Preprint
Review

k-root-n: An Efficient Algorithm for Avoiding Short Term Double-Spending Alongside Distributed Ledger Technologies Such as Blockchain

Altmetrics

Downloads

255

Views

177

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

06 January 2020

Posted:

08 January 2020

You are already at the latest version

Alerts
Abstract
Blockchains such as the bitcoin blockchain depend on reaching a global consensus on the distributed ledger; therefore, they suffer from well know scalability problems. This paper proposes an algorithm that avoids double-spending in the short term with just O(√n) messages; each node receiving money off-chain performs the due diligence of consulting kn random nodes to check if any of them is aware of double-spending. Two nodes receiving double-spent money will in this way consult at least one common node with very high probability, due to the ‘birthday paradox’, and any common honest node consulted will detect the fraud. Since the velocity of money in the real world has coins circulating through at most a few wallets per day, the size of the due diligence communication is small in the short term. This `k-root-n’ algorithm is suitable for an environment with synchronous or asynchronous (but with fairly low latency) communication and with Byzantine faults. The presented k-root-n algorithm should be practical to avoid double-spending with arbitrarily high probability, while feasibly coping with the throughput of all world commerce. It is resistant to Sybil attacks even beyond 50% of nodes. In the long term, the k-root-n algorithm is less efficient. Therefore, it should preferably be used as a complement and not a replacement to a global distributed ledger technology.
Keywords: 
Subject: Computer Science and Mathematics  -   Information Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated