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1 Abstract: World Health Organization (WHO) provides the guideline for managing the Particulate
= Matter (PM) level because when the PM level is higher, it threats the human health. For managing
s PMlevel, the procedure for measuring PM value is needed firstly. The Beta Attenuation Monitor
«  (BAM)-based PM sensor can be used for measuring PM value precisely. However, BAM-based sensor
s occurs not only high cost for maintaining but also cause of lower spatial resolution for monitoring PM
¢ level. We use Tapered Element Oscillating Microbalance (TEOM)-based sensors, which needs lower
»  cost than BAM-based sensor, as a way to increase spatial resolution for monitoring PM level. The
s disadvantage of TEOM-based sensor is higher probability of malfunctioning than BAM-based sensor.
o In this paper, we aim to detect malfunctions for the maintenance of these cost-effective sensors. In
10 this paper, we call many kinds of malfunctions from sensor as anomaly, and our purpose is detecting
1»  anomalies in PM sensor. We propose a novel architecture named with Hypothesis Pruning Generative
12 Adversarial Network (HP-GAN) for anomaly detection. We present the performance comparison
1z with other anomaly detection models with experiments. The results show that proposed architecture,
1« HP-GAN, achieves cutting-edge performance at anomaly detection.

15 Keywords: anomaly detection; Generative Adversarial Network; multiple hypothesis; particulate
1 matter

1z 1. Introduction

18 The smaller particle can infiltrate into more the deeper site of respiratory organ. When the
1 diameter of Particulate Matter (PM) is same or less than 2.5ug/m? it named PMj 5, and when diameter
20 is between 2.5 and 10 it named PM;. Thus, the smaller particle, PM; 5, has the probability to make
=z more bad effect to human health than PM;y when exposed to the same amount [1].

22 The PM can trigger not only respiratory diseases [2] but also cardiovascular disease [3], lung
2 cancer [4], or some other diseases. This is the reason that World Health Organization (WHO) provides
2a  their guideline to recommend managing the PM level as shown in Table 1 [5].

Table 1. Air Quality Guideline (AQG) for Particulate Matter (PM) level management from World
Health Organization (WHO) [5]. The unit of each value is ug/ m3.

Model Annual mean 24-hour mean

PMys 10 25
PMy, 20 50
25 Before managing PM level as above table, the process for measuring the air condition should

26 be preceded. In the Republic of Korea, Air Korea that operated by Korea Environment Corporation
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provides measured values of SOy, CO, O3, NO,, PM; 5 and PM;jp with unit of one hour. However, the
spatial resolution is relatively low when monitoring PM levels using information provided by Air
Korea.

For measuring PM value, two kinds of the method-based sensor can be used respectively
[6,7]. One of methods is Beta Attenuation Monitor (BAM), and the other one is Tapered Element
Oscillating Microbalance (TEOM). BAM-based sensor is precise and less affected by the environment,
but disadvantage of them is sensor cost and maintaining cost. Also, the spatial resolution of the
PM monitoring via BAM-based sensor is lower because of above disadvantage. On the other
hand, TEOM-based sensor needs lower cost than BAM-based sensor. Altough, TEOM-based sensor
slightly influenced by the external environment, it performs as reasonable level with providing right
information.

The two coefficients are already measured between BAM-based sensor and TEOM-based sensor
for proving the ability of TEOM-based sensor. One of them is Pearson’s correlation coefficient and
the other is coefficient of determination for 1-hour averages. They are measured as 0.91 and 0.81
respectively, and it represents the TEOM-based sensor can be used for monitoring the PM level [6].

For informing the air pollution to the public, the higher spatial resolution may be more effective
than lower. In above purpose and based on the cost-effectiveness, we have installed TEOM-based
sensor at the several regions as a trial. However, the TEOM-based sensor has a more probability of
measuring error or malfunctioning, in the information collecting process than the BAM-based sensor,
because it affected by the external environment that already mentioned above; we call these as an
anomaly. Therefore, it is necessary to increase the reliability of the collected information by anomaly
detection and maintaining the overall of the sensor.

