Microbial growth has been of prime importance to the researchers in health and biotechnology industries. It has been known to be closely associated to the secretion of extracellular polymeric substances that help in the formation of colonies. Inter-microbial communication happens within such colonies by means of extracellular electron transfer mediated by the aforementioned polymeric substances. Conventionally, different phases of microbial growth are monitored with the aid of a traditional UV-Visible spectrophotometer by measuring the optical density of the liquid medium at 280 nm. In this paper, we have developed an alternative novel way to sense different growth phases employing electrochemical means i.e. two-terminal cyclic voltammetry. This cyclic voltammetry relies on the extracellular electron transfer mechanism taking place via the polymeric substances secreted by the microorganisms, measured by the temporal area changes in the current-voltage hysteresis curves in the inoculated nutrient broth. This work paves a new way to detect the biological activity in the medium, which can be directly correlated to the population of microorganisms. It would be of immense interest to scientists and researchers working in the field of microbiology as well as in development of biosensors, electrochemical sensors etc. which would be helpful in absence of traditional spectrophotometers.
Keywords:
Subject: Chemistry and Materials Science - Analytical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.