portion B can include a power supply unit(260) of the robot
270 device(200).

271 4.7. *State checker unit: The status information to be written in distributed databases.*

272 First, the robot device(200) includes a state checking unit(270) which can check the operating
273 state of each component of the robot device(200) to generate state information. Accordingly, the
274 'status information' refers to information on the operation state of each component of the robot
275 device(200), the detection unit(210), the image projection unit(220), the communication unit(230), the
276 image management unit(240), the location information unit information about an operation state of at
277 least one of the(250) and the power supply unit(260) are included. Additionally, it includes information
278 of the remaining battery charge of the power supply unit(260). Furthermore, the status checker(270)
279 can cause the light emitter(280) to be described later to emit light so as to notify an operator when the
280 remaining charge remaining battery is within a preset remaining range.


281 Second, the state checking unit(270) can check the communication state of at least one other robot
282 device(230) through the communication unit 230. For example, the status checker(270) can store unique
283 identification information of each of the plurality of robot devices(200) connected through a network,
284 periodically check a communication state with at least one other robot device 230, and communicate
285 with each other. Unique identification information of the impossible robot device(200) can be extracted.
286 In this case, the status checker(270) can transmit the extracted unique identification information of
287 the robot device that cannot be communicated to at least one of the operator terminal and at least
288 one other robot device through the communication unit 230. In this case, the light emitting unit(280)
289 described later can emit light.

290 Third, the status checker(270) can include a gyro sensor. Therefore, the state checking unit(270)
291 can determine whether the robot device(200) has moved or fallen, based on the motion information
292 of the robot device(200) detected by the gyro sensor. For example, if it is determined that the robot
293 device(200) has fallen, the state check unit can generate state information indicating that the robot
294 device(200) is inoperable, and the generated state information can be generated by the communication
295 unit(230) by at least one other robot device.(200) or the operator terminal(100).

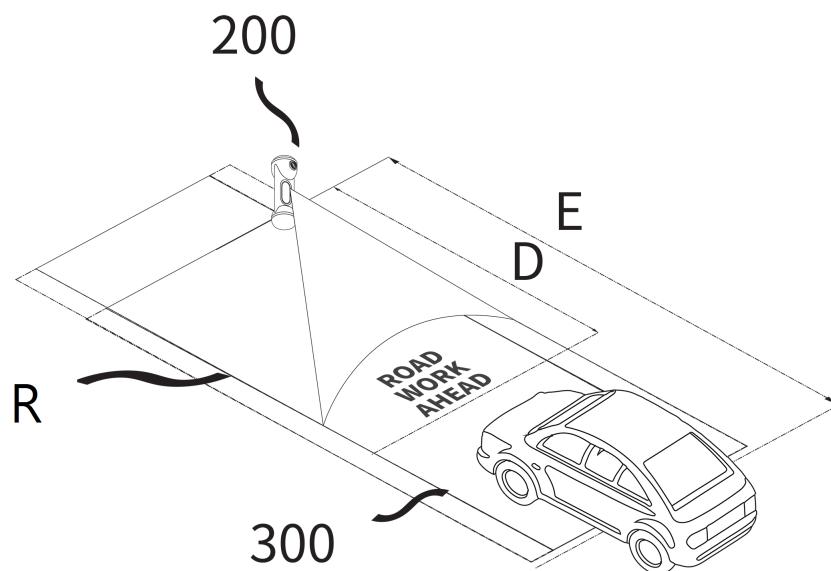
296 *4.8. Light emitting unit: LED.*

297 The robot device includes a light emitting unit(280). The light emitter can include at least one
 298 light emitting device such as an LED. The LED illuminated light[15] can be emitted based on the status
 299 information generated by the status checker(270). Basically, the light emitting unit(280) can emit white
 300 light when the robot device(200) is operated, and the remaining battery charge level of the power
 301 supply unit(260) in the status check unit(270) is within a preset range. For example, it can emit red
 302 light. The light emitter(280) can emit green light when communication of at least one other robot
 303 device(200) becomes impossible. The color or on/off period of light emitted from the light emitter(280)
 304 based on the status information can be set by the operator terminal(100).

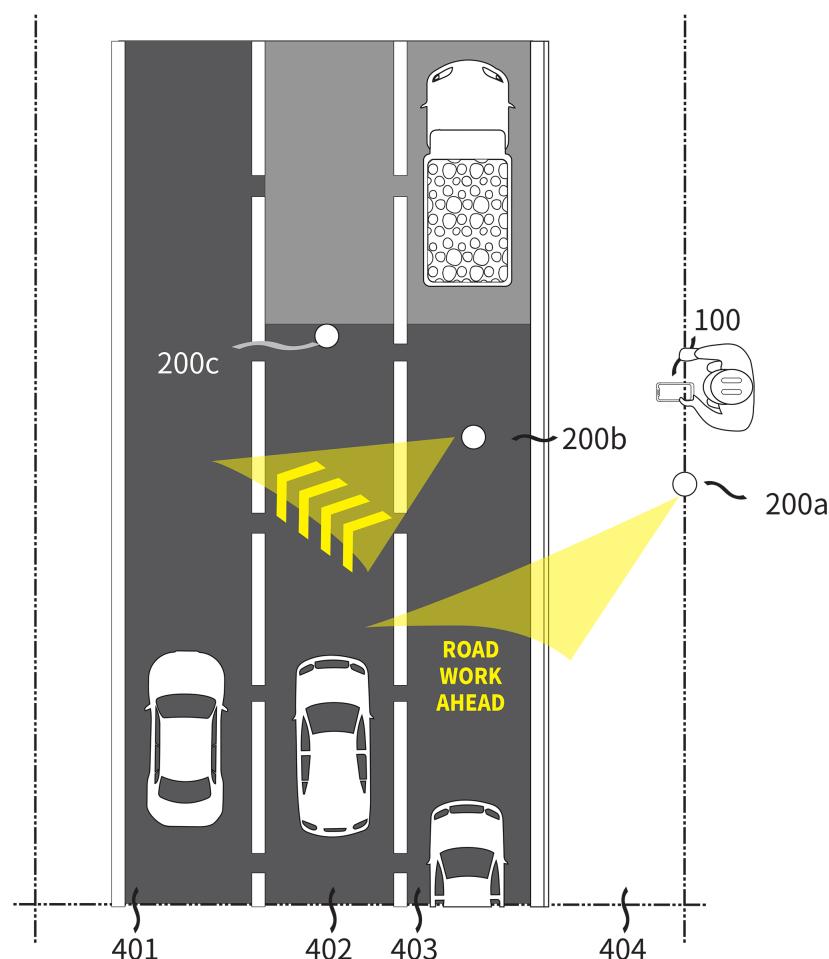
305 The vehicle guidance method according to the embodiment shown in Figure 11. includes steps
 306 that are processed in time series in the robot device(200) shown in Figures. 8 to 10. Therefore, even if
 307 omitted below, the above description of the robot device(200) shown in Figure 9. be applied to the
 308 vehicle induction method according to the embodiment shown in Figure. 11.

