Preprint
Article

Anomaly Detection in Particulate Matter Sensor Using Hypothesis Pruning Generative Adversarial Network

Altmetrics

Downloads

503

Views

374

Comments

1

Submitted:

13 February 2020

Posted:

14 February 2020

You are already at the latest version

Alerts
Abstract
World Health Organization (WHO) provides the guideline for managing the Particulate Matter (PM) level because when the PM level is higher, it threats the human health. For managing PM level, the procedure for measuring PM value is needed firstly. We use Tapered Element Oscillating Microbalance (TEOM)-based PM measuring sensors because it shows higher cost-effectiveness than Beta Attenuation Monitor (BAM)-based sensor. However, TEOM-based sensor has higher probability of malfunctioning than BAM-based sensor. In this paper, we call the overall malfunction as an anomaly, and we aim to detect anomalies for the maintenance of PM measuring sensors. We propose a novel architecture for solving the above aim that named as Hypothesis Pruning Generative Adversarial Network (HP-GAN). We experimentally compare the several anomaly detection architectures to certify ours performing better.
Keywords: 
Subject: Computer Science and Mathematics  -   Information Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated