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1 Abstract: World Health Organization (WHO) provides the guideline for managing the Particulate
= Matter (PM) level because when the PM level is higher, it threats the human health. For managing PM
s level, the procedure for measuring PM value is needed firstly. We use Tapered Element Oscillating
+  Microbalance (TEOM)-based PM measuring sensors because it shows higher cost-effectiveness
s than Beta Attenuation Monitor (BAM)-based sensor. However, TEOM-based sensor has higher
¢  probability of malfunctioning than BAM-based sensor. In this paper, we call the overall malfunction
» as an anomaly, and we aim to detect anomalies for the maintenance of PM measuring sensors.
s We propose a novel architecture for solving the above aim that named as Hypothesis Pruning
s  Generative Adversarial Network (HP-GAN). We experimentally compare the several anomaly
1o detection architectures to certify ours performing better.

1 Keywords: anomaly detection; generative adversarial network; multiple hypothesis; particulate
12 Mmatter

3 1. Introduction

"

14 World Health Organization (WHO) recommends to managing the provides Particulate Matter
15 (PM) level with providing their guideline as shown in Table 1 because it can infiltrate into the deeper
1e  site of humans via respiratory organ [1]. For detail, the PM can trigger not only respiratory diseases [2]
1z but also cardiovascular disease [3], lung cancer [4], or some other diseases.

18 For managing PM level with referring Table 1, the process for measuring the air condition should
1o be preceded. In the Republic of Korea, the Air Korea, operated by Korea Environment Corporation,
20 provides measured values of SO, CO, O3, NO,, PM; 5 and PM;jy with unit of one hour. For informing
=z the air pollution to the public, the higher spatial resolution may be more effective than lower. However,
22 the resolution provided by them is relatively low because of the cost of maintaining the high-end PM
23 Ineasuring sensor.

24 Two types of sensors can be used for PM measurement, each based on Beta Attenuation Monitor
2 (BAM) and Tapered Element Oscillating Microbalance (TEOM) methods [5,6]. The characteristic of the
e BAM-based sensor is higher precision of measurement, but it needs high maintenance costs as in the
2z case of Air Korea. On the other hand, the TEOM-based sensor needs a lower cost than the BAM-based
2s  sensor. For the above reason, when using a BAM-based sensor, increasing the spatial resolution it is
2 difficult but it can be eased via using a cost-effective TEOM-based sensor.

30 The two coefficients, one of them is Pearson’s correlation coefficient and the other is a coefficient
a1 of determination for 1-hour averages, are used as proof for the cost-effectiveness of TEOM-based
sz sensor. Those coefficients are already measured as 0.91 and 0.81 respectively [5].

33 The TEOM-based sensor can alternate the BAM-based sensor to monitor the PM level. Thus,
s We have installed TEOM-based sensors relatively densely in several regions as a trial. However, the
35 limitation of the TEOM-based sensor is that it has a more probability malfunctioning in the measuring
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Table 1. Air Quality Guideline (AQG) for Particulate Matter (PM) level management from World Health
Organization (WHO) [1]. The unit of each value is yg/m>. When the diameter of PM is 2.5ug/m? it
called PM, 5, and when it between 2.5;4g/m3 and 10yg/m3, called PMjyy.

Annual mean 24-hour mean
PMy 5 10 25
PM;yg 20 50

36 process than the BAM-based sensor because it more affected by the external environment; we call
sz overall malfunctions as an anomaly. Thus, we propose the novel architecture for anomaly detection
s to maintain a TEOM-based sensor. Because, if an anomaly detecting solution is provided with the
s TEOM-based sensor, the efficiency of the PM level monitoring cost can be made more effective.

a0 The organization of this paper is described as follows. In Section 2, we summarize previous studies
a1 that have efforted for anomaly detection. We present the proposed architecture and experimental
.2 results in Section 3 and Section 4 respectively, and conclude the whole content in final section. We only
a3 deal with anomaly detection task of functioning sensors in this paper. Thus, the task after anomaly
41 detection, can be categorized to correcting the collected values or maintain the sensor via engineer,
«s will be handled in future study.

