

Article

Anomaly Detection in Particulate Matter Sensor Using Hypothesis Pruning Generative Adversarial Network

 YeongHyeon Park ^{1,*}, **Won Seok Park** ¹, and **Yeong Beom Kim** ¹

¹ SK Planet Co.,Ltd., Seongnam, 13487, Korea

* Correspondence: yeonghyeon@sk.com

Abstract: World Health Organization (WHO) provides the guideline for managing the Particulate Matter (PM) level because when the PM level is higher, it threatens the human health. For managing PM level, the procedure for measuring PM value is needed firstly. We use Tapered Element Oscillating Microbalance (TEOM)-based PM measuring sensors because it shows higher cost-effectiveness than Beta Attenuation Monitor (BAM)-based sensor. However, TEOM-based sensor has higher probability of malfunctioning than BAM-based sensor. In this paper, we call the overall malfunction as an anomaly, and we aim to detect anomalies for the maintenance of PM measuring sensors. We propose a novel architecture for solving the above aim that named as Hypothesis Pruning Generative Adversarial Network (HP-GAN). We experimentally compare the several anomaly detection architectures to certify ours performing better.

Keywords: anomaly detection; generative adversarial network; multiple hypothesis; particulate matter

1. Introduction

World Health Organization (WHO) recommends to managing the provides Particulate Matter (PM) level with providing their guideline as shown in Table 1 because it can infiltrate into the deeper site of humans via respiratory organ [1]. For detail, the PM can trigger not only respiratory diseases [2] but also cardiovascular disease [3], lung cancer [4], or some other diseases.

For managing PM level with referring Table 1, the process for measuring the air condition should be preceded. In the Republic of Korea, the Air Korea, operated by Korea Environment Corporation, provides measured values of SO_2 , CO , O_3 , NO_2 , $PM_{2.5}$ and PM_{10} with unit of one hour. For informing the air pollution to the public, the higher spatial resolution may be more effective than lower. However, the resolution provided by them is relatively low because of the cost of maintaining the high-end PM measuring sensor.

Two types of sensors can be used for PM measurement, each based on Beta Attenuation Monitor (BAM) and Tapered Element Oscillating Microbalance (TEOM) methods [5,6]. The characteristic of the BAM-based sensor is higher precision of measurement, but it needs high maintenance costs as in the case of Air Korea. On the other hand, the TEOM-based sensor needs a lower cost than the BAM-based sensor. For the above reason, when using a BAM-based sensor, increasing the spatial resolution it is difficult but it can be eased via using a cost-effective TEOM-based sensor.

The two coefficients, one of them is Pearson's correlation coefficient and the other is a coefficient of determination for 1-hour averages, are used as proof for the cost-effectiveness of TEOM-based sensor. Those coefficients are already measured as 0.91 and 0.81 respectively [5].

The TEOM-based sensor can alternate the BAM-based sensor to monitor the PM level. Thus, We have installed TEOM-based sensors relatively densely in several regions as a trial. However, the limitation of the TEOM-based sensor is that it has a more probability malfunctioning in the measuring

Table 1. Air Quality Guideline (AQG) for Particulate Matter (PM) level management from World Health Organization (WHO) [1]. The unit of each value is $\mu\text{g}/\text{m}^3$. When the diameter of PM is $2.5\mu\text{g}/\text{m}^3$ it called $PM_{2.5}$, and when it between $2.5\mu\text{g}/\text{m}^3$ and $10\mu\text{g}/\text{m}^3$, called PM_{10} .

	Annual mean	24-hour mean
$PM_{2.5}$	10	25
PM_{10}	20	50

36 process than the BAM-based sensor because it more affected by the external environment; we call
 37 overall malfunctions as an anomaly. Thus, we propose the novel architecture for anomaly detection
 38 to maintain a TEOM-based sensor. Because, if an anomaly detecting solution is provided with the
 39 TEOM-based sensor, the efficiency of the PM level monitoring cost can be made more effective.

40 The organization of this paper is described as follows. In Section 2, we summarize previous studies
 41 that have efforted for anomaly detection. We present the proposed architecture and experimental
 42 results in Section 3 and Section 4 respectively, and conclude the whole content in final section. We only
 43 deal with anomaly detection task of functioning sensors in this paper. Thus, the task after anomaly
 44 detection, can be categorized to correcting the collected values or maintain the sensor via engineer,
 45 will be handled in future study.

46 2. Related Works

47 Several previous studies have conducted the anomaly detection via classification approach with
 48 various methods [7–11]. However, there are some problem for using classification method such as
 49 difficulty of collecting diverse abnormal cases and labeling cost from collected data to specific category.

50 For detecting anomaly, the above problems can be eased by regression-based method such as
 51 One-Class SVM [12], Auto-Encoder (AE) [13,14], or Long-Short Term Memory (LSTM) [15,16]. The idea
 52 of regression-based method is such simple. Also, the cost of data preparing to use regression-based
 53 machine learning or deep learning-based anomaly detection algorithm is not high. Because we need
 54 only the normal case (healthy) data for training, and it does not need the categorization process.
 55 Moreover, the labeling task is needed for measuring performance quantitatively, but it is quite simple
 56 in this case because each sample needs only checked whether normal or not.

57 Recently, there are several neural network-based anomaly detection models are published [17–23].
 58 The generative neural network which trained with variational bound can make the user desired data
 59 from the random noise [17,24]. However, generating data from noise as same as they do is not essential
 60 in anomaly detection. Moreover, because of using variational bound with distribution assumption, the
 61 above deep learning architectures may generate the blurred data.

62 The Generative Adversarial Network (GAN)-based anomaly detection model is published
 63 as named as AnoGAN [18]. The AnoGAN can generate more sharped data than the variational
 64 bound-based model. However, it needs to find the most close generated sample from noise with input
 65 data for determining abnormal or not. Because of the above procedure, the throughput of AnoGAN is
 66 lower than the typical AE-based architecture.

67 Some of the recent research, such as BiGAN [19] and GANomaly [20], eased the limitation
 68 of AnoGAN. These models directly generate the sample via input data and use them for anomaly
 69 detection. BiGAN [19] has the limitation of generating high-resolution samples because encoder and
 70 decoder share the parameters. However, GANomaly [20] eases the above limitation via simply using
 71 separated parameters for encoder and decoder respectively.

72 One other research tried to generate data consistently with avoiding to generate the blurred
 73 sample [23]. For achieving their purpose, they apply the multiple hypothesis to the last layer of the
 74 generator. Their neural network generates multiple samples and the best sample that close to input
 75 data among those is selected. However, one of the unsatisfied things is that they still use the variational

76 bound as same as Variational Auto-Encoder (VAE) [24] for training. Thus it can be regarded that has
 77 still restricted for generating clear, not blurred, data.

78 The preprocessing is one of the additional considerations to construct an anomaly detection
 79 system for reducing the computational cost. For example, data dimension reduction via preprocessing
 80 can be highly reduce the computational cost [25–29]. However, our PM sensor collects the value at
 81 every one hour, so the preprocessing is not needed to reduce computational cost such as time.

82 3. Proposed Architecture

83 In this section, we present the proposed architecture for anomaly detection in the PM sensor. We
 84 compare the property of two kinds of convolution method firstly. Then, we present the structure of the
 85 neural network that we propose. Finally, we describe the anomaly detection procedure.

86 3.1. Reason for Using 1D Convolution

87 When using the image data as the input, the 2 dimensional (2D) convolutional layer can be used
 88 for constructing the neural network typically. However, we use the 1 dimensional (1D) convolutional
 89 layer because our data is 1D signal data.

90 The signal data can have the multiple channel. For example, $PM_{2.5}$ and PM_{10} can represent first
 91 and second channel respectively. The 2D convolution can be used for processing the multi-channel
 92 signal data, but it is not efficient as shown in Figure 1.

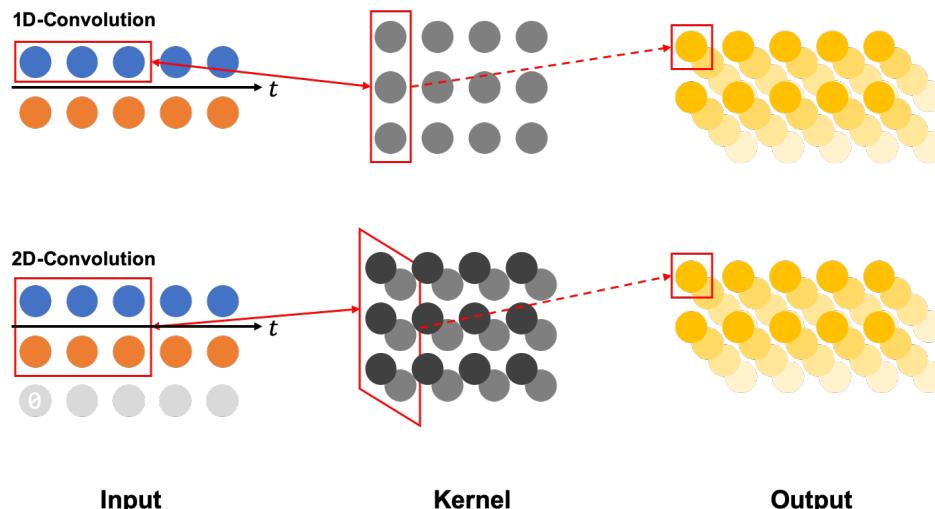


Figure 1. The examples of generating the output via 1D and 2D convolution. In 2D convolution case, the zero-padding method is needed for aggregating time information with maintaining feature dimension.

93 In order to minimize the information loss for each channel, our purpose is only aggregating the
 94 time information via a convolutional layer like a recurrent neural network [30]. In the case of 1D
 95 convolution, time information can be summarized while maintaining channel information in natural.
 96 However, if the neural network constructed with 2D convolution, the channel information of the input
 97 data will be reduced unintentionally. For avoiding this problem the zero-padding can be used as
 98 shown in Figure 2, for maintaining the channel dimension, but the last channel of the generated output
 99 probably has less information than the front channels. Thus, we adopt the 1D convolutional layer for
 100 constructing the neural network.

101 3.2. Multiple Hypothesis-based Architecture

102 We have already summarized related works in Section 2. Using the variational bound with
 103 distribution assumption causes generating blurred the sample. Also, the AnoGAN-like architecture

104 has lower throughput because it needs a matching procedure for finding the most closer generated
 105 sample to input data. The helpful thing is multiple hypothesis that can produce more relevant results
 106 and can work more robustly [31–33].

107 We construct the neural network with reference to the concept of GANomaly as a backbone
 108 architecture because it can ease the several mentioned limitations of previous anomaly detection
 109 models. We also apply the multiple hypothesis method in the last layer of the generator. Because the
 110 multiple hypothesis can utilize to maintain the quality of the output consistently via selecting the best
 111 output. We name the procedure of selecting the best output as hypothesis pruning.

112 The multiple hypothesis generates several samples from the input data directly and generates one
 113 additional sample from the random noise. Each generated sample is used as a hypothesis respectively
 114 but the samples that are not in the best case will be used as a regularization term. The overall
 115 architecture of the neural network that we proposed is shown in Figure 2.

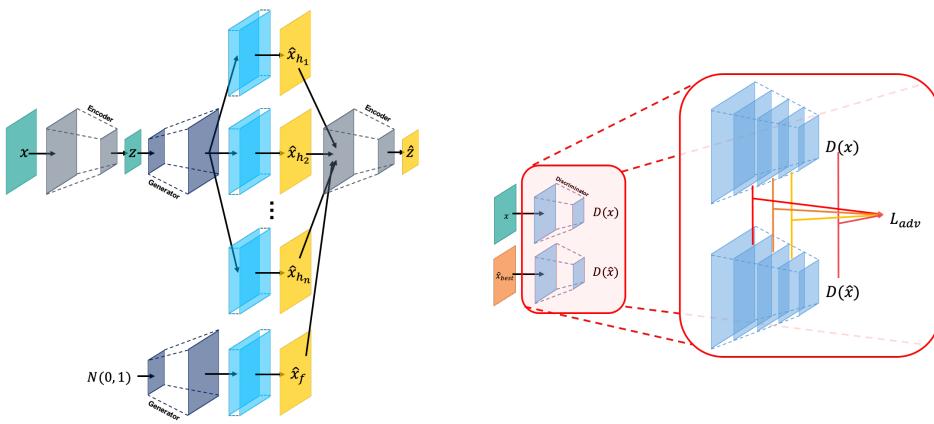


Figure 2. The architecture of the Hypothesis Pruning GAN (HP-GAN). We use a single encoder, generator, and discriminator but the last layer of the generator is constructed with the multiple hypothesis that colored with cyan. Pruning is conducted after generating the branches by multiple hypothesis.

116 The loss functions for training above neural network are shown in Equation 1 to Equation 8. The
 117 symbol E , G , and D are representing encoder, generator, and discriminator respectively. Also, x , z ,
 118 and f_l mean input data, encoded latent vector, and feature map of l -th layer. The three loss functions
 119 \mathcal{L}_{enc} , \mathcal{L}_{gen} , and \mathcal{L}_{adv} are discribed for encoder, generator, and discriminator respectively; shown in
 120 Equation 1, 2, and 7. Equation 1 and 2, are constructed with Winner-Take-All (WTA) theory [34]. The
 121 adversarial losses, from Equation 3 to 6, are aggregated in Equation 7.

$$\mathcal{L}_{enc} = \|E(x) - E(G(E(x))_{best})\|_2 = \|z - \hat{z}_{best}\|_2 \quad (1)$$

$$\mathcal{L}_{gen} = |x - G(E(x))_{best}|_1 = |x - \hat{x}_{best}|_1 \quad (2)$$

$$\mathcal{L}_{adv_{noise}} = \|D(x) - D(\hat{x}_{noise})\|_2 \quad (3)$$

$$\mathcal{L}_{adv_{best}} = \|D(x) - D(\hat{x}_{best})\|_2 \quad (4)$$

$$\mathcal{L}_{adv_{others}} = \|D(x) - D(\hat{x}_{others})\|_2 / \text{number of others} \quad (5)$$

$$\mathcal{L}_{adv_{feature}} = \sum_{l=0}^L ||f_l(x) - f_l(\hat{x}_{others})||_2 \quad (6)$$

$$\mathcal{L}_{adv} = \mathcal{L}_{adv_{noise}} + \mathcal{L}_{adv_{best}} + \mathcal{L}_{adv_{others}} + \mathcal{L}_{adv_{feature}} \quad (7)$$

122 For optimizing the parameters at once, we summarize the three losses \mathcal{L}_{enc} , \mathcal{L}_{gen} , and \mathcal{L}_{adv} with
 123 each weighting coefficient w_{enc} , w_{gen} , and w_{adv} . The weighting coefficients are set with values 1, 50,
 124 and 1 respectively. These coefficients are referenced from GANomaly [20] and they can be modified by
 125 the hyperparameter tuning process. We conduct the hyperparameter tuning in Section 4.4, but finding
 126 the best weighting coefficient is not covered in this paper; we only finding the best kernel size, number
 127 of the convolutional block, and learning rate.

$$\mathcal{L} = w_{enc}\mathcal{L}_{enc} + w_{gen}\mathcal{L}_{gen} + w_{adv}\mathcal{L}_{adv} \quad (8)$$

128 We train the HP-GAN via Algorithm 1. We use the Xavier initializer [35] for initializing the neural
 129 network, and use Adam optimizer [36] for optimizing the parameters.

Algorithm 1 Training algorithm.

Input: Measured PM values x , and random noise z_{noise}

Output: Generated PM values \hat{X} with multiple hypothesis

Initialize parameters of neural network by Xavier initializer [35]

while the loss has not converged **do**

 Get \hat{X} by forward propagation

 Prune \hat{X} as \hat{x}_{best} or others

 Compute losses \mathcal{L}_{enc} , \mathcal{L}_{gen} , and \mathcal{L}_{adv}

 Summarizing losses as a total loss \mathcal{L}

 Update parameters by backward propagation with Adam optimizer [36]

end while

130 3.3. Anomaly Detection Method

131 We describe the anomaly detection procedure in this section. The abnormality decision method
 132 is simple as shown in Algorithm 2. For using the above algorithm, input data must be measured via
 133 PM sensor firstly with containing two channels; $PM_{2.5}$ and PM_{10} . Then, the generation procedure is
 134 conducted via input the data to the neural network. We set the decision boundary θ using μ and σ
 135 of the training data as shown in Equation 9. The μ and σ represent the mean and standard deviation
 136 of the mean square error between the input and the best hypothesis of the generated samples. For
 137 reference, if the user wants to change the sensitivity or specificity of the anomaly detection, θ can be
 138 adjusted.

$$\theta = \mu + (1.5 * \sigma) \quad (9)$$

139 4. Experiments

140 In this section, we present our PM dataset and show experimental results for various neural
 141 network architectures. For assessing each model, we use Area Under the Receiver Operating
 142 characteristics Curve (AUROC) [37], Area Under the Precision-Recall Curve (AUPRC) [38], and
 143 Mean Square Error (MSE) as the performance indicators.

Algorithm 2 Abnormality decision algorithm.

Input: Measured PM values x
Output: Selected best hypothesis \hat{x}_{best} among the generated samples

```

 $\theta \leftarrow$  set threshold based on training data
if  $||\hat{x} - \hat{x}_{best}||_2 \geq \theta$  then
     $x$  is abnormal
else
     $x$  is normal
end if
```

144 **4.1. Dataset**

145 We have collected the PM dataset from the 12 locations in the Daegu Metropolitan Jungang
 146 Library, Korea. For collecting data, we use the TEOM-based sensor as shown in Figure 3 and the
 147 collected dataset is shown in Table 2.

Figure 3. TEOM-based PM sensor.

Table 2. The collected $PM_{2.5}$ and PM_{10} values via TEOM-based sensors. The each sample $x \in \mathbb{R}^{24 \times 2}$ represents two values ($PM_{2.5}$ and PM_{10}) for 24-hour.

	Normal	Abnormal	Total
Number of Sample	249	73	322

148 Each sample $x \in \mathbb{R}^{24 \times 2}$ contains the information of $PM_{2.5}$ and PM_{10} for one day with 1-hour
 149 unit. The label of normal or abnormal is determined by meteorologists. We use 80% of the normal
 150 for training, and the other normal samples and whole abnormal samples are used for assessing the
 151 performance.

152 **4.2. Experiment with Published Architecture**

153 First of all, we conduct experiments for confirming which architecture among the previous studies
 154 is effective for anomaly detection. We adopt five known architectures and reconstruct them using
 155 1D convolutional layer [20–24]. Each network such as encoder or generator uses three convolutional
 156 block, and each convolutional block consists two convolutional layer with elu activation [39]. The
 157 max-pooling is applied at the last of each convolutional block. We use two fully connected layers for
 158 the rear of the encoder and discriminator. Also, the generator includes two fully connected layers at
 159 the front of them.

160 We measure the performance and summarize them in Table 3. We also present the best-generated
 161 samples selected from multiple hypothesis in Figure 4 for qualitatively analysis.

Table 3. Measured performance of experiment with published architecture. The purpose of this experiment is confirming which style of the architecture can detect anomaly better.

Architecture	PM _{2.5}	PM ₁₀	AUROC	AUPRC	MSE	Tr-Time	Te-Time
VAE [24]	O	O	0.92151	0.95629	0.01170	00:16:43	0.41122
	O	-	0.91699	0.95617	0.01424	00:14:26	0.30716
	-	O	0.92630	0.95643	0.01772	00:17:14	0.36180
GANomaly [20]	O	O	0.93397	0.96485	0.01080	00:20:10	0.34627
	O	-	0.92753	0.96209	0.00914	00:21:43	0.31621
	-	O	0.92301	0.95882	0.01020	00:24:21	0.30096
adVAE [21]	O	O	0.92849	0.95704	0.01716	00:23:42	0.40858
	O	-	0.92096	0.94832	0.02646	00:19:32	0.31841
	-	O	0.94233	0.95760	0.02264	00:19:28	0.32030
LVEAD [22]	O	O	0.88384	0.91724	0.01944	11:16:55	1.03436
	O	-	0.85370	0.87660	0.03764	10:37:55	1.03876
	-	O	0.91575	0.94738	0.01838	11:57:14	1.01579
ConAD [23]	O	O	0.92452	0.95638	0.02667	00:20:22	0.34142
	O	-	0.92342	0.95606	0.01524	00:30:05	0.31843
	-	O	0.91616	0.94154	0.01799	00:30:02	0.30392

162 Time consumption for training and test procedure of four architectures other than LVEAD are
 163 similar to each other but LVEAD needs much longer time. Thus, LVEAD is not efficient in the time
 164 consumption viewpoint.

165 The GANomaly shows the highest AUROC and AUPRC. Also, it has the lowest MSE among the
 166 above five architectures, so if who wants to use the known neural network without developing novel
 167 architecture GANomaly can be recommended.

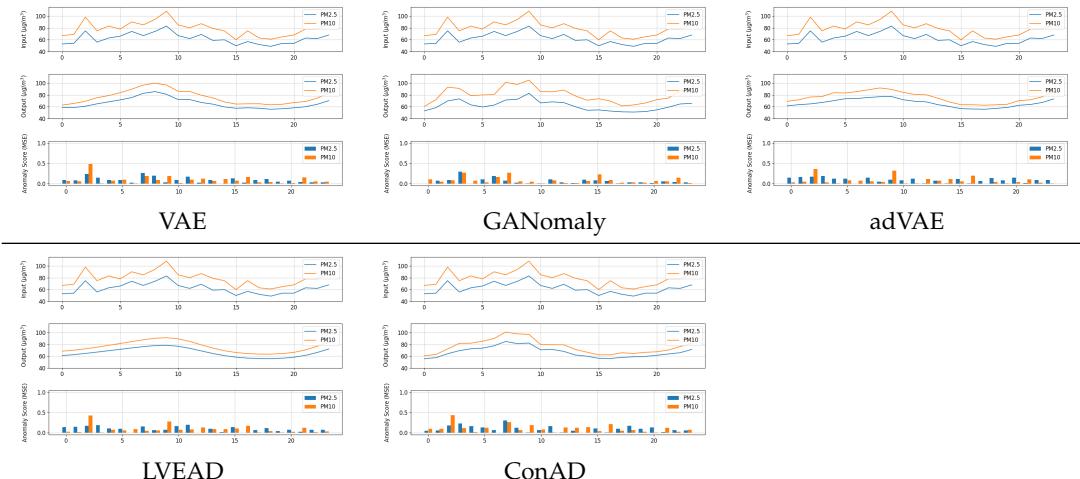


Figure 4. The generated sample from the five architectures for qualitative analysis. The x-axis of each subfigure represents an hour of the day and the label of the y-axis is noted in each subfigure.

168 For analyzing qualitative results, GANomaly generates the most similar sample to the input. The
 169 ConAD and VAE follow after GANomaly. The common method of VAE and ConAD is variational
 170 bound. The above method can be regarded as a reason for generating smoothed output. Thus, we
 171 conduct an ablation study to find and confirm the cause of performance degradation in the next section.

172 4.3. Ablation Experiment

173 We construct HP-GAN by referring to previous studies. HP-GAN, the novel unproven
 174 architecture, needs to confirm that it can work better than other architectures. We compose the

175 experiments to verify the ability of HP-GAN with our dataset. The several kinds of architectures other
 176 than HP-GAN are constructed for ablation experiments. The ablation experiment is used to find the
 177 cause of the performance impediment [40,41].

178 The six ablation architectures are constructed that contain the GANomaly and HP-GAN. Latent
 179 vector Matching (LM), Variational Bound (VB), and Multiple Hypothesis (MH) are used as the
 180 conditions for construct these architectures. The purpose of using LM is minimizing the Euclidean
 181 distance between latent vector z (from x) and \hat{z} (from \hat{x}). The VB is used for minimizing the
 182 Kullback–Leibler divergence between latent vector z and normal distribution. The MH, last condition,
 183 is used to generate consistent output based on (WTA) theory.

184 The mini-batch size, number of the epoch, the dimension of the latent vector z , and the learning
 185 rate are used equally for all architectures. The above hyperparameters are set as 32, 1000, and 0.0001
 186 respectively. The experimental result is summarized in Table 4.

Table 4. The performance of the six ablation (combination) architectures. We use three condition Latent vector Matching (LM), Variational Bound (VB), and Multiple Hypothesis (MH) for ablation study.

Architecture	LM	VB	MH	$PM_{2.5}$	PM_{10}	AUROC	AUPRC	MSE
Ablation-1 (LM-GAN; GANomaly)	O	-	-	O	O	0.93397	0.96485	0.01080
				O	-	0.92753	0.96209	0.00914
				-	O	0.92301	0.95882	0.01020
Ablation-2 (VB-GAN)	-	O	-	O	O	0.90548	0.93130	0.02148
				O	-	0.94192	0.96536	0.01924
				-	O	0.86767	0.91166	0.04300
Ablation-3 (LMVB-GAN)	O	O	-	O	O	0.89521	0.93441	0.02510
				O	-	0.86096	0.90572	0.04022
				-	O	0.89205	0.93045	0.02974
Ablation-4 (LMMH-GAN; Ours)	O	-	O	O	O	0.91699	0.95303	0.02550
				O	-	0.93219	0.96312	0.01534
				-	O	0.92616	0.95424	0.01230
Ablation-5 (VBMH-GAN)	-	O	O	O	O	0.94644	0.96462	0.03578
				O	-	0.93027	0.96153	0.01486
				-	O	0.90068	0.94807	0.01404
Ablation-6 (LMVBMH-GAN)	O	O	O	O	O	0.92603	0.94032	0.03019
				O	-	0.93123	0.96179	0.01531
				-	O	0.92712	0.95730	0.01922

187 The Table 4 quantitatively shows that VBMH-GAN has better AUROC, AUPRC than the other.
 188 However, as shown in Figure 5, the qualitative result, the generated sample via LM-GAN (GANomaly)
 189 and LMMH-GAN (Ours; HP-GAN) show a better result than VBMH-GAN. Moreover, other VB-based
 190 architectures commonly show the blurred result.

