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Abstract: World Health Organization (WHO) provides the guideline for managing the Particulate 
Matter (PM) level because when the PM level is higher, it threats the human health. For managing 
PM level, the procedure for measuring PM value is needed firstly. The Beta Attenuation Monitor 
(BAM)-based PM sensor can be used for measuring PM value precisely. However, BAM-based sensor 
occurs not only high cost for maintaining but also cause of lower spatial resolution for monitoring PM 
level. We use Tapered Element Oscillating Microbalance (TEOM)-based sensors, which needs lower 
cost than BAM-based sensor, as a way to increase spatial resolution for monitoring PM level. The 
disadvantage of TEOM-based sensor is higher probability of malfunctioning than BAM-based sensor. 
In this paper, we aim to detect malfunctions for the maintenance of these cost-effective sensors. In 
this paper, we call many kinds of malfunctions from sensor as anomaly, and our purpose is detecting 
anomalies in PM sensor. We propose a novel architecture named with Hypothesis Pruning Generative 
Adversarial Network (HP-GAN) for anomaly detection. We present the performance comparison 
with other anomaly detection models with experiments. The results show that proposed architecture, 
HP-GAN, achieves cutting-edge performance at anomaly detection.

Keywords: anomaly detection; Generative Adversarial Network; multiple hypothesis; particulate 
matter16

1. Introduction17

The smaller particle can infiltrate into more the deeper site of respiratory organ. When the18

diameter of Particulate Matter (PM) is same or less than 2.5µg/m3 it named PM2.5, and when diameter19

is between 2.5 and 10 it named PM10. Thus, the smaller particle, PM2.5, has the probability to make20

more bad effect to human health than PM10 when exposed to the same amount [1].21

The PM can trigger not only respiratory diseases [2] but also cardiovascular disease [3], lung22

cancer [4], or some other diseases. This is the reason that World Health Organization (WHO) provides23

their guideline to recommend managing the PM level as shown in Table 1 [5].24

Table 1. Air Quality Guideline (AQG) for Particulate Matter (PM) level management from World
Health Organization (WHO) [5]. The unit of each value is µg/m3.

Model Annual mean 24-hour mean

PM2.5 10 25

PM10 20 50

Before managing PM level as above table, the process for measuring the air condition should25

be preceded. In the Republic of Korea, Air Korea that operated by Korea Environment Corporation26
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provides measured values of SO2, CO, O3, NO2, PM2.5 and PM10 with unit of one hour. However, the27

spatial resolution is relatively low when monitoring PM levels using information provided by Air28

Korea.29

For measuring PM value, two kinds of the method-based sensor can be used respectively30

[6,7]. One of methods is Beta Attenuation Monitor (BAM), and the other one is Tapered Element31

Oscillating Microbalance (TEOM). BAM-based sensor is precise and less affected by the environment,32

but disadvantage of them is sensor cost and maintaining cost. Also, the spatial resolution of the33

PM monitoring via BAM-based sensor is lower because of above disadvantage. On the other34

hand, TEOM-based sensor needs lower cost than BAM-based sensor. Altough, TEOM-based sensor35

slightly influenced by the external environment, it performs as reasonable level with providing right36

information.37

The two coefficients are already measured between BAM-based sensor and TEOM-based sensor38

for proving the ability of TEOM-based sensor. One of them is Pearson’s correlation coefficient and39

the other is coefficient of determination for 1-hour averages. They are measured as 0.91 and 0.8140

respectively, and it represents the TEOM-based sensor can be used for monitoring the PM level [6].41

For informing the air pollution to the public, the higher spatial resolution may be more effective42

than lower. In above purpose and based on the cost-effectiveness, we have installed TEOM-based43

sensor at the several regions as a trial. However, the TEOM-based sensor has a more probability of44

measuring error or malfunctioning, in the information collecting process than the BAM-based sensor,45

because it affected by the external environment that already mentioned above; we call these as an46

anomaly. Therefore, it is necessary to increase the reliability of the collected information by anomaly47

detection and maintaining the overall of the sensor.48

The organization of this paper is described as follows. In Section 2, we summarize previous studies49

that have efforted for anomaly detection. We present the proposed architecture and experimental50

results in Section 3 and Section 4 respectively, and conclude the whole content in final section. We only51

deal with anomaly detection task of functioning sensors in this paper. Thus, the task after anomaly52

detection, can be categorized to correcting the collected values or maintain the sensor via engineer,53

will be handled in future study.54

2. Related Works55

Several previous studies have conducted the anomaly detection via classification approach with56

various methods [8–12]. However, there are some problem for using classification method such as57

difficulty of collecting diverse abnormal cases and labeling cost from collected data to specific category.58