The organization of this paper is described as follows. In Section 2, we summarize previous studies
that have efforted for anomaly detection. We present the proposed architecture and experimental
results in Section 3 and Section 4 respectively, and conclude the whole content in final section. We only
deal with anomaly detection task of functioning sensors in this paper. Thus, the task after anomaly
detection, can be categorized to correcting the collected values or maintain the sensor via engineer,
will be handled in future study.

2. Related Works

Several previous studies have conducted the anomaly detection via classification approach with
various methods [8-12]. However, there are some problem for using classification method such as
difficulty of collecting diverse abnormal cases and labeling cost from collected data to specific category.

For detecting anomaly, the above problems can be eased by regression-based method such as
One-Class SVM [13], Auto-Encoder (AE) [14,15], or Long-Short Term Memory (LSTM) [16,17]. The
idea of regression-based method is such simple, and the cost of preparation for training conventional
machine learning or deep learning-based anomaly detection algorithm is not high. Because we need
only the normal case (healthy) data for training and it does not need the labeling or categorizing
process. Labeling is the essential thing of validation process for assess quantitative performance of
anomaly detection model, but labeling task is simple in regression concept because each data needs
only checked whether normal or abnormal.

There are several neural network based anomaly detection model are already published [18-24].
The generative neural network which trained with variational bound can make the user desired data
from the random noise [18,25]. However, the process of generating data from noise is not needed,
moreover it is not not essential in anomaly detection procedure. Also, above deep learning architecture
may generating the blurred data because of using variational bound with distribution assumption.

The Generative Adversarial Network (GAN)-based anomaly detection model is published with
naming AnoGAN [19]. The AnoGAN can generate more sharped data because it does not use the
variational bound. However, the one procedure, finding the most cloest data to the input data that
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s generated from random noise, is essentially needed for using AnoGAN. This procedure makes the
7 lower throughput than typical and simple AE-based anomaly detection model.

77 Some of the recent research, such as BIGAN [20] and GANomaly [21], eased the above limitation.
7 These two models do not use the random noise for generating data for measure the anomaly score.
7 They use the encoded latent vector from the input data and that vector as the input of the generator.
o However, generating high resolution or sharp data via BiGAN is difficult because the encoder and
a1 generator of BIGAN share the parameter for each other. The GANomaly [21] simply use the separated
sz Pparameter for encoder, generator, and discriminator respectively and it overcomes the limitation of
ss BiGAN.

aa One other research tried to generate data consistently with avoiding blurred output [24]. For
es achieving their purpose, they apply the multiple hypothesis after the generator of the GAN, and select
ss best case among hypotheses as a output. However, they still use the variational bound as same as
ez Variational Auto-Encoder (VAE) [25] for training. Thus it can be regarded that has still limitation for
ss generating sharped data.

80 The preprocessing is the one of the consideration to construct anomaly detection system with
%0 reducing the computational time. Preprocessing technique can be used for reducing dimension of the
o1 information [26-30]. However, in our case preprocessing does not needed and does not considered
o2 because PM sensor collects the value every hour that means dimension of the information is not high
o3 to process.

o 3. Proposed Architecture

o5 In this section, we present the proposed architecture for anomaly detection in PM sensor. We
o6 firstly compare the property of two kinds of convolution. Then, we present the structure of neural
oz network. Finally, we describe the anomaly detection procedure.

s 3.1. Reason for Using 1D Convolution

9 When use the image data as the input, the 2 dimensional (2D) convolutional layer can be used
10 for constructing the neural network. Howerver, we use the 1 dimensional (1D) convolutional layer
11 because our data is 1D signal data.

102 The signal data can have the multiple channel. For example, PMj 5 and PMj( can represent first
103 and second channel respectively. For processing the multi-channel signal data, 2D convolution can be
10s used, but it is not efficient as shown in Figure 1.

1D-Convolution . . .

2D-Convolution

00000
eooee

Input Kernel Output

Figure 1. The examples of generating the output via 1D and 2D convolution. In 2D convolution
case, the zero-padding method is needed for aggregating time information with maintaining feature
dimension.
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105 In order to minimize the information loss for each channel, our purpose is only aggregating
10s the time information via convolutional layer like recurrent neural network [31]. In the case of 1D
17 convolution, time information can be reduced while maintaining channel information in natural.
1e  However, channel information of the input data will be aggregated to lower dimension than input in
10s 2D convolution case. For making the output channel as same as channel of the input, the zero-padding
1o can be used as shown in Figure 2 but the final channel may have less information than the front
a1 channels. Thus, we adopt the 1D convolutional layer for constructing the neural network.

u2 3.2, Multiple Hypothesis-based Architecture

113 We have already summarized previous related works in Section 2. Using the variational bound
us  with distribution assumption may generate blurry output. Also, we do not need to find the information
us that one to one matching between latent vector and generated data because we do not generate data
us from latent vector such as VAE case.