. 2. Related Works

a7 Several previous studies have conducted the anomaly detection via classification approach with
s various methods [7-11]. However, there are some problem for using classification method such as
o difficulty of collecting diverse abnormal cases and labeling cost from collected data to specific category.
50 For detecting anomaly, the above problems can be eased by regression-based method such as
51 One-Class SVM [12], Auto-Encoder (AE) [13,14], or Long-Short Term Memory (LSTM) [15,16]. The idea
s2  of regression-based method is such simple. Also, the cost of data preparing to use regression-based
ss machine learning or deep learning-based anomaly detection algorithm is not high. Because we need
s« only the normal case (healthy) data for training, and it does not need the categorization process.
ss Moreover, the labeling task is needed for measuring performance quantitatively, but it is quite simple
ss in this case because each sample needs only checked whether normal or not.

57 Recently, there are several neural network-based anomaly detection models are published [17-23].
ss The generative neural network which trained with variational bound can make the user desired data
so from the random noise [17,24]. However, generating data from noise as same as they do is not essential
e in anomaly detection. Moreover, because of using variational bound with distribution assumption, the
e above deep learning architectures may generate the blurred data.

62 The Generative Adversarial Network (GAN)-based anomaly detection model is published
es as named as AnoGAN [18]. The AnoGAN can generate more sharped data than the variational
s« bound-based model. However, it needs to find the most close generated sample from noise with input
es data for determining abnormal or not. Because of the above procedure, the throughput of AnoGAN is
es lower than the typical AE-based architecture.

67 Some of the recent research, such as BiIGAN [19] and GANomaly [20], eased the limitation
ss of AnoGAN. These models directly generate the sample via input data and use them for anomaly
es detection. BIGAN [19] has the limitation of generating high-resolution samples because encoder and
7 decoder share the parameters. However, GANomaly [20] eases the above limitation via simply using
n  separated parameters for encoder and decoder respectively.

72 One other research tried to generate data consistently with avoiding to generate the blurred
7s sample [23]. For achieving their purpose, they apply the multiple hypothesis to the last layer of the
7a generator. Their neural network generates multiple samples and the best sample that close to input
7 data among those is selected. However, one of the unsatisfied things is that they still use the variational
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76 bound as same as Variational Auto-Encoder (VAE) [24] for training. Thus it can be regarded that has
7z still restricted for generating clear, not blurred, data.

78 The preprocessing is one of the additional considerations to construct an anomaly detection
7 system for reducing the computational cost. For example, data dimension reduction via preprocessing
s can be highly reduce the computational cost [25-29]. However, our PM sensor collects the value at
s1 every one hour, so the preprocessing is not needed to reduce computational cost such as time.

s2 3. Proposed Architecture

o3 In this section, we present the proposed architecture for anomaly detection in the PM sensor. We
s« compare the property of two kinds of convolution method firstly. Then, we present the structure of the
es neural network that we propose. Finally, we describe the anomaly detection procedure.

es 3.1. Reason for Using 1D Convolution

o7 When using the image data as the input, the 2 dimensional (2D) convolutional layer can be used
es for constructing the neural network typically. However, we use the 1 dimensional (1D) convolutional
s layer because our data is 1D signal data.

% The signal data can have the multiple channel. For example, PMj 5 and PM;jg can represent first
o1 and second channel respectively. The 2D convolution can be used for processing the multi-channel
o2 signal data, but it is not efficient as shown in Figure 1.

1D-Convolution
o0 5

2D-Convolution

00000
X0

Input Kernel Output

Figure 1. The examples of generating the output via 1D and 2D convolution. In 2D convolution
case, the zero-padding method is needed for aggregating time information with maintaining feature
dimension.

03 In order to minimize the information loss for each channel, our purpose is only aggregating the
o« time information via a convolutional layer like a recurrent neural network [30]. In the case of 1D
s convolution, time information can be summarized while maintaining channel information in natural.
o However, if the neural network constructed with 2D convolution, the channel information of the input
oz data will be reduced unintentionally. For avoiding this problem the zero-padding can be used as
os shown in Figure 2, for maintaining the channel dimension, but the last channel of the generated output
9o probably has less information than the front channels. Thus, we adopt the 1D convolutional layer for
w0 constructing the neural network.

w1 3.2. Multiple Hypothesis-based Architecture

102 We have already summarized related works in Section 2. UUsing the variational bound with
103 distribution assumption causes generating blurred the sample. Also, the AnoGAN:-like architecture
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10s has lower throughput because it needs a matching procedure for finding the most closer generated
15 sample to input data. The helpful thing is multiple hypothesis that can produce more relevant results
16 and can work more robustly [31-33].

107 We construct the neural network with reference to the concept of GANomaly as a backbone
10s architecture because it can ease the several mentioned limitations of previous anomaly detection
100 models. We also apply the multiple hypothesis method in the last layer of the generator. Because the
10 multiple hypothesis can utilize to maintain the quality of the output consistently via selecting the best
11 output. We name the procedure of selecting the best output as hypothesis pruning.

112 The multiple hypothesis generates several samples from the input data directly and generates one
13 additional sample from the random noise. Each generated sample is used as a hypothesis respectively
ue but the samples that are not in the best case will be used as a regularization term. The overall
us  architecture of the neural network that we proposed is shown in Figure 2.

%E{ 1 ) &

Ladv

N(0,1) ~’

S

tor

Figure 2. The architecture of the Hypothesis Pruning GAN (HP-GAN). We use a single encoder,
generator, and discriminator but the last layer of the generator is constructed with the multiple
hypothesis that colored with cyan. Pruning is conducted after generating the branches by multiple
hypothesis.

116 The loss functions for training above neural network are shown in Equation 1 to Equation 8. The
ur symbol E, G, and D are representing encoder, generator, and discriminator respectively. Also, x, z,
us and f; mean input data, encoded latent vector, and feature map of I-th layer. The three loss functions
1o Lenc, Lgen, and L4, are discripted for encoder, generator, and discriminator respectively; shown in
120 Equation 1, 2, and 7. Equation 1 and 2, are constructed with Winner-Take-All (WTA) theory [34]. The
11 adversarial losses, from Equation 3 to 6, are aggregated in Equation 7.

Lene = ||E(x) = E(G(E(x))pest|l2 = ||z = Zbest| |2 @)
Leen = |x — G(E(X))pest |1 = [X — Zpest 1 )
Loty = [ID(x) = D(Znoise) |2 3)

Ladvyey = 11D (x) = D(Zpest) |2 4)

E‘zdvothers = ||D(X) - D(fothers) | |2/number ofothers (5)
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advfeuture Z | |fl fl xthE‘r‘S) | |2 (6)

Eudv = E”dvnaise + Eadvbest + ﬁadvothers + Eudvfeuture (7)

122 For optimizing the parameters at once, we summarize the three losses Lenc, Lgen, and L4, with

123 each weighting coefficient Weyc, Wgen, and w,4,. The weighting coefficients are set with values 1, 50,
124 and 1 respectively. These coefficients are referenced from GANomaly [20] and they can be modified by
125 the hyperparameter tuning process. We conduct the hyperparameter tuning in Section 4.4, but finding
126 the best weighting coefficient is not covered in this paper; we only finding the best kernel size, number
127 of the convolutional block, and learning rate.

L = wWencLenc + wgen»cgen + Wago Lado ®)

128 We train the HP-GAN via Algorithm 1. We use the Xavier initializer [35] for initializing the neural
120 Network, and use Adam optimizer [36] for optimizing the parameters.

Algorithm 1 Training algorithm.

Input: Measured PM values x, and random noise z;;y;s,

Output: Generated PM values X with multiple hypothesis

Initialize parameters of neural network by Xavier initializer [35]
while the loss has not converged do

Get X by forward propagation

Prune X as Xy, or others

Compute losses Lenc, Lgen, and L4,

Summarizing losses as a total loss £

Update parameters by backward propagation with Adam optimizer [36]
end while

10 3.3. Anomaly Detection Method

131 We describe the anomaly detection procedure in this section. The abnormality decision method
132 is simple as shown in Algorithm 2. For using the above algorithm, input data must be measured via
133 PM sensor firstly with containing two channels; PM; 5 and PMjy. Then, the generation procedure is
13 conducted via input the data to the neural network. We set the decision boundary 6 using y and o
135 Of the training data as shown in Equation 9. The i and ¢ represent the mean and standard deviation
13 of the mean square error between the input and the best hypothesis of the generated samples. For
1z reference, if the user wants to change the sensitivity or specificity of the anomaly detection, § can be
138 adjusted.