Figure 11. Vehicle induction: information generation from the robot device via access point function.

309 Figure 11 is a flowchart illustrating a vehicle induction method according to Figure 12 which is
 310 an exemplary view for explaining a method of inducing a vehicle by the robot device. The vehicle
 311 guidance method will be described with reference to Figs. 9 and 10.


312 The robot device(200) can detect the vehicle(300) approaching the robot device(200) (S610), then
 313 measure the distance D from the vehicle(300). For convenience of description, in the following
 314 and in Figure. 12, the distance D between the robot device(200) and the vehicle(300) is expressed
 315 perpendicularly to the vehicle while being parallel to the road surface. The distance D represents the
 316 robot device, which all possible distances are measured as the distance between the vehicles.

317 As such, the robot device(200) measuring the distance D from the vehicle(300) can detect whether
 318 the vehicle(300) approaches the robot device. For example, the robot device(200) periodically measures
 319 the distance D between the robot device(200) and the vehicle(300) and when the measured distance D

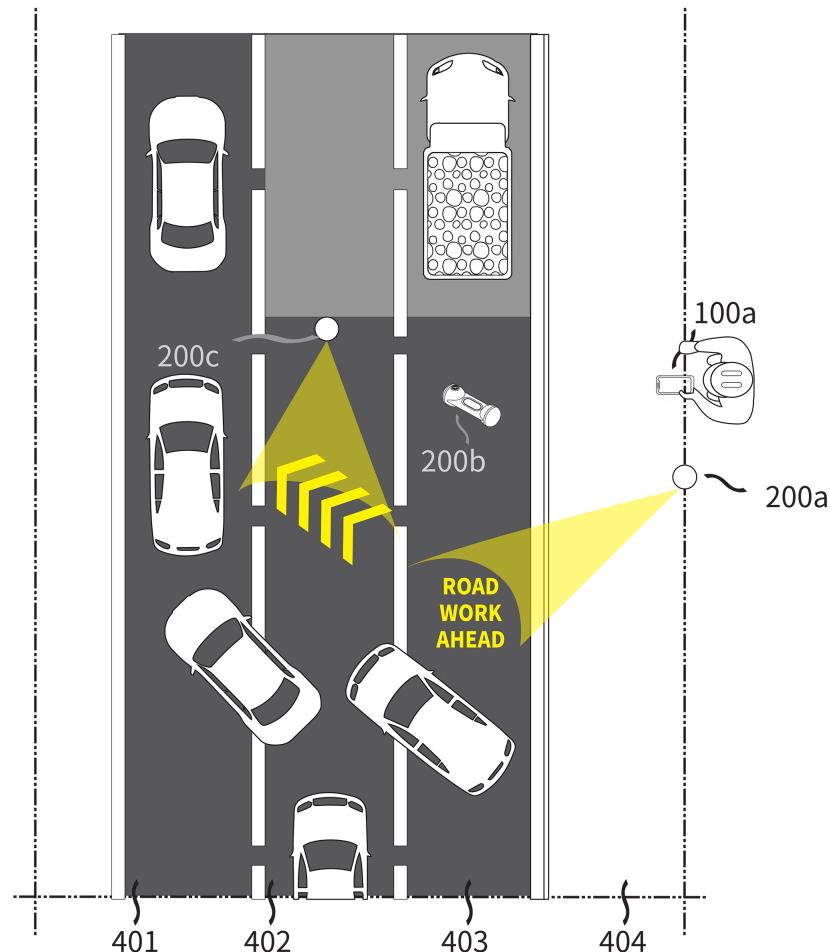

320 between the vehicle(300) approaches, the vehicle 300. The approach to the robot device(200) can be
321 detected.

322 On the other hand, when the robot device(200) detects that the vehicle(300) approaches the
323 robot device 200, the robot device(200) can project an image on the road surface R to which the
324 vehicle approaches (S620). The road surface R approached by the vehicle shown in Figure 12 is one
325 embodiment of the road surface within a distance D from the vehicle 300. The image shown in Figure
326 12 is an embodiment of a warning image including a 'under construction' message. The safety robot
327 device can :

328 • Project an image on the road surface R to which the vehicle approaches when the distance D with
329 the vehicle(300) is within a preset range E. FIG. For example, the preset range E can be set to 500
330 m, and the robot device(200) can approach the vehicle when the distance D between the robot
331 device(200) and the vehicle(300) is detected within 500 m. The image can be projected on the road
332 surface R.
333 • Control the projection angle to project an image on the road surface R within the distance D from
334 the vehicle 300, and project the image according to the projection angle.
335 • Generate access information when the vehicle(300) approaches the robot device(200) (S630).
336 • Transmit the access information generated by the at least one other robot device(200) (S640).

Figure 12. An exemplary view for explaining a vehicle guidance method.

Figure 13. An exemplary views for explaining a vehicle guidance system.


337 Figures. 13 to 14 are exemplary views for explaining the vehicle guidance system, the vehicle
 338 guidance system includes an operator terminal(100), a first robot device 200a, a second robot device
 339 200b, and a third robot device(200c). The vehicle guidance system can be operated on a road to a first
 340 lane(401), over second lane(402), or third lane(403) and shoulders(404), within its own safety. Each of
 341 the devices(200a, 200b, 200c) can be installed on or off the road.

342 The first robot device(200a) can detect the approach of the vehicle and project a warning image on
 343 the road surface. In addition, when the first robot device(200a) detects the approach of the vehicle, the
 344 first robot device(200a) generates access information and transfers the generated access information to
 345 at least one other robot device of the second robot device(200b) and the third robot device(200c). I can
 346 send it.

347 The second robot device(200b) can receive the access information from the first robot device(200a)
 348 and project the detour path image. In addition, when an error occurs in at least one of the first robot
 349 device(200a) and the second robot device 200b, the third robot device(200c) can replace the robot
 350 device in which the error has occurred. The third robot device(200c) can determine whether an error
 351 has occurred based on the state information received from the first robot device(200a) or the second
 352 robot device(200b). Alternatively, the third robot device(200c) can extract the unique identification
 353 information of the non-communicable robot device to identify the failing robot device based on the
 354 extracted unique identification information.

355 For example, based on the status information received from the first robot device(200a) or the
 356 second robot device(200b) to check whether the error occurs and the robot device that the error is

357 confirmed as the second robot device(200b) In this case, the third robot device(200c) can replace the
 358 second robot device(200b) in which an error occurs. Also, for example, the third robot device(200c) can
 359 replace the second robot device(200b) in which an error occurs when the second robot device(200b) is
 360 identified as a robot device that cannot communicate.

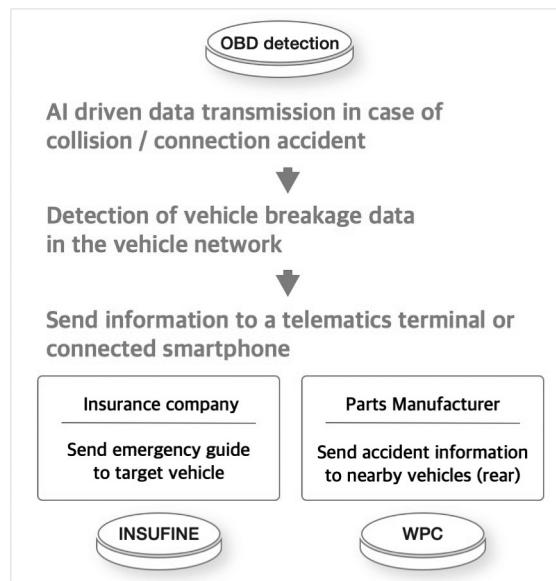


Figure 14. An exemplary view for explaining a vehicle guidance system (One robot damaged)

361 In accordance with the Figure 14, when the second robot device(200b) is damaged or fell down by
 362 a vehicle, the second robot device(200b) provides its status information to the first robot device(200a)
 363 and the third robot device(200c) through peer-to-peer communication. And at least one of the operator
 364 terminal(100), the status information can include unique identification information of the second
 365 robot device(200b). Also, image setting information, which is information about an image set by the
 366 fallen second robot device(200b) to be projected, can be transmitted to at least one of the first robot
 367 device(200a), the third robot device(200c), and the operator terminal(100).

368 In this case, for example, the operator terminal(100) displays the received status information and
 369 the operator checks the status information so that the third robot device(200c) can operate to replace
 370 the second robot device(200b). For another example, when the third robot device(200c) receives status
 371 information indicating that the third robot device(200c) has fallen or moved from the second robot
 372 device(200b), the second robot device(200b) matching the identification information of the robot device
 373 in which the error has occurred. can be identified as an error-prone robot device, and the second
 374 robot device(200b), which is an error-prone robot device, can be projected based on the image setting
 375 information received.

376 When the second robot device(200b) is in a emergency state where communication is impossible,
 377 the third robot device(200c) extracts unique identification information of the second robot device(200b)
 378 in a state where communication is impossible, The image set in the second robot device(200b) can
 379 be projected from the image setting information based on the unique identification information of
 380 the second robot device(200b). At this time, the image setting information includes identification
 381 information of the image to be projected according to the unique identification information of each of
 382 the first robot device(200a), the second robot device(200b), and the third robot device(200c). The third
 383 one(200c) projects an image in which at least one image stored in the image manager(240) matches
 384 identification information of the image.

Figure 15. Data flow of a vehicle guidance system, from sensor robots to in-vehicle network.

385 On the other hand, along with the robot device, the vehicle guidance system and method using
 386 this example are applied to road construction and traffic accidents. Even if it is necessary to guide the
 387 vehicle through the bypass route of the present invention, the technical idea is applicable. A vehicle
 388 guidance method according to the embodiment described with reference to FIG. 11. It may also be
 389 implemented in the form of a recording medium including instructions executable by a computer,
 390 such as a program module instance or example.