117 Theoretically, using multiple hypothesis can help produce more relevant results and can work
us more robustly [32-34]. The multiple hypothesis method also can be used for constructing neural
1o network [24].

120 We construct the GANomaly-like neural network [21], because it can ease the several limitations
1z of previous anomaly detection models such as blurred output and lower throughput. Also, we adopt
122 the multiple hypothesis method for generating output consistently. The property of the multiple
123 hypothesis can generate the output consistently because only the best hypothesis is selected as a output
12 and the others are discarded. We call this procedure as hypothesis pruning.

125 We do not use the generated data from the random noise, but we only use them as a regularization
126 term for avoiding overfitting and improving generalization performance. Also, the generated output
127 from random noise, is regarded one of the hypotheses. The whole architecture of the neural network
122 what we proposed in this paper is shown in Figure 2.

Ladv

N(0,1) ~’

S
Figure 2. The architecture of proposed model Hypothesis Pruning GAN (HP-GAN). Pruning is

conducted after generating the branches by multiple hypothesis. We use the single encoder, generator,
and discriminator. We also use additional multiple hypothesis networks that colored with cyan.

120 The loss functions for training above neural network are shown as below equations. The symbol
10 E, G, and D are representing encoder, generator, and discriminator respectively. Also, x, z, and f;
131 mean input data, encoded latent vector, and feature map of I-th layer. Three loss functions for encoder,
1:2  generator, and discriminator are discripted as three loss function L., Egm, and L4, respectively;
133 shown in Equation 1, 2, and 7. Equation 1 and 2, encoding loss and generating loss, are based on
13a Winner-Take-All (WTA) theory [35]. The Equation 7 is aggregated value from Equation 3 to 6.
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Lenc = ||E(x) - E(G(E(x))bestHZ = ||Z - 2best||2 @
»Cgen = |x_G(E(x))best|l = ‘x_fhestll )
['adv,,oise = ||D(x) - D(xAnoise) ‘ ‘2 ®3)
Eadvbest = ||D(x) - D(fbest) | |2 4)
Loadogors = [ID(x) — D(Zotpers )| |2/ number of others (5)
L

‘Cadvfeamre = 12 | |fl (x) - fl (fothers) | |2 (6)

=0
Eudv = Eudvnoise + ﬁadvbest + Eadvothers + Eadvfeature (7)
135 For optimizing the parameters, we summarize above three loss function Lenc, Lgen, and L4, with

1s  weighting parameters wWenc, Ween, and w,4,. The weighting parameters work as hyperparameter, so it
137 can be initialized with any value. In this paper, they are initialized with value 1, 50, and 1 respectively
13s  as same as GANomaly [21].

L = wWencLenc + wgenﬁgen + Wago Lado ®)

130 Then, we train the above neural network via Algorithm 1. We use the Xavier initializer for
10 initializing the neural network, and use Adam optimizer for optimizing the parameters.

Algorithm 1 Training algorithm.

Input: Measured PM values x, and random noise z,;5jse

Output: Restored PM values X with multiple hypothesis

Initialize parameters of neural network by Xavier initializer [36]
while the loss has not converged do

Get X by forward propagation, and prune X as £, or others
Compute losses Leyc, Loen, Lagy, and total loss £
Update parameters by gdam optimizer [37]

end while

11 3.3. Anomaly Detection Method

142 We describe the anomaly detection procedure in this section. The abnormality decision method is
13 simple as shown in Algorithm 2. For using above algorithm, input data must be measured via PM
1ae  sensor firstly with containing two channel; PMj 5 and PM;,. Then, restoration (generation) procedure
145 is conducted via enter the input data to the neural network. The decision boundary 6 is set by training
s data after training procedure as shown in Equation 9. The y and ¢ represent the mean and standard
1z deviation of the restoration error with best hypothesis. Of course, if the user want to change the
s sensitivity or specificity of the anomaly detection,  can be adjusted.

0=pu+(15%0) ©)
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Algorithm 2 Abnormality decision algorithm.

Input: Measured PM values x

Output: Selected best restoration among the hypothesis £,

8 < set threshold based on training data
if ||£ — x\hest‘ ‘2 > 0 then

x is abnormal
else

x is normal
end if

140 4. Experiments

150 In this section, we present the dataset for experiment that we collected and experimental results for
11 various neural network architectures. For assessing each architecture, we use Area Under the Receiver
12 Operating characteristics Curve (AUROC) [38], Area Under the Precision-Recall Curve (AUPRC) [39],
153 and Mean Square Error (MSE) as the performance indicators.

1sa  4.1. Dataset

155 We have collected the PM dataset from 12 point location in Daegu Metropolitan Jungang Library,
15 Korea. For collecting data, we use the TEOM-based sensor and the sensors are located at each collecting
15z point. The collected dataset for experiment is shown in Table 2.

Table 2. The collected PMj 5 and PM;, values via TEOM-based sensors. The dimension of each sample
is 24 (hour) by 2 (PM; 5 and PM;y).

Normal Abnormal Total

Number of Sample 249 73 322

158 Each collected sample contains the information of one day with 1-hour unit. Before experiment,
10 only the clear normal samples are classified by meteorologists. We use the portion of the normal set
10 for a training procedure, the others of the normal set and the abnormal set are used for assesing the
11 performance.

12 4.2. Experiment with Published Architecture

163 First of all, we conduct experiments for confirming which architecture among the previous studies
1es  is effective to anomaly detection. We adopt five models and reconstruct them using 1D convolutional
165 layer [21-25] for experiment. Each network such as encoder or generator uses three convolutional
166 block, and each convolutional block consists two convolutional layer with elu activation [40] and one
16z max pooling layer at the last of the block. Also, two fully connected layers are used for the rear of
1ee  the encoder (or discriminator) and the front of the generator. Each performance indicator is shown in
160 Table 3 quantitatively. Also, the generated outputs are presented in Figure 3 for qualitively analysis.
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Table 3. Measured performance of simple experiment with published architecture. The purpose of this
experiment is confirming which style of the architecture can detect anomaly better.

Model PMs5 PMj;y AUROC AUPRC MSE  Tr-Time Te-Time
VAE [25] (@) (@) 092151  0.95629 0.01170 00:16:43  0.41122
(@) - 091699  0.95617 0.01424 00:14:26  0.30716
- O 092630 095643 0.01772 00:17:14  0.36180
GANomaly [21] (@) (@) 0.93397  0.96485 0.01080 00:20:10  0.34627
(@) - 092753  0.96209 0.00914 00:21:43  0.31621
- (@) 092301 095882  0.01020 00:24:21  0.30096
adVAE [22] (@) O 092849  0.95704 0.01716 00:23:42  0.40858
(@) - 092096 094832 0.02646 00:19:32  0.31841
- O 0.94233  0.95760 0.02264 00:19:28  0.32030
LVEAD [23] (@) (@) 0.88384  0.91724 0.01944 11:16:55  1.03436
(@) - 0.85370  0.87660  0.03764 10:37:55  1.03876
- (@) 091575  0.94738 0.01838 11:57:14  1.01579
ConAD [24] (@) O 092452 095638 0.02667 00:20:22  0.34142
(@) - 092342  0.95606 0.01524 00:30:05  0.31843
- (@) 091616  0.94154 0.01799 00:30:02  0.30392

Time consumption for training and test procedure of four architectures other than LVEAD are
similar to each other but LVEAD needs much longer time. Thus, any architecture except for LVEAD
can be adopted for anomaly detection in time consumption viewpoint. The GANomaly shows the
highest AUROC and AUPRC. Also, it shows the lowest MSE among the above five architectures, so
if who want to use the known neural network architecture without developing novel architecture
GANomaly can be recommanded.