For detecting anomaly, the above problems can be eased by regression-based method such as59

One-Class SVM [13], Auto-Encoder (AE) [14,15], or Long-Short Term Memory (LSTM) [16,17]. The60

idea of regression-based method is such simple, and the cost of preparation for training conventional61

machine learning or deep learning-based anomaly detection algorithm is not high. Because we need62

only the normal case (healthy) data for training and it does not need the labeling or categorizing63

process. Labeling is the essential thing of validation process for assess quantitative performance of64

anomaly detection model, but labeling task is simple in regression concept because each data needs65

only checked whether normal or abnormal.66

There are several neural network based anomaly detection model are already published [18–24].67

The generative neural network which trained with variational bound can make the user desired data68

from the random noise [18,25]. However, the process of generating data from noise is not needed,69

moreover it is not not essential in anomaly detection procedure. Also, above deep learning architecture70

may generating the blurred data because of using variational bound with distribution assumption.71

The Generative Adversarial Network (GAN)-based anomaly detection model is published with72

naming AnoGAN [19]. The AnoGAN can generate more sharped data because it does not use the73

variational bound. However, the one procedure, finding the most cloest data to the input data that74
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generated from random noise, is essentially needed for using AnoGAN. This procedure makes the75

lower throughput than typical and simple AE-based anomaly detection model.76

Some of the recent research, such as BiGAN [20] and GANomaly [21], eased the above limitation.77

These two models do not use the random noise for generating data for measure the anomaly score.78

They use the encoded latent vector from the input data and that vector as the input of the generator.79

However, generating high resolution or sharp data via BiGAN is difficult because the encoder and80

generator of BiGAN share the parameter for each other. The GANomaly [21] simply use the separated81

parameter for encoder, generator, and discriminator respectively and it overcomes the limitation of82

BiGAN.83

One other research tried to generate data consistently with avoiding blurred output [24]. For84

achieving their purpose, they apply the multiple hypothesis after the generator of the GAN, and select85

best case among hypotheses as a output. However, they still use the variational bound as same as86

Variational Auto-Encoder (VAE) [25] for training. Thus it can be regarded that has still limitation for87

generating sharped data.88

The preprocessing is the one of the consideration to construct anomaly detection system with89

reducing the computational time. Preprocessing technique can be used for reducing dimension of the90

information [26–30]. However, in our case preprocessing does not needed and does not considered91

because PM sensor collects the value every hour that means dimension of the information is not high92

to process.93

3. Proposed Architecture94

In this section, we present the proposed architecture for anomaly detection in PM sensor. We95

firstly compare the property of two kinds of convolution. Then, we present the structure of neural96

network. Finally, we describe the anomaly detection procedure.97

3.1. Reason for Using 1D Convolution98

When use the image data as the input, the 2 dimensional (2D) convolutional layer can be used99

for constructing the neural network. Howerver, we use the 1 dimensional (1D) convolutional layer100

because our data is 1D signal data.101

The signal data can have the multiple channel. For example, PM2.5 and PM10 can represent first102

and second channel respectively. For processing the multi-channel signal data, 2D convolution can be103

used, but it is not efficient as shown in Figure 1.104

Figure 1. The examples of generating the output via 1D and 2D convolution. In 2D convolution
case, the zero-padding method is needed for aggregating time information with maintaining feature
dimension.
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In order to minimize the information loss for each channel, our purpose is only aggregating105

the time information via convolutional layer like recurrent neural network [31]. In the case of 1D106

convolution, time information can be reduced while maintaining channel information in natural.107

However, channel information of the input data will be aggregated to lower dimension than input in108