391 Computer-readable media can include computer storage/communications media or
 392 volatile/nonvolatile, removable/non-removable media. It is implemented in any method or technology
 393 for storing information, such as computer readable instructions, data structures, program modules
 394 or other data. It works on modulated data signals(such as carrier waves) or other transmission
 395 mechanisms and includes any information delivery medium.

396 In addition, the vehicle guidance method may be implemented as a computer program(or
 397 computer program product) containing instructions executable by a computer. The computer
 398 program includes programmable machine instructions that are processed by a processor and can
 399 be implemented in a high-level programming language, an object-oriented programming language, an
 400 assembly language, or a machine language. The computer program can also be recorded on a tangible
 401 computer-readable medium(for example, memory, magnetic/optical media, or solid-state drive, etc.).

402 Therefore, the vehicle guidance method according to the preliminary study can be realized by
 403 executing a computer program as described above by a computing device. The computing device may
 404 include a processor, a memory, a storage device, a high-speed interface connected to the memory and a
 405 high-speed expansion port, and at least a portion of a low-speed interface connected to the low-speed

406 bus and the storage device. Each of these components is interconnected using various buses and can
407 be mounted on a universal motherboard or installed in a suitable manner.

408 Here, the processor can process instructions within the computing device, such as displaying
409 graphical information for providing a graphical user interface (GUI) on an external input, output
410 device (such as a display connected to a high-speed interface). Instructions are stored in memory
411 or memory. In other embodiments, multiple processors and/or multiple buses may be used with
412 appropriate multiple memories and memory types. The processor may also be implemented as a
413 chipset composed of chips including a plurality of independent analog and/or digital processors.

414 The memory also stores information in the computing device. In one example, the memory
415 may include a volatile memory unit or a collection thereof. As another example, the memory may
416 consist of a non-volatile memory unit or a collection thereof. The memory may also be another form of
417 computer-readable medium, such as a magnetic or optical disk.

418 The foregoing description of the present invention is intended to be illustrative, and those skilled
419 in the art will understand that the present invention can be easily modified in other specific forms
420 without changing the technical spirit or basic features of the present invention. will. Therefore, it
421 should be understood that the above-mentioned embodiments are illustrative and not restrictive in all
422 aspects. For example, each component described as a single type can be implemented in a distributed
423 manner, and similarly, components described as distributed can be implemented in a combined form.

424 The design of the sensor robot first focused on ease of installation and operation. In its operation,
425 swarm robotic technology communication becomes active as a public device status report. We
426 introduced safety lighting systems and interfaces to interoperate robots and gather information
427 together. Preventive design is one way to solve problems. Based on the cooperation of relevant
428 agencies, we will work in the same external environment as the actual highway, and implement
429 the verification method by implementing and testing the lighting that indicates a safe bypass. It
430 shows examples of finding emergency but undisclosed niche markets through design methods such as
431 problem identification and field demand identification.

432 5. Mobile App Development

433 For commuting users of the system, we introduced the mobile application to support decision
434 making. According to the insightful user study results, we categorized three functional approaches
435 below[00]:

- 436 • “Different way to work”
- 437 • “Wise way to work”
- 438 • “Refresh way to work”

439 5.1. Different way to work

440 5.1.1. Data collecting for alternative pathway to guide user

441 First requirement is personalized experience during the trip. While using the “Different way to
442 work” function, user can get guide of the best route using big data (car accidents, traffic situation, rest
443 area, drowsiness rest area) from collected data such as highway information API.

444 5.1.2. Database design

445 Personalized information service for user is first aim to build database for different way to work.
446 On the other hand, authority can control congested traffic from decentralized resources from various
447 APIs below:

- 448 • Traffic volume by time
- 449 • RISK[] . TRIP[] - dangerous driving statistics
- 450 • VDS_LCS[] - daily traffic volume for every period, in specific operating area

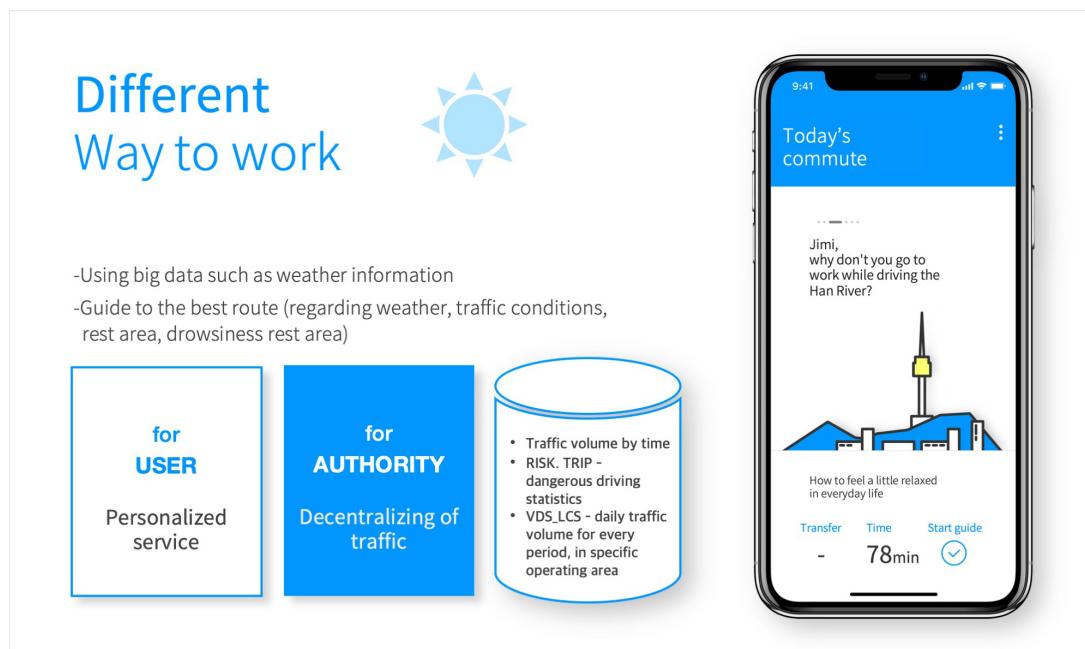

451 Table 2 shows the database construction of “Different way to work”.

Table 2. Data type and causal inference in DB of “Different way to work”.