0=pu+(15%0) ©)

130 4. Experiments

140 In this section, we present our PM dataset and show experimental results for various neural
11 network architectures. For assessing each model, we use Area Under the Receiver Operating
12 characteristics Curve (AUROC) [37], Area Under the Precision-Recall Curve (AUPRC) [38], and
13 Mean Square Error (MSE) as the performance indicators.
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Algorithm 2 Abnormality decision algorithm.
Input: Measured PM values x

Output: Selected best hypothesis £;,;; among the generated samples

8 < set threshold based on training data
if ||32 - ﬁbest| ’2 > 0 then

x is abnormal
else

x is normal
end if

s 4.1. Dataset

145 We have collected the PM dataset from the 12 locations in the Daegu Metropolitan Jungang
16 Library, Korea. For collecting data, we use the TEOM-based sensor as shown in Figure 3 and the
1z collected dataset is shown in Table 2.

Enmunan’

-

5.
)
=
=
=
a
=

Figure 3. TEOM-based PM sensor.

Table 2. The collected PMj 5 and PM;, values via TEOM-based sensors. The each sample x € R24x2
represents two values (PMp 5 and PMyg) for 24-hour.

Normal Abnormal Total

Number of Sample 249 73 322

148 Each sample x € RZ%2 contains the information of PM, 5 and PMj for one day with 1-hour
1o unit. The label of normal or abnormal is determined by meteorologists. We use 80% of the normal

10 for training, and the other normal samples and whole abnormal samples are used for assessing the
11 performance.

12 4.2. Experiment with Published Architecture

153 First of all, we conduct experiments for confirming which architecture among the previous studies
s is effective for anomaly detection. We adopt five known architectures and reconstruct them using
155 1D convolutional layer [20-24]. Each network such as encoder or generator uses three convolutional
1 block, and each convolutional block consists two convolutional layer with elu activation [39]. The
157 max-pooling is applied at the last of each convolutional block. We use two fully connected layers for
1ss  the rear of the encoder and discriminator. Also, the generator includes two fully connected layers at
10 the front of them.

160 We measure the performance and summarize them in Table 3. We also present the best-generated
161 samples selected from multiple hypothesis in Figure 4 for qualitively analysis.
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Table 3. Measured performance of experiment with published architecture. The purpose of this
experiment is confirming which style of the architecture can detect anomaly better.

Aarchitecture PM;s PM;y AUROC AUPRC MSE Tr-Time Te-Time
VAE [24] (@) (@) 0.92151 0.95629 0.01170 00:16:43  0.41122

(@) - 0.91699 095617 0.01424 00:14:26  0.30716
- (@) 092630  0.95643 0.01772 00:17:14  0.36180
GANomaly [20] @) O 0.93397  0.96485 0.01080 00:20:10  0.34627
(@) - 0.92753  0.96209 0.00914 00:21:43  0.31621
- (@) 092301  0.95882  0.01020 00:24:21  0.30096
adVAE [21] (@) (@] 0.92849 095704 0.01716 00:23:42  0.40858
(@) - 092096  0.94832 0.02646 00:19:32  0.31841
- O 0.94233 095760 0.02264 00:19:28  0.32030
LVEAD [22] (@) (@) 0.88384 091724 0.01944 11:16:55  1.03436
@) - 0.85370  0.87660  0.03764 10:37:55  1.03876
- O 0.91575 094738 0.01838 11:57:14  1.01579
ConAD [23] (@) (@) 092452  0.95638 0.02667 00:20:22  0.34142
@) - 0.92342 095606  0.01524 00:30:05  0.31843
- (@) 091616  0.94154 0.01799 00:30:02  0.30392
162 Time consumption for training and test procedure of four architectures other than LVEAD are

163 similar to each other but LVEAD needs much longer time. Thus, LVEAD is not efficient in the time
164 consumption viewpoint.

165 The GANomaly shows the highest AUROC and AUPRC. Also, it has the lowest MSE among the
166 above five architectures, so if who wants to use the known neural network without developing novel
167 architecture GANomaly can be recommended.