) 5
Anomaly Score (MSE) Anomaly Score (MSE)
10

-0

L ol amede s ahe el cmadlen P T R I R e
B 3 B B B} B 3 B & B

VAE GANomaly

Restored X Restored X

Anomaly Score (MSE) Anomaly Score (MSE)
10

| Lbdbee b do b sman dn o amn 0 .LJLI.I._L- N P T N e
5 3 » » B} B 3 B B 2

adVAE LVEAD

)
Anomaly Score (MSE)

I_L‘L.l- Y J_-..J__.I,J. el Su.

ConAD
Figure 3. The generated output from the five architectures for qualitative analysis.
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176 For qualitative results, GANomaly produces the output closest to the input, and ConAD and VAE
17z follow after GANomaly. The common method of VAE and ConAD is variational bound that can be
17e regarded as a reason for generating smoothed output. Thus, we conduct ablation study to find the
170 cause of performance degradation in the next section.

10 4.3. Ablation Experiment

181 We construct the MP-GAN via referring previous studies. However, MP-GAN needs to confirm
1.2 that can work better than other architecture via experiment, because it is novel and unprooved
s architecture. We compose the experiment to verify the ability of MP-GAN with our dataset. Also,
1es  several kinds of atchitecures are constructed for ablation experiment. Ablation experiment can help to
s find the cause of performance impediment [41,42].

186 The six ablation architecrtures are constructed for this experiment. Those are containing
17 GANomaly and our MP-GAN. We use three conditions Latent vector Matching (LM), Variational
e Bound (VB), and Multiple Hypothesis (MH) for construct those neural networks. The purpose of LM
180 is minimizing the Euclidean distance between latent vector z and Z; from x and £ respectively. The VB
10 pursues minimizing the Kullback-Leibler divergence between latent vector z and normal distribution.
101 The last condition, MH, is used to generate the output consistently based on (WTA) theory.

102 The mini-batch size, training epoch, dimension of the latent vector z, and learning rate are used
103 equal for all architecture and the value of those are 32, 1000, and 0.0001 respectively. Finally, the
10s  experimental result is shown in Table 4.

Table 4. The performance of the six ablation (combination) architectures. We use three condition Latent
vector Matching (LM), Variational Bound (VB), and Multiple Hypothesis (MH) for ablation study.

Model LM VB MH PM,s PM;;, AUROC AUPRC MSE
Ablation-1 O O 0.93397 0.96485 0.01080
- O - 0.92753 0.96209 0.00914
(LM-GAN; GANomaly) - O 092301 095882  0.01020
Ablation-2 O O 0.90548 0.93130 0.02148
(VB-GAN) - O - O - 0.94192 0.96536  0.01924
- O 0.86767 0.91166  0.04300
Ablation-3 O (@) 0.89521 0.93441 0.02510
(LMVB-GAN) O (@) - O - 0.86096 0.90572  0.04022
- O 0.89205 0.93045 0.02974
Ablation-4 O O 0.91699 0.95303  0.02550
O - O O - 0.93219 0.96312 0.01534
(LMMH-GAN; Ours) - O 092616 095424 0.01230
Ablation-5 O O 0.94644 0.96462 0.03578
- O O O - 0.93027 0.96153 0.01486
(VBMH-GAN) - (@) 0.90068 0.94807 0.01404
Ablation-6 O O 0.92603 0.94032  0.03019
(LMVBMH-GAN) O (@] (@] O - 0.93123 0.96179  0.01531
- (@) 0.92712 0.95730  0.01922

105 The Table 4 shows that VBMH-GAN has better AUROC, AUPRC than other ablated architectures.

1s However, when analyzing the qulivatie reult, as shown in Figure 4, the generated data via LM-GAN
107 (GANomaly) and LMMH-GAN (Ours; HP-GAN) show the better result than VBMH-GAN. Also, other
s VB based architectures commonly show the blurred result.
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Figure 4. The generated output from the six ablation architectures for qualitative analysis.
190 In this experiment, we confirm that the quantitative result represents that the VBMH-GAN is

200 the best architecture, but the qualitative result of them is not good. Thus, we need to conduct more
201 experiment for verifying the above architectures using varied hyperparameters, because each model
202 may need the specific hyperparameter for performing much better.

203 4.4. Experiment with Various Hyperparameter

204 In this section, we assess four of neural networks with various hyperparameter set. For experiment,
20 we use the VAE as a baseline architecture that using VB. We also use GANomaly as one other baseline
206 architecture that based on LM. The other two architectures are our HP-GAN (LMMH-GAN) and
20z VBMH-GAN.