Index(type)	Traffic Volume	RISK	TRIP	VDS_LCS
Data Type Causal Inference	Data Instrument	Data Instrument	Data Instrument	Data Co-founder

452 5.1.3. Display design result of app function

453 Display for different way to work emphasized new experience component to user to attract
454 commuter to select the alternative way as shown on Figure 0.

Figure 16. Display of “Different way to work”.

455 This application function suggests commuters a different way which they used to pass. Operation
456 of the app to find the optimal route using big data APIs(weather, current traffic conditions, rest stops,
457 shelters) according to user sleep time and custom arrival time settings, daily weather information and
458 fine dust information. Driver(user) generated features are mainly focused on understanding individual
459 patterns and operating as a service tailored to the individual. The application will also make linked
460 products like:

- 461 • Personalized service for rush hour pass to work
- 462 • Decentralized traffic which is congested
- 463 • Traffic measurement and notification by time

464 5.2. *Wise way to work*

465 5.2.1. Data collecting for alternative pathway to guide user

466 Second requirement is personalized arrival time. While using the “Wise way to work” function,
467 user can get guide of the best route using big data (weather, , traffic jam, delay zone, black ice, and so
468 forth) from collected data such as weather information API.

469 5.2.2. Database design

470 Personalized information service for user is first aim to build database for different way to work.
 471 On the other hand, authority can control congested traffic from decentralized resources from various
 472 APIs below:

473 • Current traffic
 474 • Monthly weather forecast
 475 • Weather observation of specific area around road, from Korean government open APIs
 476 • Dust - PM10, PM2.5 from "Air Korea[]"

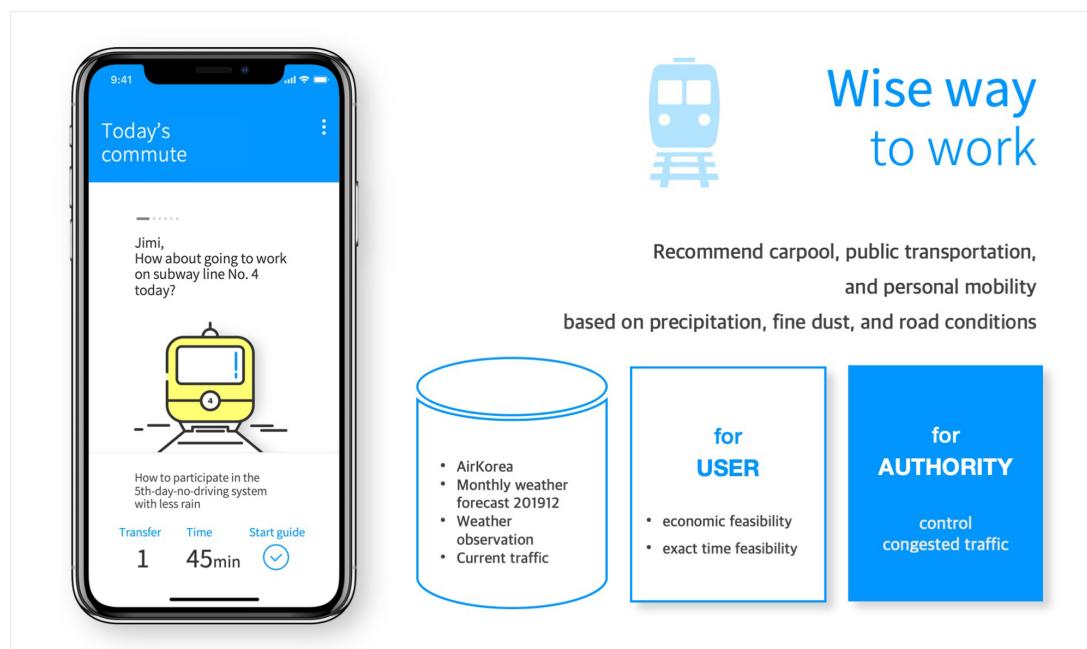

477 Table 3 shows the database construction of "Wise way to work".

Table 3. Data type and causal inference in DB of "Wise way to work".

Index(type)	Current traffic	Monthly W.forecast	W.OBS.area	(Dust) PM10	(Dust) PM2.5
Data Type	Data	Data	Data	Data	Data
Causal Inference	Instrument	Co-founder	Co-founder	Co-founder	Co-founder

478 5.2.3. Display design result of app function

479 Display for wise way to work emphasized new experience component to user to attract commuter
 480 to select the alternative way as shown on Figure 17.

Figure 17. Display of "Wise way to work".

481 Along with weather, road condition is important fact for users to decide which way to drive
 482 on every route. Depending on precipitation, fine dust, road conditions, etc., car pools, public
 483 transportation, and personal mobility recommendations can be provided via app. The function
 484 suggests the better commute(ex: only today, from home, to work) information. For instance, spread
 485 by public transportation, load on road can be decreased while temporary "black ice" appeared in the
 486 pathway.