— pus

o~

[ RN D (SR T E - - FRTTOTI T P
5 EY £ H 5 E)

VAE GANomaly

/\ "'A\\; M10
NN
H ) 15 20

PR P IR A E . Y 'Y P TR A
0 B W o > 0 3 ® B »

LVEAD ConAD
Figure 4. The generated sample from the five architectures for qualitative analysis. The x-axis of each
subfigure represents an hour of the day and the label of the y-axis is noted in each subfigure.

168 For analyzing qualitative results, GANomaly generates the most similar sample to the input. The
16s  ConAD and VAE follow after GANomaly. The common method of VAE and ConAD is variational
170 bound. The above method can be regarded as a reason for generating smoothed output. Thus, we
11 conduct an ablation study to find and confirm the cause of performance degradation in the next section.

w2 4.3. Ablation Experiment

173 We construct HP-GAN by referring to previous studies. HP-GAN, the novel unproven
17a  architecture, needs to confirm that it can work better than other architectures. We compose the
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175 experiments to verify the ability of HP-GAN with our dataset. The several kinds of architectures other
1z than HP-GAN are constructed for ablation experiments. The ablation experiment is used to find the
17z cause of the performance impediment [40,41].

178 The six ablation architectures are constructed that contain the GANomaly and HP-GAN. Latent
1o vector Matching (LM), Variational Bound (VB), and Multiple Hypothesis (MH) are used as the
10 conditions for construct these architectures. The purpose of using LM is minimizing the Euclidean
i1 distance between latent vector z (from x) and Z (from £). The VB is used for minimizing the
1.2 Kullback-Leibler divergence between latent vector z and normal distribution. The MH, last condition,
1e3  is used to generate consistent output based on (WTA) theory.

184 The mini-batch size, number of the epoch, the dimension of the latent vector z, and the learning
s rate are used equally for all architectures. The above hyperparameters are set as 32, 1000, and 0.0001
16 respectively. The experimental result is summarized in Table 4.

Table 4. The performance of the six ablation (combination) architectures. We use three condition Latent
vector Matching (LM), Variational Bound (VB), and Multiple Hypothesis (MH) for ablation study.

Architecture LM VB MH PM;s5 PM;y; AUROC AUPRC MSE
Ablation-1 O @) 0.93397 096485 0.01080
o - - O 0.92753 0.96209  0.00914

(LM-GAN; GANomaly)

- O 092301 095882 0.01020

Ablation.2 o O 090548 093130 0.02148
(VB?GZN) - 0 - 0 - 094192 096536  0.01924
- O 086767 091166 0.04300

Ablation3 0 O 089521 093441 0.02510
(LMVB.GAN) o o - 0 - 086096 090572  0.04022
- O 089205 093045 0.02974

Ablation.4 0 O 091699 095303 0.02550
o - o0 o - 093219 096312  0.01534

(LMMH-GAN; Ours) - O 092616 095424 0.01230
Ablation.5 0 O 094644 096462 0.03578
(VBMELGAN) - 0 O o) - 093027 096153  0.01486
- O 090068 094807 0.01404

Ablation.6 0 O 092603 094032  0.03019
(LNF‘VIE’;‘/[H_G AN) O O O o© - 093123 096179  0.01531
- O 092712 095730 0.01922

167 The Table 4 quantitatively shows that VBMH-GAN has better AUROC, AUPRC than the other.

1.s However, as shown in Figure 5, the qualitative result, the generated sample via LM-GAN (GANomaly)
1ss  and LMMH-GAN (Ours; HP-GAN) show a better result than VBMH-GAN. Moreover, other VB-based
10 architectures commonly show the blurred result.

191 In this experiment, we confirm that the quantitative result represents that the VBMH-GAN is
102 the best architecture, but the qualitative result of them is not good. Thus, we need to conduct more
103 experiment for verifying the above architectures using varied hyperparameters, because each model
10e may need the specific hyperparameter for performing much better.

15 4.4. Experiment with Various Hyperparameter

196 In this section, we assess four of neural networks with various hyperparameter set. For the
17 experiment, we use the VAE as a baseline architecture because it is the first VB-based architecture. We
108 also use GANomaly, based on LM, as one other baseline architecture. The other two architectures are
10 our HP-GAN (LMMH-GAN) and VBMH-GAN.

200 We use the kernel size, number of convolutional blocks, and learning rate as the hyperparameter.
201 Each convolutional block consists two convolutional layer with elu activation and one max pooling
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Figure 5. The generated sample from the six ablation architectures for qualitative analysis.