2D convolution case. For making the output channel as same as channel of the input, the zero-padding109

can be used as shown in Figure 2 but the final channel may have less information than the front110

channels. Thus, we adopt the 1D convolutional layer for constructing the neural network.111

3.2. Multiple Hypothesis-based Architecture112

We have already summarized previous related works in Section 2. Using the variational bound113

with distribution assumption may generate blurry output. Also, we do not need to find the information114

that one to one matching between latent vector and generated data because we do not generate data115

from latent vector such as VAE case.116

Theoretically, using multiple hypothesis can help produce more relevant results and can work117

more robustly [32–34]. The multiple hypothesis method also can be used for constructing neural118

network [24].119

We construct the GANomaly-like neural network [21], because it can ease the several limitations120

of previous anomaly detection models such as blurred output and lower throughput. Also, we adopt121

the multiple hypothesis method for generating output consistently. The property of the multiple122

hypothesis can generate the output consistently because only the best hypothesis is selected as a output123

and the others are discarded. We call this procedure as hypothesis pruning.124

We do not use the generated data from the random noise, but we only use them as a regularization125

term for avoiding overfitting and improving generalization performance. Also, the generated output126

from random noise, is regarded one of the hypotheses. The whole architecture of the neural network127

what we proposed in this paper is shown in Figure 2.128

Figure 2. The architecture of proposed model Hypothesis Pruning GAN (HP-GAN). Pruning is
conducted after generating the branches by multiple hypothesis. We use the single encoder, generator,
and discriminator. We also use additional multiple hypothesis networks that colored with cyan.

The loss functions for training above neural network are shown as below equations. The symbol129

E, G, and D are representing encoder, generator, and discriminator respectively. Also, x, z, and fl130

mean input data, encoded latent vector, and feature map of l-th layer. Three loss functions for encoder,131

generator, and discriminator are discripted as three loss function Lenc, Lgen, and Ladv respectively;132

shown in Equation 1, 2, and 7. Equation 1 and 2, encoding loss and generating loss, are based on133

Winner-Take-All (WTA) theory [35]. The Equation 7 is aggregated value from Equation 3 to 6.134

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 January 2020                   doi:10.20944/preprints202001.0028.v1

https://doi.org/10.20944/preprints202001.0028.v1


5 of 14

Lenc = ||E(x)− E(G(E(x))best||2 = ||z− ẑbest||2 (1)

Lgen = |x− G(E(x))best|1 = |x− x̂best|1 (2)

Ladvnoise
= ||D(x)− D(x̂noise)||2 (3)

Ladvbest
= ||D(x)− D(x̂best)||2 (4)

Ladvothers
= ||D(x)− D(x̂others)||2/number of others (5)

Ladv f eature
=

L

∑
l=0
|| fl(x)− fl(x̂others)||2 (6)

Ladv = Ladvnoise
+ Ladvbest

+ Ladvothers
+ Ladv f eature

(7)

For optimizing the parameters, we summarize above three loss function Lenc, Lgen, and Ladv with135

weighting parameters wenc, wgen, and wadv. The weighting parameters work as hyperparameter, so it136

can be initialized with any value. In this paper, they are initialized with value 1, 50, and 1 respectively137

as same as GANomaly [21].138

L = wencLenc + wgenLgen + wadvLadv (8)

Then, we train the above neural network via Algorithm 1. We use the Xavier initializer for139

initializing the neural network, and use Adam optimizer for optimizing the parameters.140

Algorithm 1 Training algorithm.
Input: Measured PM values x, and random noise znoise

Output: Restored PM values X̂ with multiple hypothesis

Initialize parameters of neural network by Xavier initializer [36]
while the loss has not converged do

Get X̂ by forward propagation, and prune X̂ as x̂best or others
Compute losses Lenc, Lgen, Ladv, and total loss L
Update parameters by Adam optimizer [37]

end while

3.3. Anomaly Detection Method141

We describe the anomaly detection procedure in this section. The abnormality decision method is142

simple as shown in Algorithm 2. For using above algorithm, input data must be measured via PM143

sensor firstly with containing two channel; PM2.5 and PM10. Then, restoration (generation) procedure144

is conducted via enter the input data to the neural network. The decision boundary θ is set by training145

data after training procedure as shown in Equation 9. The µ and σ represent the mean and standard146

deviation of the restoration error with best hypothesis. Of course, if the user want to change the147

sensitivity or specificity of the anomaly detection, θ can be adjusted.148

θ = µ + (1.5 ∗ σ) (9)
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Algorithm 2 Abnormality decision algorithm.
Input: Measured PM values x