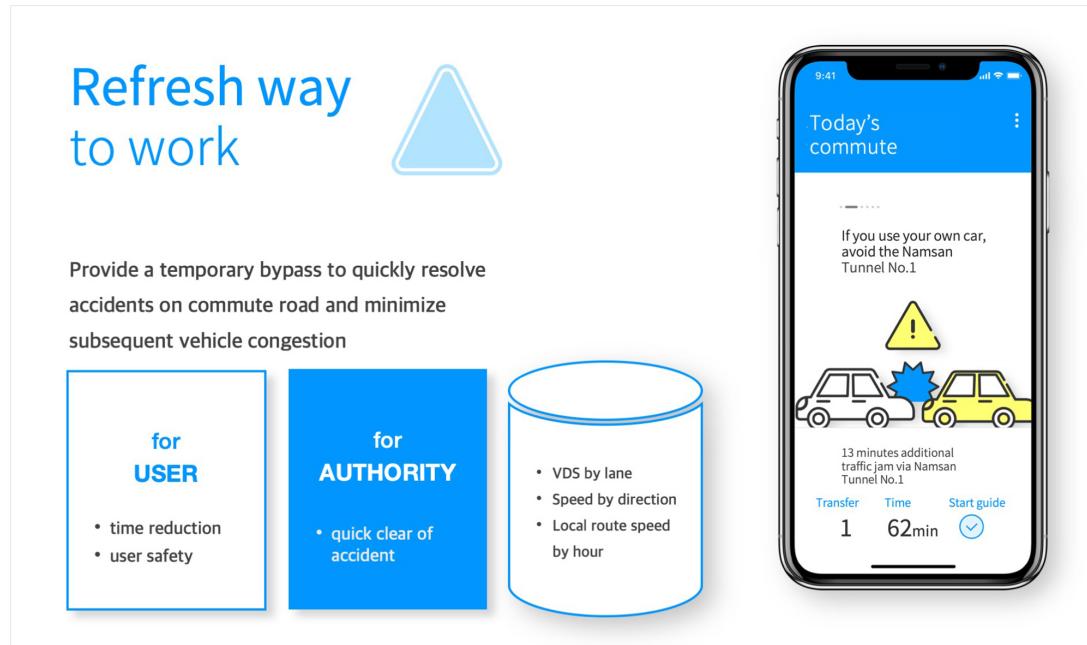
487 5.3. Refresh way to work

488 5.3.1. Data collecting for alternative pathway to guide user

489 Third requirement is personalized enjoyable journey. While using the “Refresh way to work”
 490 function, user can get guide of the best route using big data (event, travelers’ site, density on the
 491 bridge) from collected data such as local information API.

492 5.3.2. Database design

493 Despite both safety and time reduction are important for user in “Refresh way to work”, authority
 494 can assure quick clear of accident on the road resourced from clouded AP robots and from various
 495 open APIs below:


- 496 • VDS by lane
- 497 • Speed by direction
- 498 • Local route speed by hour

499 Table 4 shows the database construction of “Refresh way to work”.

Table 4. Data type and causal inference in DB of “Refresh way to work”.

Index(type)	VDS by lane	Speed by direction	Local route speed by hour
Data Type Causal Inference	Data Co-founder	Data Instrument	Data Risk factor
Pseudo(SQL) code			
<pre>SELECT _____ DATE_FORMAT(STR_TO_DATE(YMD, 'Ymd'), 'Y-m-d') as YMD, TRAFFIC FROM VDS_TRAFFIC_MSUM _____ WHERE YMD >= '20191201' _____ WHERE YMD <= '20191231'</pre>			

500 5.3.3. Display design result of app function

Figure 18. Display of “Refresh way to work”.

501 Display for refresh way to work emphasized new experience component to user to attract
 502 commuter to select the alternative way as shown on Figure 18.

503 **5.4. Summary**

504 The AI-based value creation approached by this system leverages data from road traffic
 505 environments and map information systems to help coordinate overall traffic. Representing three
 506 way like: (1)“Different way to work”, (2)“Wise way to work”, (3)“Refresh way to work”[16] pursue to
 507 instill a happy memory of commuting. To all users who commute by highway/roads, the application
 508 will contribute to creating a balanced condition through stable routine.

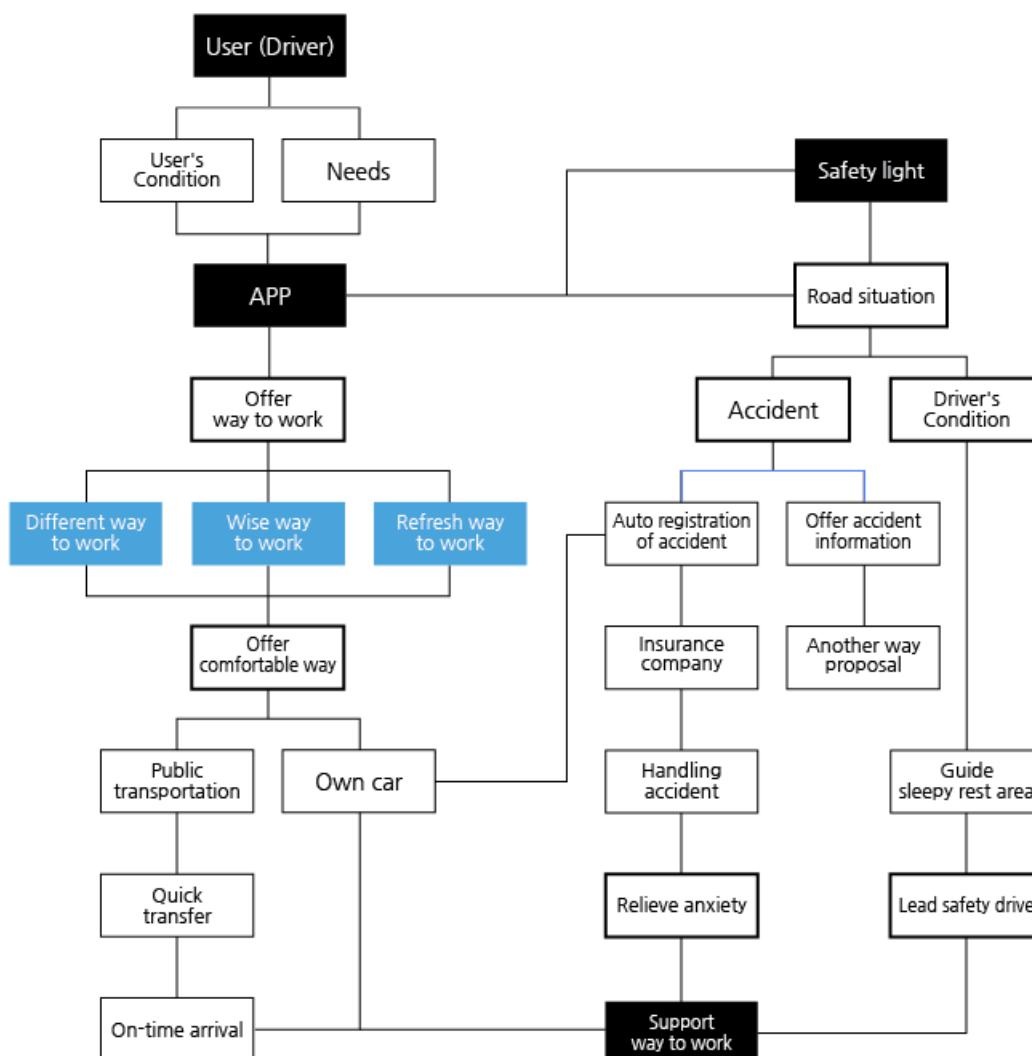


Figure 19. Information architecture of table for way to work.[16]

509 **6. Discussion**

510 We discussed firstly on benchmark of "RITIS" to individual users as well as public data center for
 511 informing transportation. Multiple safety sensor robots working in the middle of highway/roads can
 512 show their recognition with robot-to-robot communication in ad-hoc network. Additional function of
 513 projecting messages to a specific dangerous vehicle is available with its supervised learning in real time.
 514 According to the signals from sensor robots, real-time data from APIs, customized recommendation
 515 for users are mixed to provide for users. We resulted in three types of function module from the
 516 perspective of:

517 • Causal inference to DB
 518 • DB to IA(information architecture)
 519 • IA to layout
 520 • Layout to display
 521 • Display to state-transition in the mobile application of user.

Guidance Application for Drivers' Safety at Moving to Work

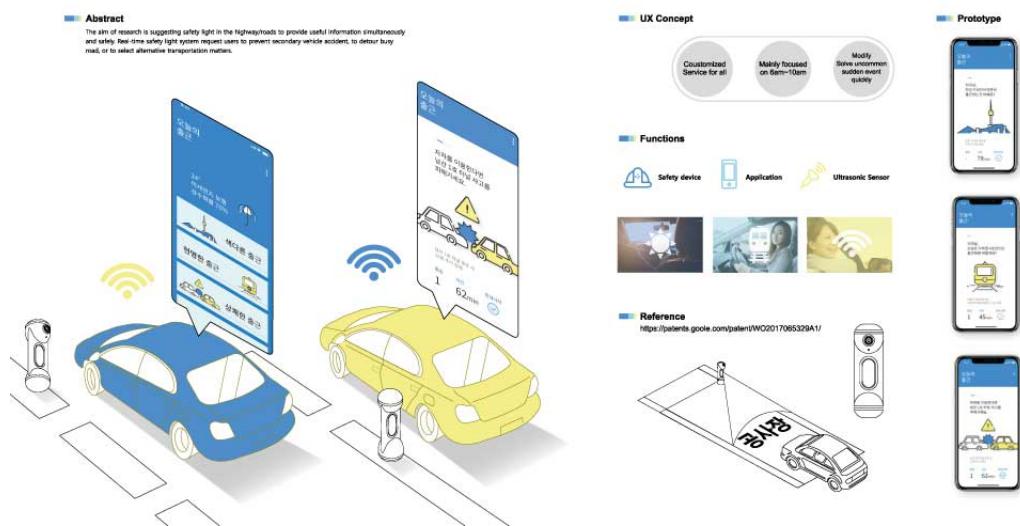


Figure 20. Convergence scenario from safety sensor robot to inform mobile application.[16]

7. Conclusions

523 We in the study, recognizes the need to build a customized service system that ensures driver
 524 safety and resolves inconveniences on the road and suggests possible directions and answers. The
 525 driver(user) can work through a safe and convenient user-oriented service system, and the driver can
 526 freely choose the desired pattern. The solution approached in this study is to guide the driver's vehicle
 527 on a safe path with low risk of accident. It aims to integrate safety and efficiency with convenient
 528 apps through a terminal designed through a proven system based on big data. The system focuses
 529 on the safety of the user and expects the safety and convenience of the method of use. To promote
 530 local information sharing in the highway/roads, An access point and safety lighting device works like
 531 interlinked robot which communicates with each other.

8. Patents

533 This research is registered in patent application: Hong, S.; Eune, J.; Lee, M.; etc. (2017). Safety
 534 device for guiding vehicle to detour route, vehicle guidance method using same, and vehicle guidance
 535 system using same. International patent #WO2017065329A1.

536 **Author Contributions:** Conceptualization, M.L. and H.J.; formal analysis, J.K.; investigation, M.L., J.K. and J.E.;
 537 methodology, I.H.; project administration, M.L., J.K and J.E.; resources, M.L., T.J., J.W., E.J. and S.G.; software, J.K.;
 538 supervision, C.K. and J.E.; visualization, E.J. and S.J.; writing – original draft, M.L. and J.W.; writing – review &
 539 editing, C.K. and J.E.