202 layer same as commented in Section 4.2. We compose the 108 kinds of the hyperparameter set for
203 experiment via combining three hyperparameters as shown in Table 5.

Table 5. The hyperparameters for the experiment. We use the grid search method for hyperparameter
tuning [? ]. The number of convolutional blocks is abbreviated as # of conv-block.

Hyperparameter Values

Kernel size 3,5,7,9,11,and 13
# of conv-block 2,3,and 4
Learning rate 5e-3, 1e-3, 5e-4, 1e-4, 5e-5, and 1le-5
204 When the case of large kernel sizes such as 13, the time axis dimension of the feature vector can be

20s smaller than the kernel of the last layer. However, the amount of the feature information and balance
206 between feature vectors is not changed by the above situation, so we also use the large size kernels.
207 We present the measured performance for each hyperparameter with surface form in Figure 6 and
2s 7. The height of the surface represents the anomaly detection ability; the higher height means higher
200 performance. The flatten surface indicates that the neural network stably responds to hyperparameter
210 changes.

211 When the number of the convolutional block is two or three, the surfaces for each architecture
212 look like similar and relatively flatten then four-block cases. However, HP-GAN shows the most high
23 and flatten surface in the four convolutional block case.

214 We also confirm that HP-GAN shows generally flatten surface in the AUPRC surfaces. Thus,
x5 we can conclude that HP-GAN may perform stably for anomaly detection than other architectures.
zs  However, we additionally conduct the experiment for confirming the average performance with the
a1z best hyperparameter of each model. The best hyperparameter set summarized in Table 6.

Table 6. The best hyperparameter set selected from AUROC and AUPRC surface.

Architecture  Kernel size  # of conv-block  Learning rate

VAE 7 3 (6 convolution) 5e-4
GANomaly 9 4 (8 convolution) 5e-4
HP-GAN 7 3 (6 convolution) le-5
VBMH-GAN 7 3 (6 convolution) 5e-5
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We repeat the experiment 30 times with the randomly shuffled dataset for Monte Carlo estimation
[42]. The performances are summarized with a mean =+ standard deviation as shown in Table 7.

Table 7. The measured AUROC, AUPRC, and MSE are provided with a mean =+ standard deviation

form. The experiment is conducted with the best hyperparameter set for each architecture.

Architecture AUROC AUPRC MSE
VAE 0.918 £0.033  0.942 +0.028  0.025 4= 0.009
GANomaly 0911 4+£0.091 0.937 £0.062 0.027 & 0.049
HP-GAN 0.948 & 0.010 0.967 & 0.008 0.023 & 0.016
VBMH-GAN  0.944 +£0.021 0.959 +£0.020  0.033 & 0.057
220 In Table 7, the higher the mean represents better performance. On the other hand, the lower

2z standard deviation means higher stability. The HP-GAN that we proposed in this paper shows the
222 higher performance at every indicator. Moreover, HP-GAN has higher stability (lower standard
223 deviation) at every indicator.

22a 5. Conclusion

226 We experimentally show the cutting-edge performance at anomaly detection of our HP-GAN
226 in the TEOM-based PM sensor. The HP-GAN is trained by latent vector matching with multiple
22z hypothesis based on WTA theory. Our neural network, HP-GAN, can generate the output more clearly
228 and consistently with avoiding blurring effect than other VB-based models when the input data is in
220 the normal category. The mean of AUROC and AUPRC of HP-GAN are 0.037 0.080 higher than the
230 second performance model VBMH-GAN. Also, the mean of MSE is best (lowest) among the whole
a1 architectures. Thus, we finally conclude our HP-GAN as a cutting-edge architecture for anomaly
232 detection.

233 Funding: This research received no external funding.

23a  Acknowledgments: Thank you to all the team and corporation members. They have supported this research via
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Figure 6. The surface of AUROC with various hyperparameters. The AUROC of VAE, GANomaly, and
HP-GAN (LMMH-GAN), and VBMH-GAN are shown in each row sequentially. Each column shows
the result of two, three, and four convolutional blocks from the left to right.
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Figure 7. The surface of AUPRC with various hyperparameters. The order of the shown contents is the

same as Figure 6.
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