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Abstract: World Health Organization (WHO) provides the guideline for managing the Particulate 
Matter (PM) level because when the PM level is higher, it threats the human health. For managing PM 
level, the procedure for measuring PM value is needed firstly. We use Tapered Element Oscillating 
Microbalance (TEOM)-based PM measuring sensors because it shows higher cost-effectiveness 
than Beta Attenuation Monitor (BAM)-based sensor. However, TEOM-based sensor has higher 
probability of malfunctioning than BAM-based sensor. In this paper, we call the overall malfunction 
as an anomaly, and we aim to detect anomalies for the maintenance of PM measuring sensors. 
We propose a novel architecture for solving the above aim that named as Hypothesis Pruning 
Generative Adversarial Network (HP-GAN). We experimentally compare the several anomaly 
detection architectures to certify ours performing better.

Keywords: anomaly detection; generative adversarial network; multiple hypothesis; particulate 
matter12

1. Introduction13

World Health Organization (WHO) recommends to managing the provides Particulate Matter14

(PM) level with providing their guideline as shown in Table 1 because it can infiltrate into the deeper15

site of humans via respiratory organ [1]. For detail, the PM can trigger not only respiratory diseases [2]16

but also cardiovascular disease [3], lung cancer [4], or some other diseases.17

For managing PM level with referring Table 1, the process for measuring the air condition should18

be preceded. In the Republic of Korea, the Air Korea, operated by Korea Environment Corporation,19

provides measured values of SO2, CO, O3, NO2, PM2.5 and PM10 with unit of one hour. For informing20

the air pollution to the public, the higher spatial resolution may be more effective than lower. However,21

the resolution provided by them is relatively low because of the cost of maintaining the high-end PM22

measuring sensor.23

Two types of sensors can be used for PM measurement, each based on Beta Attenuation Monitor24

(BAM) and Tapered Element Oscillating Microbalance (TEOM) methods [5,6]. The characteristic of the25

BAM-based sensor is higher precision of measurement, but it needs high maintenance costs as in the26

case of Air Korea. On the other hand, the TEOM-based sensor needs a lower cost than the BAM-based27

sensor. For the above reason, when using a BAM-based sensor, increasing the spatial resolution it is28

difficult but it can be eased via using a cost-effective TEOM-based sensor.29

The two coefficients, one of them is Pearson’s correlation coefficient and the other is a coefficient30

of determination for 1-hour averages, are used as proof for the cost-effectiveness of TEOM-based31

sensor. Those coefficients are already measured as 0.91 and 0.81 respectively [5].32

The TEOM-based sensor can alternate the BAM-based sensor to monitor the PM level. Thus,33

We have installed TEOM-based sensors relatively densely in several regions as a trial. However, the34

limitation of the TEOM-based sensor is that it has a more probability malfunctioning in the measuring35
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Table 1. Air Quality Guideline (AQG) for Particulate Matter (PM) level management from World Health
Organization (WHO) [1]. The unit of each value is µg/m3. When the diameter of PM is 2.5µg/m3 it
called PM2.5, and when it between 2.5µg/m3 and 10µg/m3, called PM10.

Annual mean 24-hour mean

PM2.5 10 25

PM10 20 50

process than the BAM-based sensor because it more affected by the external environment; we call36

overall malfunctions as an anomaly. Thus, we propose the novel architecture for anomaly detection37

to maintain a TEOM-based sensor. Because, if an anomaly detecting solution is provided with the38

TEOM-based sensor, the efficiency of the PM level monitoring cost can be made more effective.39

The organization of this paper is described as follows. In Section 2, we summarize previous studies40

that have efforted for anomaly detection. We present the proposed architecture and experimental41

results in Section 3 and Section 4 respectively, and conclude the whole content in final section. We only42

deal with anomaly detection task of functioning sensors in this paper. Thus, the task after anomaly43

detection, can be categorized to correcting the collected values or maintain the sensor via engineer,44

will be handled in future study.45

2. Related Works46

Several previous studies have conducted the anomaly detection via classification approach with47

various methods [7–11]. However, there are some problem for using classification method such as48

difficulty of collecting diverse abnormal cases and labeling cost from collected data to specific category.49