208 We use the kernel size, number of convolutional block, and learning rate as the hyperparemeter.
200 Each convolutional block consists two convolutional layer with elu activation and one max pooling
20 layer same as commented in Section 4.2. We compose the 108 kinds of the hyperparameter set for
2 experiment via combining three hyperparameters as shown in Table 5.

Table 5. The hyperparameters for experiment. We combine these to 108 set.

Hyperparameter Values
Kernel size 3,5,7,9,11,and 13
Number of convolutional block 2,3, and 4
Learning rate 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, and 1e-5
212 When closer to the last layer, the case of larger kernel size than the time axis dimension of the

213 feature vector can be existed. However, it does not changing the amount of the feature information
zs and balance between feature vectors, so we also use the large kernel size such as 13.

215 We present the measured performance as a surface form in Figure 5 and 6. The height of the
26 surface shows the anomaly detection ability; higher surface means high performance. The flatten
z7  surface indicates that the neural network stably responds to hyperparameter changes.
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Figure 5. The surface of AUROC with various hyperparameter. The AUROC of VAE, GANomaly, and
HP-GAN (LMMH-GAN), and VBMH-GAN are shown in each row sequentially. Each column shows
the result of two, three, and four convolutional blocks from the left to right.

218 When the number of the convolutional block is two or three, the surfaces for each model look like
210 similar and relatively flatten then four block cases. However, HP-GAN shows the most flatten surface
220 in the four convolutional block case.
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Figure 6. The surface of AUPRC with various hyperparameter. The order of the shown contents are
same as Figure 5.

221 We also confirm that HP-GAN shows generally flatten surface in the AUPRC surfaces. We can
222 conclude that HP-GAN may perform stably for anomaly detection than other architectures. Finally,
223 we conduct the last experiment for confirming the performance with best hyperparameter for each
222 model. The best hyperparameter set summarized in Table 6.

N

Table 6. The best hyperparameter set selected from AUROC and AUPRC surface.

Number of

Kernel size convolutional block

Learning rate

VAE 7 3 (6 convolution) 5e-4
GANomaly 9 4 (8 convolution) 5e-4
HP-GAN (LMMH-GAN) 7 3 (6 convolution) le-5
VBMH-GAN 7 3 (6 convolution) 5e-5
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225 We repeat the experiment for 30 times with randomly shuffled dataset with best hyperparameter
226 set for monte calro estimation [43]. We present each performance indicator with mean =+ standard
227 deviation as shown in Table 7.

Table 7. The measured AUROC, AUPRC, and MSE are shown with mean #+ standard deviation form.
The experiment is conducted with best hyperparameter set for each architecture.

AUROC AUPRC MSE
VAE 0.91753 +0.03284  0.94158 £ 0.02843  0.02544 £ 0.00864
GANomaly 0.91136 4= 0.09059  0.93682 £ 0.06223  0.02749 4= 0.04862
HP-GAN (LMMH-GAN) 0.94781 + 0.00976  0.96712 + 0.00758  0.02301 -+ 0.01600
VBMH-GAN 0.94408 4= 0.02088  0.95909 £ 0.01957  0.03346 4= 0.05681
220 In Table 7, the higher the mean represents the better performance. On the other hand, the lower

220 standard deviation means higher stability. The HP-GAN what we proposed in this paper shows the
230 higher mean performance at every indicator. Also, HP-GAN has the higher stability because it has
231 lowest standard deviation values at AUROC and AUPRC.

232 5. Conclusions

233 We experimentally show the cutting-edge performance at anomaly detection of our HP-GAN in
23s TEOM-based PM sensor. The HP-GAN is trained by latent vector matching with multiple hypothesis
23 based on WTA theory. Our neural network, HP-GAN, can generate the output more clearly with less
236 blurring effect than other variational bound-based model when the input data is in normal category.
237 The mean of AUROC and AUPRC of HP-GAN are 0.373% 0.0803% higer than second performance
s model VBMH-GAN. Also, mean of MSE is best (lowest) among the whole architectures. Thus, we
230 finally conclude our HP-GAN, constructed based on latent vector matching and multiple hypothesis,
2e0  as a cutting-edge architecture for anomaly detection.
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