191 In this experiment, we confirm that the quantitative result represents that the VBMH-GAN is
 192 the best architecture, but the qualitative result of them is not good. Thus, we need to conduct more
 193 experiment for verifying the above architectures using varied hyperparameters, because each model
 194 may need the specific hyperparameter for performing much better.

195 4.4. Experiment with Various Hyperparameter

196 In this section, we assess four of neural networks with various hyperparameter set. For the
 197 experiment, we use the VAE as a baseline architecture because it is the first VB-based architecture. We
 198 also use GANomaly, based on LM, as one other baseline architecture. The other two architectures are
 199 our HP-GAN (LMMH-GAN) and VBMH-GAN.

200 We use the kernel size, number of convolutional blocks, and learning rate as the hyperparameter.
 201 Each convolutional block consists two convolutional layer with elu activation and one max pooling

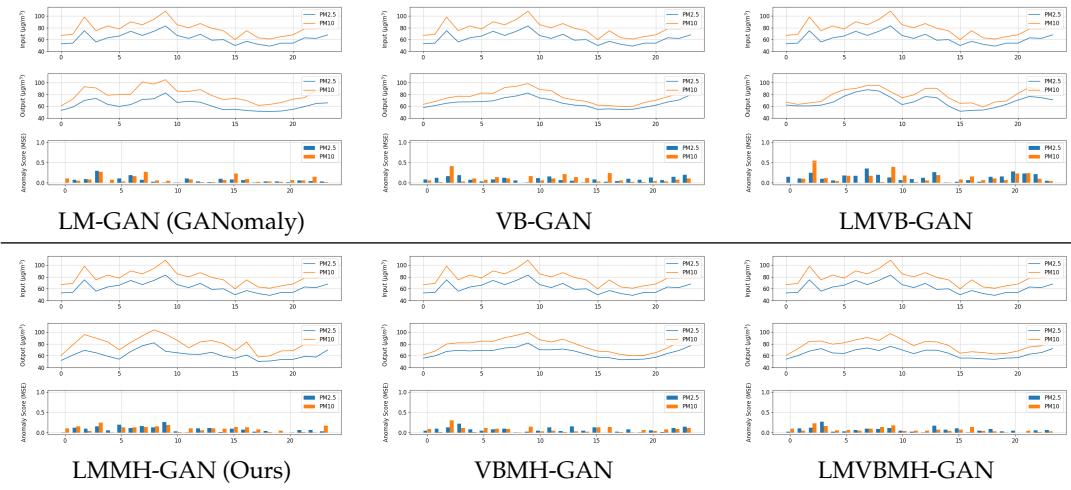


Figure 5. The generated sample from the six ablation architectures for qualitative analysis.

layer same as commented in Section 4.2. We compose the 108 kinds of the hyperparameter set for experiment via combining three hyperparameters as shown in Table 5.

Table 5. The hyperparameters for the experiment. We use the grid search method for hyperparameter tuning [?]. The number of convolutional blocks is abbreviated as # of conv-block.

Hyperparameter	Values
Kernel size	3, 5, 7, 9, 11, and 13
# of conv-block	2, 3, and 4
Learning rate	5e-3, 1e-3, 5e-4, 1e-4, 5e-5, and 1e-5

When the case of large kernel sizes such as 13, the time axis dimension of the feature vector can be smaller than the kernel of the last layer. However, the amount of the feature information and balance between feature vectors is not changed by the above situation, so we also use the large size kernels.

We present the measured performance for each hyperparameter with surface form in Figure 6 and 7. The height of the surface represents the anomaly detection ability; the higher height means higher performance. The flatten surface indicates that the neural network stably responds to hyperparameter changes.

When the number of the convolutional block is two or three, the surfaces for each architecture look like similar and relatively flatten then four-block cases. However, HP-GAN shows the most high and flatten surface in the four convolutional block case.

We also confirm that HP-GAN shows generally flatten surface in the AUPRC surfaces. Thus, we can conclude that HP-GAN may perform stably for anomaly detection than other architectures. However, we additionally conduct the experiment for confirming the average performance with the best hyperparameter of each model. The best hyperparameter set summarized in Table 6.

Table 6. The best hyperparameter set selected from AUROC and AUPRC surface.

Architecture	Kernel size	# of conv-block	Learning rate
VAE	7	3 (6 convolution)	5e-4
GANomaly	9	4 (8 convolution)	5e-4
HP-GAN	7	3 (6 convolution)	1e-5
VBMH-GAN	7	3 (6 convolution)	5e-5

²¹⁸ We repeat the experiment 30 times with the randomly shuffled dataset for Monte Carlo estimation
²¹⁹ [42]. The performances are summarized with a mean \pm standard deviation as shown in Table 7.

Table 7. The measured AUROC, AUPRC, and MSE are provided with a mean \pm standard deviation form. The experiment is conducted with the best hyperparameter set for each architecture.

Architecture	AUROC	AUPRC	MSE
VAE	0.918 ± 0.033	0.942 ± 0.028	0.025 ± 0.009
GANomaly	0.911 ± 0.091	0.937 ± 0.062	0.027 ± 0.049
HP-GAN	0.948 ± 0.010	0.967 ± 0.008	0.023 ± 0.016
VBMH-GAN	0.944 ± 0.021	0.959 ± 0.020	0.033 ± 0.057

²²⁰ In Table 7, the higher the mean represents better performance. On the other hand, the lower
²²¹ standard deviation means higher stability. The HP-GAN that we proposed in this paper shows the
²²² higher performance at every indicator. Moreover, HP-GAN has higher stability (lower standard
²²³ deviation) at every indicator.

²²⁴ 5. Conclusion

²²⁵ We experimentally show the cutting-edge performance at anomaly detection of our HP-GAN
²²⁶ in the TEOM-based PM sensor. The HP-GAN is trained by latent vector matching with multiple
²²⁷ hypothesis based on WTA theory. Our neural network, HP-GAN, can generate the output more clearly
²²⁸ and consistently with avoiding blurring effect than other VB-based models when the input data is in
²²⁹ the normal category. The mean of AUROC and AUPRC of HP-GAN are 0.037 0.080 higher than the
²³⁰ second performance model VBMH-GAN. Also, the mean of MSE is best (lowest) among the whole
²³¹ architectures. Thus, we finally conclude our HP-GAN as a cutting-edge architecture for anomaly
²³² detection.

²³³ **Funding:** This research received no external funding.

²³⁴ **Acknowledgments:** Thank you to all the team and corporation members. They have supported this research via
²³⁵ not only data collection but also equipment for the experiment. Furthermore, we also thank to all the director
²³⁶ including Dong Chan Lim for supporting this study.

²³⁷ **Conflicts of Interest:** The authors declare no conflict of interest.

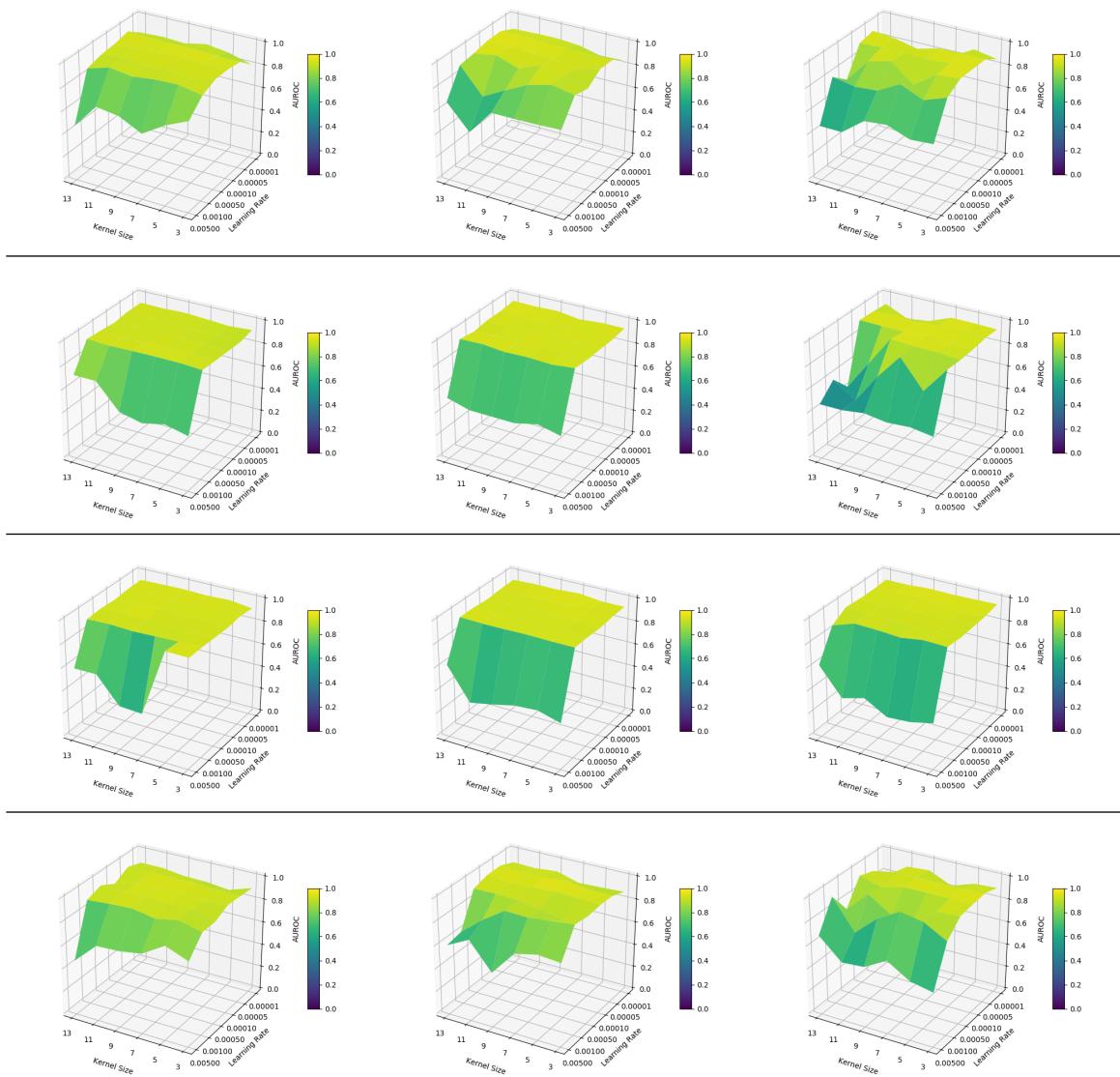


Figure 6. The surface of AUROC with various hyperparameters. The AUROC of VAE, GANomaly, and HP-GAN (LMMH-GAN), and VBMH-GAN are shown in each row sequentially. Each column shows the result of two, three, and four convolutional blocks from the left to right.

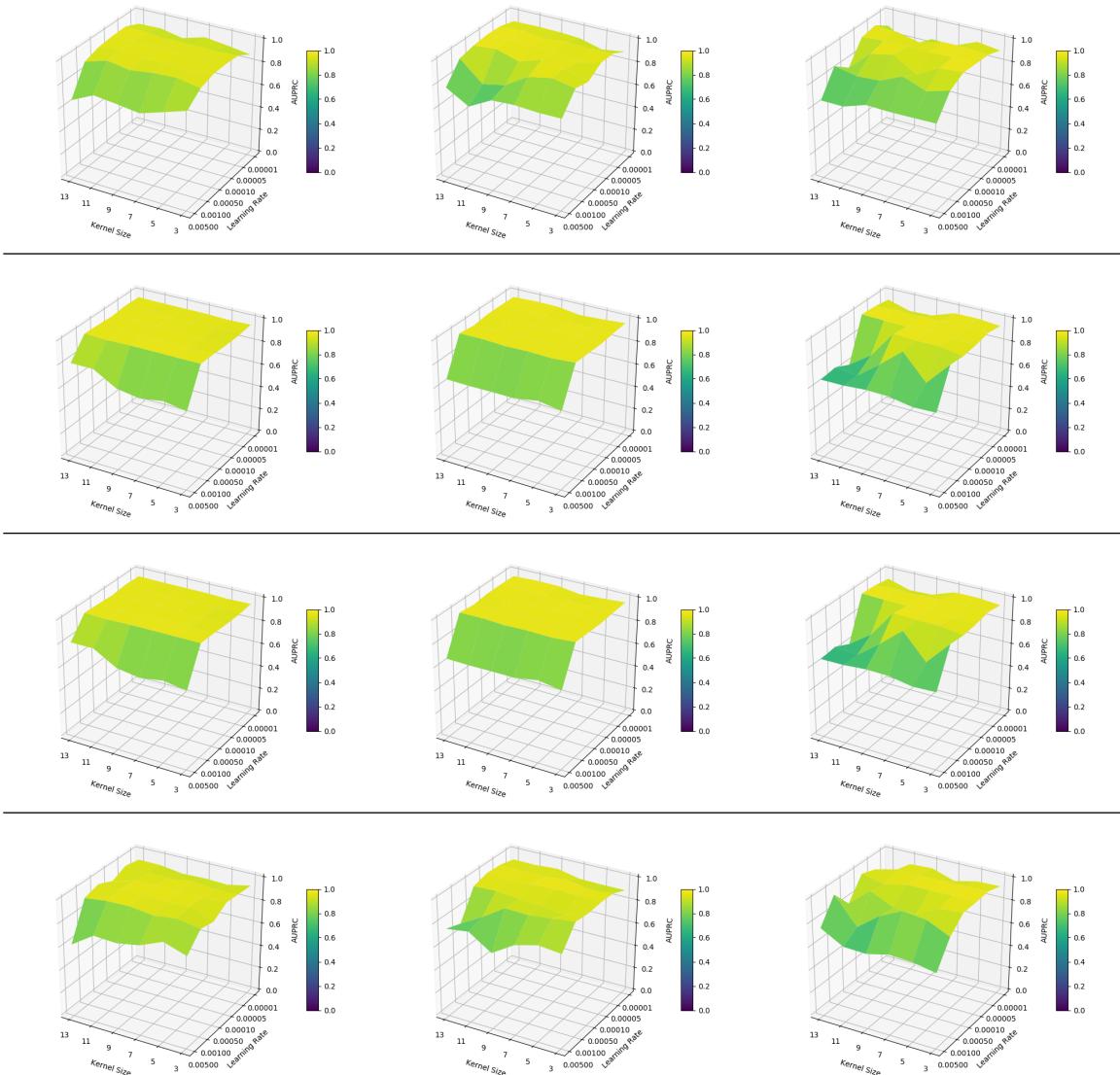


Figure 7. The surface of AUPRC with various hyperparameters. The order of the shown contents is the same as Figure 6.

238 References

239 1. Occupational, W.H.O.; Team, E.H. WHO Air quality guidelines for particulate matter, ozone, nitrogen
240 dioxide and sulfur dioxide : global update 2005 : summary of risk assessment, 2006.

241 2. Faustini, A.; Stafoggia, M.; Berti, G.; Bisanti, L.; Chiusolo, M.; Cerniglio, A.; Mallone, S.; Primerano, R.;
242 Scarnato, C.; Simonato, L.; Vigotti, M.; Forastiere, F. The relationship between ambient particulate matter
243 and respiratory mortality: a multi-city study in Italy. *European Respiratory Journal* **2011**, *38*, 538–547.

244 3. Du, Y.; Xu, X.; Chu, M.; Guo, Y.; Wang, J. Air particulate matter and cardiovascular disease: the
245 epidemiological, biomedical and clinical evidence. *Journal of thoracic disease* **2016**, *8*, E8—E19.

246 4. Hamra, G.B.; Guha, N.; Cohen, A.; Laden, F.; Raaschou-Nielsen, O.; Samet, J.M.; Vineis, P.; Forastiere, F.;
247 Saldiva, P.; Yorifuji, T.; Loomis, D. Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic
248 Review and Meta-Analysis. *Environmental Health Perspectives* **2014**, *122*, 906–911.

249 5. Badura, M.; Batog, P.; Drzeniecka-Osiadacz, A.; Modzel, P. Evaluation of Low-Cost Sensors for Ambient
250 PM2.5 Monitoring. *Journal of Sensors* **2018**, *2018*.

251 6. Bulot, F.M.; Johnston, S.J.; Basford, P.J.; Easton, N.H.; Apetroaie-Cristea, M.; Foster, G.L.; Morris, A.K.; Cox,
252 S.J.; Loxham, M. Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor
253 urban environment. *Scientific reports* **2019**, *9*, 7497.

254 7. Himmelblau, D.; Barker, R.; Suewatanakul, W. Fault Classification with The Aid of Artificial Neural
255 Networks. In *Fault Detection, Supervision and Safety for Technical Processes 1991*; ISERMANN, A.;
256 FREYERMUTH, B., Eds.; IFAC Symposia Series, Pergamon: Oxford, 1992; pp. 541–545.

257 8. Tellenbach, B.; Burkhart, M.; Schatzmann, D.; Gugelmann, D.; Sornette, D. Accurate network anomaly
258 classification with generalized entropy metrics. *Computer Networks* **2011**, *55*, 3485–3502.

259 9. de la Hoz, E.; Ortiz, A.; Ortega, J.; de la Hoz, E. Network Anomaly Classification by Support Vector
260 Classifiers Ensemble and Non-linear Projection Techniques. *Hybrid Artificial Intelligent Systems*; Pan, J.S.;
261 Polycarpou, M.M.; Woźniak, M.; de Carvalho, A.C.P.L.F.; Quintián, H.; Corchado, E., Eds.; Springer Berlin
262 Heidelberg: Berlin, Heidelberg, 2013; pp. 103–111.

263 10. Jan, S.U.; Lee, Y.; Shin, J.; Koo, I. Sensor Fault Classification Based on Support Vector Machine and
264 Statistical Time-Domain Features. *IEEE Access* **2017**, *5*, 8682–8690.

265 11. Lee, K.B.; Cheon, S.; Kim, C.O. A Convolutional Neural Network for Fault Classification and Diagnosis
266 in Semiconductor Manufacturing Processes. *IEEE Transactions on Semiconductor Manufacturing* **2017**,
267 *30*, 135–142.

268 12. Steinwart, I.; Hush, D.; Scovel, C. A classification framework for anomaly detection. *Journal of Machine
269 Learning Research* **2005**, *6*, 211–232.

270 13. Sakurada, M.; Yairi, T. Anomaly Detection Using Autoencoders with Nonlinear Dimensionality Reduction.
271 Proceedings of the MLSDA 2014 2Nd Workshop on Machine Learning for Sensory Data Analysis; ACM:
272 New York, NY, USA, 2014; MLSDA'14, pp. 4:4–4:11.

273 14. Zhou, C.; Paffenroth, R.C. Anomaly Detection with Robust Deep Autoencoders. Proceedings of the 23rd
274 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; ACM: New York, NY,
275 USA, 2017; KDD '17, pp. 665–674.

276 15. Malhotra, P.; Vig, L.; Shroff, G.; Agarwal, P. Long short term memory networks for anomaly detection in
277 time series. Proceedings. Presses universitaires de Louvain, 2015, p. 89.

278 16. Chauhan, S.; Vig, L. Anomaly detection in ECG time signals via deep long short-term memory networks.
279 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), 2015, pp. 1–7.
280 doi:10.1109/DSAA.2015.7344872.

281 17. Xu, H.; Chen, W.; Zhao, N.; Li, Z.; Bu, J.; Li, Z.; Liu, Y.; Zhao, Y.; Pei, D.; Feng, Y.; Chen, J.; Wang, Z.; Qiao,
282 H. Unsupervised Anomaly Detection via Variational Auto-Encoder for Seasonal KPIs in Web Applications.
283 Proceedings of the 2018 World Wide Web Conference; International World Wide Web Conferences Steering
284 Committee: Republic and Canton of Geneva, Switzerland, 2018; WWW '18, pp. 187–196.

285 18. Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Schmidt-Erfurth, U.; Langs, G. Unsupervised Anomaly Detection
286 with Generative Adversarial Networks to Guide Marker Discovery. *Information Processing in Medical
287 Imaging*; Niethammer, M.; Styner, M.; Aylward, S.; Zhu, H.; Oguz, I.; Yap, P.T.; Shen, D., Eds.; Springer
288 International Publishing: Cham, 2017; pp. 146–157.

289 19. Donahue, J.; Krähenbühl, P.; Darrell, T. Adversarial Feature Learning. *CoRR* **2016**, *abs/1605.09782*, [\[1605.09782\]](#).

290 20. Akcay, S.; Atapour-Abarghouei, A.; Breckon, T.P. GANomaly: Semi-supervised Anomaly Detection via
291 Adversarial Training. Computer Vision – ACCV 2018; Jawahar, C.V.; Li, H.; Mori, G.; Schindler, K., Eds.;
292 Springer International Publishing: Cham, 2019.

293 21. Wang, X.; Du, Y.; Lin, S.; Cui, P.; Yang, Y. Self-adversarial Variational Autoencoder with Gaussian Anomaly
294 Prior Distribution for Anomaly Detection. *CoRR* **2019**, *abs/1903.00904*, [\[1903.00904\]](#).

295 22. Zhang, C.; Chen, Y. Time Series Anomaly Detection with Variational Autoencoders. *CoRR* **2019**,
296 *abs/1907.01702*, [\[1907.01702\]](#).

297 23. Nguyen, D.T.; Lou, Z.; Klar, M.; Brox, T. Anomaly Detection With Multiple-Hypotheses Predictions.
298 Proceedings of the 36th International Conference on Machine Learning; Chaudhuri, K.; Salakhutdinov,
299 R., Eds.; PMLR: Long Beach, California, USA, 2019; Vol. 97, *Proceedings of Machine Learning Research*, pp.
300 4800–4809.

301 24. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. 2nd International Conference on Learning
302 Representations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014, Conference Track Proceedings, 2014.

303 25. Serpico, S.B.; D’Inca, M.; Melgani, F.; Moser, G. Comparison of feature reduction techniques for
304 classification of hyperspectral remote-sensing data. *Image and Signal Processing for Remote Sensing VIII*;
305 Serpico, S.B., Ed. International Society for Optics and Photonics, SPIE, 2003, Vol. 4885, pp. 347 – 358.

306 26. Jun Yan.; Benyu Zhang.; Ning Liu.; Shuicheng Yan.; Qiansheng Cheng.; Fan, W.; Qiang Yang.; Xi, W.; Zheng
307 Chen. Effective and efficient dimensionality reduction for large-scale and streaming data preprocessing.
308 *IEEE Transactions on Knowledge and Data Engineering* **2006**, *18*, 320–333.

309 27. Thangavel, K.; Pethalakshmi, A. Dimensionality reduction based on rough set theory: A review. *Applied
310 Soft Computing* **2009**, *9*, 1 – 12.

311 28. Balzanella, A.; Irpino, A.; Verde, R. Dimensionality Reduction Techniques for Streaming Time Series: A
312 New Symbolic Approach. Classification as a Tool for Research; Locarek-Junge, H.; Weihs, C., Eds.; Springer
313 Berlin Heidelberg: Berlin, Heidelberg, 2010; pp. 381–389.

314 29. Park, Y.; Yun, I.D. Fast Adaptive RNN Encoder–Decoder for Anomaly Detection in SMD Assembly
315 Machine. *Sensors* **2018**, *18*.

316 30. Mikolov, T.; Karafiat, M.; Burget, L.; Černocky, J.; Khudanpur, S. Recurrent neural network based language
317 model. Eleventh annual conference of the international speech communication association, 2010.

318 31. Blackman, S.S. Multiple hypothesis tracking for multiple target tracking. *IEEE Aerospace and Electronic
319 Systems Magazine* **2004**, *19*, 5–18.

320 32. Streller, D.; Dietmayer, K. Object tracking and classification using a multiple hypothesis approach. *IEEE
321 Intelligent Vehicles Symposium*, 2004, 2004, pp. 808–812.

322 33. Rupprecht, C.; Laina, I.; DiPietro, R.; Baust, M.; Tombari, F.; Navab, N.; Hager, G.D. Learning in an
323 Uncertain World: Representing Ambiguity Through Multiple Hypotheses. *The IEEE International
324 Conference on Computer Vision (ICCV)*, 2017.

325 34. Maass, W. On the Computational Power of Winner-Take-All. *Neural Computation* **2000**, *12*, 2519–2535.

326 35. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.
327 Proceedings of the thirteenth international conference on artificial intelligence and statistics, 2010, pp.
328 249–256.

329 36. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980* **2014**.

330 37. Fawcett, T. An introduction to ROC analysis. *Pattern Recognition Letters* **2006**, *27*, 861 – 874.

331 38. Saito, T.; Rehmsmeier, M. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating
332 Binary Classifiers on Imbalanced Datasets. *PLOS ONE* **2015**, *10*, 1–21.

333 39. Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by exponential linear
334 units (elus). *arXiv preprint arXiv:1511.07289* **2015**.

335 40. Anwar, S.; Hwang, K.; Sung, W. Structured Pruning of Deep Convolutional Neural Networks. *CoRR* **2015**,
336 *abs/1512.08571*, [\[1512.08571\]](#).

337 41. Meyers, R.; Lu, M.; de Puiseau, C.W.; Meisen, T. Ablation Studies in Artificial Neural Networks. *CoRR*
338 **2019**, *abs/1901.08644*, [\[1901.08644\]](#).

339 42. Kroese, D.P.; Brereton, T.; Taimre, T.; Botev, Z.I. Why the Monte Carlo method is so important today. *Wiley
340 Interdisciplinary Reviews: Computational Statistics* **2014**, *6*, 386–392.