Output: Selected best restoration among the hypothesis x̂best

θ ← set threshold based on training data
if ||x̂− x̂best||2 > θ then

x is abnormal
else

x is normal
end if

4. Experiments149

In this section, we present the dataset for experiment that we collected and experimental results for150

various neural network architectures. For assessing each architecture, we use Area Under the Receiver151

Operating characteristics Curve (AUROC) [38], Area Under the Precision-Recall Curve (AUPRC) [39],152

and Mean Square Error (MSE) as the performance indicators.153

4.1. Dataset154

We have collected the PM dataset from 12 point location in Daegu Metropolitan Jungang Library,155

Korea. For collecting data, we use the TEOM-based sensor and the sensors are located at each collecting156

point. The collected dataset for experiment is shown in Table 2.157

Table 2. The collected PM2.5 and PM10 values via TEOM-based sensors. The dimension of each sample
is 24 (hour) by 2 (PM2.5 and PM10).

Normal Abnormal Total

Number of Sample 249 73 322

Each collected sample contains the information of one day with 1-hour unit. Before experiment,158

only the clear normal samples are classified by meteorologists. We use the portion of the normal set159

for a training procedure, the others of the normal set and the abnormal set are used for assesing the160

performance.161

4.2. Experiment with Published Architecture162

First of all, we conduct experiments for confirming which architecture among the previous studies163

is effective to anomaly detection. We adopt five models and reconstruct them using 1D convolutional164

layer [21–25] for experiment. Each network such as encoder or generator uses three convolutional165

block, and each convolutional block consists two convolutional layer with elu activation [40] and one166

max pooling layer at the last of the block. Also, two fully connected layers are used for the rear of167

the encoder (or discriminator) and the front of the generator. Each performance indicator is shown in168

Table 3 quantitatively. Also, the generated outputs are presented in Figure 3 for qualitively analysis.169
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Table 3. Measured performance of simple experiment with published architecture. The purpose of this
experiment is confirming which style of the architecture can detect anomaly better.

Model PM2.5 PM10 AUROC AUPRC MSE Tr-Time Te-Time

VAE [25] O O 0.92151 0.95629 0.01170 00:16:43 0.41122
O - 0.91699 0.95617 0.01424 00:14:26 0.30716
- O 0.92630 0.95643 0.01772 00:17:14 0.36180

GANomaly [21] O O 0.93397 0.96485 0.01080 00:20:10 0.34627
O - 0.92753 0.96209 0.00914 00:21:43 0.31621
- O 0.92301 0.95882 0.01020 00:24:21 0.30096

adVAE [22] O O 0.92849 0.95704 0.01716 00:23:42 0.40858
O - 0.92096 0.94832 0.02646 00:19:32 0.31841
- O 0.94233 0.95760 0.02264 00:19:28 0.32030

LVEAD [23] O O 0.88384 0.91724 0.01944 11:16:55 1.03436
O - 0.85370 0.87660 0.03764 10:37:55 1.03876
- O 0.91575 0.94738 0.01838 11:57:14 1.01579

ConAD [24] O O 0.92452 0.95638 0.02667 00:20:22 0.34142
O - 0.92342 0.95606 0.01524 00:30:05 0.31843
- O 0.91616 0.94154 0.01799 00:30:02 0.30392

Time consumption for training and test procedure of four architectures other than LVEAD are170

similar to each other but LVEAD needs much longer time. Thus, any architecture except for LVEAD171

can be adopted for anomaly detection in time consumption viewpoint. The GANomaly shows the172

highest AUROC and AUPRC. Also, it shows the lowest MSE among the above five architectures, so173

if who want to use the known neural network architecture without developing novel architecture174