For detecting anomaly, the above problems can be eased by regression-based method such as50

One-Class SVM [12], Auto-Encoder (AE) [13,14], or Long-Short Term Memory (LSTM) [15,16]. The idea51

of regression-based method is such simple. Also, the cost of data preparing to use regression-based52

machine learning or deep learning-based anomaly detection algorithm is not high. Because we need53

only the normal case (healthy) data for training, and it does not need the categorization process.54

Moreover, the labeling task is needed for measuring performance quantitatively, but it is quite simple55

in this case because each sample needs only checked whether normal or not.56

Recently, there are several neural network-based anomaly detection models are published [17–23].57

The generative neural network which trained with variational bound can make the user desired data58

from the random noise [17,24]. However, generating data from noise as same as they do is not essential59

in anomaly detection. Moreover, because of using variational bound with distribution assumption, the60

above deep learning architectures may generate the blurred data.61

The Generative Adversarial Network (GAN)-based anomaly detection model is published62

as named as AnoGAN [18]. The AnoGAN can generate more sharped data than the variational63

bound-based model. However, it needs to find the most close generated sample from noise with input64

data for determining abnormal or not. Because of the above procedure, the throughput of AnoGAN is65

lower than the typical AE-based architecture.66

Some of the recent research, such as BiGAN [19] and GANomaly [20], eased the limitation67

of AnoGAN. These models directly generate the sample via input data and use them for anomaly68

detection. BiGAN [19] has the limitation of generating high-resolution samples because encoder and69

decoder share the parameters. However, GANomaly [20] eases the above limitation via simply using70

separated parameters for encoder and decoder respectively.71

One other research tried to generate data consistently with avoiding to generate the blurred72

sample [23]. For achieving their purpose, they apply the multiple hypothesis to the last layer of the73

generator. Their neural network generates multiple samples and the best sample that close to input74

data among those is selected. However, one of the unsatisfied things is that they still use the variational75
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bound as same as Variational Auto-Encoder (VAE) [24] for training. Thus it can be regarded that has76

still restricted for generating clear, not blurred, data.77

The preprocessing is one of the additional considerations to construct an anomaly detection78

system for reducing the computational cost. For example, data dimension reduction via preprocessing79

can be highly reduce the computational cost [25–29]. However, our PM sensor collects the value at80

every one hour, so the preprocessing is not needed to reduce computational cost such as time.81

3. Proposed Architecture82

In this section, we present the proposed architecture for anomaly detection in the PM sensor. We83

compare the property of two kinds of convolution method firstly. Then, we present the structure of the84

neural network that we propose. Finally, we describe the anomaly detection procedure.85

3.1. Reason for Using 1D Convolution86

When using the image data as the input, the 2 dimensional (2D) convolutional layer can be used87

for constructing the neural network typically. However, we use the 1 dimensional (1D) convolutional88

layer because our data is 1D signal data.89

The signal data can have the multiple channel. For example, PM2.5 and PM10 can represent first90

and second channel respectively. The 2D convolution can be used for processing the multi-channel91

signal data, but it is not efficient as shown in Figure 1.92

Figure 1. The examples of generating the output via 1D and 2D convolution. In 2D convolution
case, the zero-padding method is needed for aggregating time information with maintaining feature
dimension.

In order to minimize the information loss for each channel, our purpose is only aggregating the93

time information via a convolutional layer like a recurrent neural network [30]. In the case of 1D94

convolution, time information can be summarized while maintaining channel information in natural.95

However, if the neural network constructed with 2D convolution, the channel information of the input96

data will be reduced unintentionally. For avoiding this problem the zero-padding can be used as97

shown in Figure 2, for maintaining the channel dimension, but the last channel of the generated output98

probably has less information than the front channels. Thus, we adopt the 1D convolutional layer for99

constructing the neural network.100

3.2. Multiple Hypothesis-based Architecture101

We have already summarized related works in Section 2. UUsing the variational bound with102

distribution assumption causes generating blurred the sample. Also, the AnoGAN-like architecture103
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has lower throughput because it needs a matching procedure for finding the most closer generated104

sample to input data. The helpful thing is multiple hypothesis that can produce more relevant results105

and can work more robustly [31–33].106

We construct the neural network with reference to the concept of GANomaly as a backbone107

architecture because it can ease the several mentioned limitations of previous anomaly detection108

models. We also apply the multiple hypothesis method in the last layer of the generator. Because the109

multiple hypothesis can utilize to maintain the quality of the output consistently via selecting the best110

output. We name the procedure of selecting the best output as hypothesis pruning.111

The multiple hypothesis generates several samples from the input data directly and generates one112

additional sample from the random noise. Each generated sample is used as a hypothesis respectively113

but the samples that are not in the best case will be used as a regularization term. The overall114

architecture of the neural network that we proposed is shown in Figure 2.115

Figure 2. The architecture of the Hypothesis Pruning GAN (HP-GAN). We use a single encoder,
generator, and discriminator but the last layer of the generator is constructed with the multiple
hypothesis that colored with cyan. Pruning is conducted after generating the branches by multiple
hypothesis.

The loss functions for training above neural network are shown in Equation 1 to Equation 8. The116

symbol E, G, and D are representing encoder, generator, and discriminator respectively. Also, x, z,117

and fl mean input data, encoded latent vector, and feature map of l-th layer. The three loss functions118

Lenc, Lgen, and Ladv are discripted for encoder, generator, and discriminator respectively; shown in119

Equation 1, 2, and 7. Equation 1 and 2, are constructed with Winner-Take-All (WTA) theory [34]. The120

adversarial losses, from Equation 3 to 6, are aggregated in Equation 7.121

Lenc = ||E(x)− E(G(E(x))best||2 = ||z− ẑbest||2 (1)

Lgen = |x− G(E(x))best|1 = |x− x̂best|1 (2)

Ladvnoise
= ||D(x)− D(x̂noise)||2 (3)

Ladvbest
= ||D(x)− D(x̂best)||2 (4)

Ladvothers
= ||D(x)− D(x̂others)||2/number of others (5)
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Ladv f eature
=

L

∑
l=0
|| fl(x)− fl(x̂others)||2 (6)

Ladv = Ladvnoise
+ Ladvbest

+ Ladvothers
+ Ladv f eature

(7)

For optimizing the parameters at once, we summarize the three losses Lenc, Lgen, and Ladv with122

each weighting coefficient wenc, wgen, and wadv. The weighting coefficients are set with values 1, 50,123

and 1 respectively. These coefficients are referenced from GANomaly [20] and they can be modified by124

the hyperparameter tuning process. We conduct the hyperparameter tuning in Section 4.4, but finding125

the best weighting coefficient is not covered in this paper; we only finding the best kernel size, number126

of the convolutional block, and learning rate.127

L = wencLenc + wgenLgen + wadvLadv (8)

We train the HP-GAN via Algorithm 1. We use the Xavier initializer [35] for initializing the neural128

network, and use Adam optimizer [36] for optimizing the parameters.129

Algorithm 1 Training algorithm.
Input: Measured PM values x, and random noise znoise

Output: Generated PM values X̂ with multiple hypothesis

Initialize parameters of neural network by Xavier initializer [35]
while the loss has not converged do

Get X̂ by forward propagation
Prune X̂ as x̂best or others
Compute losses Lenc, Lgen, and Ladv
Summarizing losses as a total loss L
Update parameters by backward propagation with Adam optimizer [36]

end while

3.3. Anomaly Detection Method130

We describe the anomaly detection procedure in this section. The abnormality decision method131

is simple as shown in Algorithm 2. For using the above algorithm, input data must be measured via132

PM sensor firstly with containing two channels; PM2.5 and PM10. Then, the generation procedure is133

conducted via input the data to the neural network. We set the decision boundary θ using µ and σ134

of the training data as shown in Equation 9. The µ and σ represent the mean and standard deviation135

of the mean square error between the input and the best hypothesis of the generated samples. For136

reference, if the user wants to change the sensitivity or specificity of the anomaly detection, θ can be137

adjusted.138

θ = µ + (1.5 ∗ σ) (9)