540 **Funding:** This research received no external funding.

541 **Acknowledgments:** This research is based on final presentation of Land, Infrastructure and Transport Hackathon
 542 competition in "Land, Infrastructure and Transport Technology Fair 2019". The infrastructure device thereof is
 543 already published in patent #WO2017065329A1. This study was supported by a Data Science Research Grant
 544 from the Big Date Institute, Seoul National University within "Design in the road" project of Integrated Creative
 545 Design program and climate change research project of APHESE.

546 **Conflicts of Interest:** The authors declare no conflict of interest.

547 **Abbreviations**

548 The following abbreviations are used in this manuscript:

549 D	Distance (between the sensor robot and approaching vehicle)
H	Hole
L	Light emitting device
P	Projection module
R	Road surface
S	Sensor module (the recognition unit=recognizing unit=the identification unit=the detection unit=the detector)
550 T	Top (the upper end)
M	Middle (the body)
B	Bottom (the lower end)
API	Application Program Interface
VGN	vehicle guidance network
IA	information architecture

551 **References**

- 552 1. Jang, J. A.; Kim, H. S. Advisory safety speed model using real-time vehicular data at smart highway. *J. Korean Soc. Civil Eng.* **2010**, *30*, 443–451.
- 553 2. Hong, I.; Jeon, H.; Eune, J.; Lee, M. Prevention through Design-Based on Safety Lighting for Perception on Highway Repairing Area Scenario. *In Proc. of KSDS 2016*, Seoul, Korea, **21** can 2016; pp. 110–111.
- 554 3. Zou, X.; Yue, W. L.; Le Vu, H. Visualization and analysis of mapping knowledge domain of road safety studies. *Accident Analysis & Prevention* **2018**, *118*, 131–145.
- 555 4. Chen, Y.-S.; Lin, C.-K.; Kan, Y.-W. An advanced ICTVSS model for real-time vehicle traffic applications. *Sensors* **2019**, *19*(19), 4134.
- 556 5. Jang, J. A.; Kim, H. S.; Cho, H. B. Smart roadside system for driver assistance and safety warnings: Framework and applications. *Sensors* **2011**, *11*(8), 7420–7436.
- 557 6. Howard, M. E.; Cori, J. M.; Horrey, W. J. Vehicle and Highway Adaptations to Compensate for Sleepy Drivers. *Sleep medicine clinics* **2019**, *14*(4), 479–489.
- 558 7. Chen, S. Y.; Zhang, Y.; Zhang, Y. H.; Yu, J. J.; Zhu, Y. X. Embedded system for road damage detection by deep convolutional neural network. *Mathematical biosciences and engineering* **2019**, *16*(6), 7982–7994.
- 559 8. Rahman, M. M.; Strawderman, L.; Lesch, M. F.; Horrey, W. J.; Babski-Reeves, K.; Garrison, T. Modelling driver acceptance of driver support systems. *Accident Analysis & Prevention* **2018**, *121*, 134–147.
- 560 9. Karwa, Vishesh, Aleksandra B. Slavković, T. Causal inference in transportation safety studies: Comparison of potential outcomes and causal diagrams. *AAS* **2011**, *10*, 1428–1455.arXiv preprint arXiv:1805.06399 (2018).
- 561 10. Bae, J. H.; Park, H-S. Development of Causal Map for Sustainable Transportation Facilities Using System Dynamics. *J. Korean Soc. Civil Eng.* **2019**, *35*(4), 953–959.
- 562 11. García-Castellano, M.; González-Romo, J. M.; Gómez-Galán, J. A.; García-Martín, J. P.; Torralba, A.; Pérez-Mira, V. ITERL: a wireless adaptive system for efficient road lighting. *Sensors* **2019**, *19* (23), 5101.
- 563 12. Wundersitz, L. Driver distraction and inattention in fatal and injury crashes: Findings from in-depth road crash data. *Traffic injury prevention* **2019**, *20*(7), 696–701.
- 564 13. Lu, N.; Ma, Y.; Liu, Y. Evaluating probabilistic traffic load effects on large bridges using long-term traffic monitoring data. *Sensors* **2019**, *19*(22), 5056.
- 565 14. Nakano, Y.; Okamura, K.; Kosuge, R.; Kihira, M.; Fujita, G. Effect of visible presence of policing activities on drivers' vigilance and intention to refrain from non-driving activities: A scenario-based survey of general Japanese drivers. *Accident Analysis & Prevention* **2019**, *133*, 105293.
- 566 15. Peña-García, A.; Nguyen, T. A Global Perspective for Sustainable Highway Tunnel Lighting Regulations: Greater Road Safety with a Lower Environmental Impact. *International journal of environmental research and public health* **2018**, *15*(12), 2658.
- 567 16. Jung, E.; Kim, J.; Jeong, S.; Soe, S.; Lee, M. Guidance Application for Drivers' Safety at Moving to Work. *In Proc. of HCI Korea 2020*, Hongcheon, Korea, **11-14** February 2020

586 17. WO2017065329A1 - Safety device for guiding vehicle to detour route, vehicle guidance method using same,
587 and vehicle guidance system using same - Google Patents. Available online: <https://patents.google.com/patent/WO2017065329A1/en/> (accessed on 25 Dec 2019)

588

589 18. Dufournet, Marine, In *The Book Title*; Editor1, F., Editor2, A., Eds.; Publishing House: City, Country,
590 2007; pp. 32–58. "Magnitude of selection bias in road safety epidemiology, a primer." arXiv preprint
591 arXiv:1805.06399 (2018).