GANomaly can be recommanded.175

VAE GANomaly

adVAE LVEAD

ConAD

Figure 3. The generated output from the five architectures for qualitative analysis.
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For qualitative results, GANomaly produces the output closest to the input, and ConAD and VAE176

follow after GANomaly. The common method of VAE and ConAD is variational bound that can be177

regarded as a reason for generating smoothed output. Thus, we conduct ablation study to find the178

cause of performance degradation in the next section.179

4.3. Ablation Experiment180

We construct the MP-GAN via referring previous studies. However, MP-GAN needs to confirm181

that can work better than other architecture via experiment, because it is novel and unprooved182

architecture. We compose the experiment to verify the ability of MP-GAN with our dataset. Also,183

several kinds of atchitecures are constructed for ablation experiment. Ablation experiment can help to184

find the cause of performance impediment [41,42].185

The six ablation architecrtures are constructed for this experiment. Those are containing186

GANomaly and our MP-GAN. We use three conditions Latent vector Matching (LM), Variational187

Bound (VB), and Multiple Hypothesis (MH) for construct those neural networks. The purpose of LM188

is minimizing the Euclidean distance between latent vector z and ẑ; from x and x̂ respectively. The VB189

pursues minimizing the Kullback–Leibler divergence between latent vector z and normal distribution.190

The last condition, MH, is used to generate the output consistently based on (WTA) theory.191

The mini-batch size, training epoch, dimension of the latent vector z, and learning rate are used192

equal for all architecture and the value of those are 32, 1000, and 0.0001 respectively. Finally, the193

experimental result is shown in Table 4.194

Table 4. The performance of the six ablation (combination) architectures. We use three condition Latent
vector Matching (LM), Variational Bound (VB), and Multiple Hypothesis (MH) for ablation study.

Model LM VB MH PM2.5 PM10 AUROC AUPRC MSE

Ablation-1
(LM-GAN; GANomaly) O - -

O O 0.93397 0.96485 0.01080
O - 0.92753 0.96209 0.00914
- O 0.92301 0.95882 0.01020

Ablation-2
(VB-GAN) - O -

O O 0.90548 0.93130 0.02148
O - 0.94192 0.96536 0.01924
- O 0.86767 0.91166 0.04300

Ablation-3
(LMVB-GAN) O O -

O O 0.89521 0.93441 0.02510
O - 0.86096 0.90572 0.04022
- O 0.89205 0.93045 0.02974

Ablation-4
(LMMH-GAN; Ours) O - O

O O 0.91699 0.95303 0.02550
O - 0.93219 0.96312 0.01534
- O 0.92616 0.95424 0.01230

Ablation-5
(VBMH-GAN) - O O

O O 0.94644 0.96462 0.03578
O - 0.93027 0.96153 0.01486
- O 0.90068 0.94807 0.01404

Ablation-6
(LMVBMH-GAN) O O O

O O 0.92603 0.94032 0.03019
O - 0.93123 0.96179 0.01531
- O 0.92712 0.95730 0.01922

The Table 4 shows that VBMH-GAN has better AUROC, AUPRC than other ablated architectures.195

However, when analyzing the qulivatie reult, as shown in Figure 4, the generated data via LM-GAN196

(GANomaly) and LMMH-GAN (Ours; HP-GAN) show the better result than VBMH-GAN. Also, other197

VB based architectures commonly show the blurred result.198
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LM-GAN (GANomaly) VB-GAN LMVB-GAN

LMMH-GAN (Ours) VBMH-GAN LMVBMH-GAN

Figure 4. The generated output from the six ablation architectures for qualitative analysis.

In this experiment, we confirm that the quantitative result represents that the VBMH-GAN is199

the best architecture, but the qualitative result of them is not good. Thus, we need to conduct more200

experiment for verifying the above architectures using varied hyperparameters, because each model201

may need the specific hyperparameter for performing much better.202

4.4. Experiment with Various Hyperparameter203

In this section, we assess four of neural networks with various hyperparameter set. For experiment,204

we use the VAE as a baseline architecture that using VB. We also use GANomaly as one other baseline205

architecture that based on LM. The other two architectures are our HP-GAN (LMMH-GAN) and206

VBMH-GAN.207

We use the kernel size, number of convolutional block, and learning rate as the hyperparemeter.208

Each convolutional block consists two convolutional layer with elu activation and one max pooling209

layer same as commented in Section 4.2. We compose the 108 kinds of the hyperparameter set for210

experiment via combining three hyperparameters as shown in Table 5.211

Table 5. The hyperparameters for experiment. We combine these to 108 set.

Hyperparameter Values

Kernel size 3, 5, 7, 9, 11, and 13
Number of convolutional block 2, 3, and 4
Learning rate 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, and 1e-5

When closer to the last layer, the case of larger kernel size than the time axis dimension of the212

feature vector can be existed. However, it does not changing the amount of the feature information213

and balance between feature vectors, so we also use the large kernel size such as 13.214

We present the measured performance as a surface form in Figure 5 and 6. The height of the215

surface shows the anomaly detection ability; higher surface means high performance. The flatten216

surface indicates that the neural network stably responds to hyperparameter changes.217
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Figure 5. The surface of AUROC with various hyperparameter. The AUROC of VAE, GANomaly, and
HP-GAN (LMMH-GAN), and VBMH-GAN are shown in each row sequentially. Each column shows
the result of two, three, and four convolutional blocks from the left to right.

When the number of the convolutional block is two or three, the surfaces for each model look like218

similar and relatively flatten then four block cases. However, HP-GAN shows the most flatten surface219

in the four convolutional block case.220
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Figure 6. The surface of AUPRC with various hyperparameter. The order of the shown contents are
same as Figure 5.

We also confirm that HP-GAN shows generally flatten surface in the AUPRC surfaces. We can221

conclude that HP-GAN may perform stably for anomaly detection than other architectures. Finally,222

we conduct the last experiment for confirming the performance with best hyperparameter for each223

model. The best hyperparameter set summarized in Table 6.224

Table 6. The best hyperparameter set selected from AUROC and AUPRC surface.

Kernel size Number of
convolutional block Learning rate

VAE 7 3 (6 convolution) 5e-4
GANomaly 9 4 (8 convolution) 5e-4
HP-GAN (LMMH-GAN) 7 3 (6 convolution) 1e-5
VBMH-GAN 7 3 (6 convolution) 5e-5
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We repeat the experiment for 30 times with randomly shuffled dataset with best hyperparameter225

set for monte calro estimation [43]. We present each performance indicator with mean ± standard226

deviation as shown in Table 7.227

Table 7. The measured AUROC, AUPRC, and MSE are shown with mean ± standard deviation form.
The experiment is conducted with best hyperparameter set for each architecture.

AUROC AUPRC MSE

VAE 0.91753 ± 0.03284 0.94158 ± 0.02843 0.02544 ± 0.00864
GANomaly 0.91136 ± 0.09059 0.93682 ± 0.06223 0.02749 ± 0.04862
HP-GAN (LMMH-GAN) 0.94781 ± 0.00976 0.96712 ± 0.00758 0.02301 ± 0.01600
VBMH-GAN 0.94408 ± 0.02088 0.95909 ± 0.01957 0.03346 ± 0.05681

In Table 7, the higher the mean represents the better performance. On the other hand, the lower228

standard deviation means higher stability. The HP-GAN what we proposed in this paper shows the229

higher mean performance at every indicator. Also, HP-GAN has the higher stability because it has230

lowest standard deviation values at AUROC and AUPRC.231

5. Conclusions232

We experimentally show the cutting-edge performance at anomaly detection of our HP-GAN in233

TEOM-based PM sensor. The HP-GAN is trained by latent vector matching with multiple hypothesis234

based on WTA theory. Our neural network, HP-GAN, can generate the output more clearly with less235

blurring effect than other variational bound-based model when the input data is in normal category.236

The mean of AUROC and AUPRC of HP-GAN are 0.373% 0.0803% higer than second performance237

model VBMH-GAN. Also, mean of MSE is best (lowest) among the whole architectures. Thus, we238

finally conclude our HP-GAN, constructed based on latent vector matching and multiple hypothesis,239

as a cutting-edge architecture for anomaly detection.240
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