4. Experiments139

In this section, we present our PM dataset and show experimental results for various neural140

network architectures. For assessing each model, we use Area Under the Receiver Operating141

characteristics Curve (AUROC) [37], Area Under the Precision-Recall Curve (AUPRC) [38], and142

Mean Square Error (MSE) as the performance indicators.143
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Algorithm 2 Abnormality decision algorithm.
Input: Measured PM values x

Output: Selected best hypothesis x̂best among the generated samples

θ ← set threshold based on training data
if ||x̂− x̂best||2 > θ then

x is abnormal
else

x is normal
end if

4.1. Dataset144

We have collected the PM dataset from the 12 locations in the Daegu Metropolitan Jungang145

Library, Korea. For collecting data, we use the TEOM-based sensor as shown in Figure 3 and the146

collected dataset is shown in Table 2.147

Figure 3. TEOM-based PM sensor.

Table 2. The collected PM2.5 and PM10 values via TEOM-based sensors. The each sample x ∈ IR24x2

represents two values (PM2.5 and PM10) for 24-hour.

Normal Abnormal Total

Number of Sample 249 73 322

Each sample x ∈ IR24x2 contains the information of PM2.5 and PM10 for one day with 1-hour148

unit. The label of normal or abnormal is determined by meteorologists. We use 80% of the normal149

for training, and the other normal samples and whole abnormal samples are used for assessing the150

performance.151

4.2. Experiment with Published Architecture152

First of all, we conduct experiments for confirming which architecture among the previous studies153

is effective for anomaly detection. We adopt five known architectures and reconstruct them using154

1D convolutional layer [20–24]. Each network such as encoder or generator uses three convolutional155

block, and each convolutional block consists two convolutional layer with elu activation [39]. The156

max-pooling is applied at the last of each convolutional block. We use two fully connected layers for157

the rear of the encoder and discriminator. Also, the generator includes two fully connected layers at158

the front of them.159

We measure the performance and summarize them in Table 3. We also present the best-generated160

samples selected from multiple hypothesis in Figure 4 for qualitively analysis.161
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Table 3. Measured performance of experiment with published architecture. The purpose of this
experiment is confirming which style of the architecture can detect anomaly better.

Aarchitecture PM2.5 PM10 AUROC AUPRC MSE Tr-Time Te-Time

VAE [24] O O 0.92151 0.95629 0.01170 00:16:43 0.41122
O - 0.91699 0.95617 0.01424 00:14:26 0.30716
- O 0.92630 0.95643 0.01772 00:17:14 0.36180

GANomaly [20] O O 0.93397 0.96485 0.01080 00:20:10 0.34627
O - 0.92753 0.96209 0.00914 00:21:43 0.31621
- O 0.92301 0.95882 0.01020 00:24:21 0.30096

adVAE [21] O O 0.92849 0.95704 0.01716 00:23:42 0.40858
O - 0.92096 0.94832 0.02646 00:19:32 0.31841
- O 0.94233 0.95760 0.02264 00:19:28 0.32030

LVEAD [22] O O 0.88384 0.91724 0.01944 11:16:55 1.03436
O - 0.85370 0.87660 0.03764 10:37:55 1.03876
- O 0.91575 0.94738 0.01838 11:57:14 1.01579

ConAD [23] O O 0.92452 0.95638 0.02667 00:20:22 0.34142
O - 0.92342 0.95606 0.01524 00:30:05 0.31843
- O 0.91616 0.94154 0.01799 00:30:02 0.30392

Time consumption for training and test procedure of four architectures other than LVEAD are162

similar to each other but LVEAD needs much longer time. Thus, LVEAD is not efficient in the time163

consumption viewpoint.164

The GANomaly shows the highest AUROC and AUPRC. Also, it has the lowest MSE among the165

above five architectures, so if who wants to use the known neural network without developing novel166

architecture GANomaly can be recommended.167

VAE GANomaly adVAE

LVEAD ConAD

Figure 4. The generated sample from the five architectures for qualitative analysis. The x-axis of each
subfigure represents an hour of the day and the label of the y-axis is noted in each subfigure.

For analyzing qualitative results, GANomaly generates the most similar sample to the input. The168

ConAD and VAE follow after GANomaly. The common method of VAE and ConAD is variational169

bound. The above method can be regarded as a reason for generating smoothed output. Thus, we170

conduct an ablation study to find and confirm the cause of performance degradation in the next section.171

4.3. Ablation Experiment172

We construct HP-GAN by referring to previous studies. HP-GAN, the novel unproven173

architecture, needs to confirm that it can work better than other architectures. We compose the174
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experiments to verify the ability of HP-GAN with our dataset. The several kinds of architectures other175

than HP-GAN are constructed for ablation experiments. The ablation experiment is used to find the176

cause of the performance impediment [40,41].177

The six ablation architectures are constructed that contain the GANomaly and HP-GAN. Latent178

vector Matching (LM), Variational Bound (VB), and Multiple Hypothesis (MH) are used as the179

conditions for construct these architectures. The purpose of using LM is minimizing the Euclidean180

distance between latent vector z (from x) and ẑ (from x̂). The VB is used for minimizing the181

Kullback–Leibler divergence between latent vector z and normal distribution. The MH, last condition,182

is used to generate consistent output based on (WTA) theory.183

The mini-batch size, number of the epoch, the dimension of the latent vector z, and the learning184

rate are used equally for all architectures. The above hyperparameters are set as 32, 1000, and 0.0001185

respectively. The experimental result is summarized in Table 4.186

Table 4. The performance of the six ablation (combination) architectures. We use three condition Latent
vector Matching (LM), Variational Bound (VB), and Multiple Hypothesis (MH) for ablation study.

Architecture LM VB MH PM2.5 PM10 AUROC AUPRC MSE

Ablation-1
(LM-GAN; GANomaly) O - -

O O 0.93397 0.96485 0.01080
O - 0.92753 0.96209 0.00914
- O 0.92301 0.95882 0.01020

Ablation-2
(VB-GAN) - O -

O O 0.90548 0.93130 0.02148
O - 0.94192 0.96536 0.01924
- O 0.86767 0.91166 0.04300

Ablation-3
(LMVB-GAN) O O -

O O 0.89521 0.93441 0.02510
O - 0.86096 0.90572 0.04022
- O 0.89205 0.93045 0.02974

Ablation-4
(LMMH-GAN; Ours) O - O

O O 0.91699 0.95303 0.02550
O - 0.93219 0.96312 0.01534
- O 0.92616 0.95424 0.01230

Ablation-5
(VBMH-GAN) - O O

O O 0.94644 0.96462 0.03578
O - 0.93027 0.96153 0.01486
- O 0.90068 0.94807 0.01404

Ablation-6
(LMVBMH-GAN) O O O

O O 0.92603 0.94032 0.03019
O - 0.93123 0.96179 0.01531
- O 0.92712 0.95730 0.01922

The Table 4 quantitatively shows that VBMH-GAN has better AUROC, AUPRC than the other.187

However, as shown in Figure 5, the qualitative result, the generated sample via LM-GAN (GANomaly)188

and LMMH-GAN (Ours; HP-GAN) show a better result than VBMH-GAN. Moreover, other VB-based189

architectures commonly show the blurred result.190

In this experiment, we confirm that the quantitative result represents that the VBMH-GAN is191

the best architecture, but the qualitative result of them is not good. Thus, we need to conduct more192

experiment for verifying the above architectures using varied hyperparameters, because each model193

may need the specific hyperparameter for performing much better.194

4.4. Experiment with Various Hyperparameter195

In this section, we assess four of neural networks with various hyperparameter set. For the196

experiment, we use the VAE as a baseline architecture because it is the first VB-based architecture. We197

also use GANomaly, based on LM, as one other baseline architecture. The other two architectures are198

our HP-GAN (LMMH-GAN) and VBMH-GAN.199

We use the kernel size, number of convolutional blocks, and learning rate as the hyperparameter.200

Each convolutional block consists two convolutional layer with elu activation and one max pooling201
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LM-GAN (GANomaly) VB-GAN LMVB-GAN

LMMH-GAN (Ours) VBMH-GAN LMVBMH-GAN

Figure 5. The generated sample from the six ablation architectures for qualitative analysis.

layer same as commented in Section 4.2. We compose the 108 kinds of the hyperparameter set for202

experiment via combining three hyperparameters as shown in Table 5.203

Table 5. The hyperparameters for the experiment. We use the grid search method for hyperparameter
tuning [? ]. The number of convolutional blocks is abbreviated as # of conv-block.

Hyperparameter Values

Kernel size 3, 5, 7, 9, 11, and 13
# of conv-block 2, 3, and 4
Learning rate 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, and 1e-5

When the case of large kernel sizes such as 13, the time axis dimension of the feature vector can be204

smaller than the kernel of the last layer. However, the amount of the feature information and balance205

between feature vectors is not changed by the above situation, so we also use the large size kernels.206

We present the measured performance for each hyperparameter with surface form in Figure 6 and207

7. The height of the surface represents the anomaly detection ability; the higher height means higher208

performance. The flatten surface indicates that the neural network stably responds to hyperparameter209

changes.210

When the number of the convolutional block is two or three, the surfaces for each architecture211

look like similar and relatively flatten then four-block cases. However, HP-GAN shows the most high212

and flatten surface in the four convolutional block case.213

We also confirm that HP-GAN shows generally flatten surface in the AUPRC surfaces. Thus,214

we can conclude that HP-GAN may perform stably for anomaly detection than other architectures.215

However, we additionally conduct the experiment for confirming the average performance with the216

best hyperparameter of each model. The best hyperparameter set summarized in Table 6.217

Table 6. The best hyperparameter set selected from AUROC and AUPRC surface.

Architecture Kernel size # of conv-block Learning rate

VAE 7 3 (6 convolution) 5e-4
GANomaly 9 4 (8 convolution) 5e-4
HP-GAN 7 3 (6 convolution) 1e-5
VBMH-GAN 7 3 (6 convolution) 5e-5
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We repeat the experiment 30 times with the randomly shuffled dataset for Monte Carlo estimation218

[42]. The performances are summarized with a mean ± standard deviation as shown in Table 7.219

Table 7. The measured AUROC, AUPRC, and MSE are provided with a mean ± standard deviation
form. The experiment is conducted with the best hyperparameter set for each architecture.

Architecture AUROC AUPRC MSE

VAE 0.918 ± 0.033 0.942 ± 0.028 0.025 ± 0.009
GANomaly 0.911 ± 0.091 0.937 ± 0.062 0.027 ± 0.049
HP-GAN 0.948 ± 0.010 0.967 ± 0.008 0.023 ± 0.016
VBMH-GAN 0.944 ± 0.021 0.959 ± 0.020 0.033 ± 0.057

In Table 7, the higher the mean represents better performance. On the other hand, the lower220

standard deviation means higher stability. The HP-GAN that we proposed in this paper shows the221

higher performance at every indicator. Moreover, HP-GAN has higher stability (lower standard222

deviation) at every indicator.223

5. Conclusion224

We experimentally show the cutting-edge performance at anomaly detection of our HP-GAN225

in the TEOM-based PM sensor. The HP-GAN is trained by latent vector matching with multiple226

hypothesis based on WTA theory. Our neural network, HP-GAN, can generate the output more clearly227

and consistently with avoiding blurring effect than other VB-based models when the input data is in228

the normal category. The mean of AUROC and AUPRC of HP-GAN are 0.037 0.080 higher than the229

second performance model VBMH-GAN. Also, the mean of MSE is best (lowest) among the whole230

architectures. Thus, we finally conclude our HP-GAN as a cutting-edge architecture for anomaly231

detection.232
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Figure 6. The surface of AUROC with various hyperparameters. The AUROC of VAE, GANomaly, and
HP-GAN (LMMH-GAN), and VBMH-GAN are shown in each row sequentially. Each column shows
the result of two, three, and four convolutional blocks from the left to right.
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Figure 7. The surface of AUPRC with various hyperparameters. The order of the shown contents is the
same as Figure 6.
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