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24  Abstract

25  Accurate assessment and projections of extreme climate events requires the use of climate
26  datasets with no or minimal error. This study uses quantile mapping bias correction (QMBC)
27  method to correct the bias of five Regional Climate Models (RCMs) from the latest output of
28  Rosshby Climate Model Center (RCA4) over Kenya, East Africa. The outputs were validated
29  using various scalar metrics such as Root Mean Square Difference (RMSD), Mean Absolute
30 Error (MAE) and mean Bias. The study found that the QMBC algorithm demonstrate varying
31  performance among the models in the study domain. The results show that most of the
32 models exhibit significant improvement after corrections at seasonal and annual timescales.
33  Specifically, the European community Earth-System (EC-EARTH) and Commonwealth
34  Scientific and Industrial Research Organization (CSIRO) models depict exemplary
35 improvement as compared to other models. On the contrary, the Institute Pierre Simon
36 Laplace Model CM5A-MR (IPSL-CM5A-MR) model show little improvement across
37 various timescales (i.e. March-April-May (MAM) and October-November-December

38 (OND)). The projections forced with bias corrected historical simulations tallied observed
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39 values demonstrate satisfactory simulations as compared to the uncorrected RCMs output
40 models. This study has demonstrated that using QMBC on outputs from RCA4 is an
41  important intermediate step to improve climate data prior to performing any regional impact
42  analysis. The corrected models can be used for projections of drought and flood extreme
43  events over the study area. This study analysis is crucial from the sustainable planning for

44  adaptation and mitigation of climate change and disaster risk reduction perspective.

45  Keywords: Quantile Mapping Bias Correction (QMBC), Regional Climate Models (RCMs),
46  Rossby Centre Regional Climate Models (RCA4), Drought, Flood, Kenya

47 1. Introduction

48 Recently, the changes in the frequency and intensity of extreme events have led to
49  serious climate related disasters across many parts of the world. These extreme events (i.e.
50 floods, droughts, and/or heatwaves) have gained considerable attention by climate scientists
51  and the general public due their devastating impact on ecosystem and different sectors of the
52  society.

53 Thus, monitoring and forecasting of such extreme events is crucial steps to ensure that
54  the Malabo Goals 2025 and the 2030 Agenda for Sustainable Development of the Sustainable
55  Development Goal 2 (SDG2) are met (FAO, 2019). It is against this backdrop that climate
56 information’s availability and accuracy are important for climate change assessment (IPCC,
57  2014).

58 From a policy formulation perspective, global climate models (GCMs) and regional
59 climate models (RCMs) are such examples of datasets used in forecasting and projecting
60  studies. Additionally, model outputs from GCMs and RCMs are sometimes used as input data
61  source in the forecasting and projection of the extreme events. However, these model outputs
62 are saddled with uncertainties that arise due to systematic and/or random biases relative to in-
63  situ datasets (Christensen et al., 2008: Teutschbein and Seibert, 2010). For example, Cardell
64 et al.,, (2019) associated the model random error to intricate topography or atmosphere-
65  biosphere transition along large water bodies. In a different study, Allen et al., (2006) linked
66  systematic errors (model biases) to model coarser resolutions or parameterizations schemes.
67 Other studies (e.g., Mearns et al., 2012; Cannon et al., 2015), also reported
68  considerable deviations (i.e. over/underestimations) relative to in-situ observations. Thus,
69  within the context of these studies, readers are cautioned when generalizing results from these

70  models outputs. Of great interest, are water resource planners and managers, who are required
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71  to periodically conduct regional impact analysis to assess the impacts of climate change on
72 watershed hydrology. Thus, to quantify the changes and predict extreme events against the
73 backdrop of warming climate, scientists and policy analyst alike have no option than to use
74 the existing GCM and RCM ensembles, despite report of uncertainties in their climate change
75  assessment (IPCC, 2014).
76 Meanwhile, different spatial downscaling and bias correction tools have been
77  proposed and applied extensively to remove this inherent errors or biases. Thus, to correct or
78  minimize these biases or errors, scientists use two distinct spatial downscaling and bias
79  correction tools; namely, statistical and dynamic downscaling methods.
80 In this study, we do not attempt to compare the advantages and disadvantages of these
81  methods since extensive literature review concludes that it is difficult to define the best
82  method as the overall output performance of the two methods are able to reproduce the recent
83  climate (Murphy, 1999; Wilby and Wigley., 2000; Ahmad et al., 2013). From literature, these
84  two methods have been applied to downscale GCM to RCM (IPCC, 2014).
85 Several RCMs based on dynamic downscaling are now available for many regions
86  across the globe (IPCC, 2014). Example includes the RCM precipitation data sourced from
87 Rosshby Centre Climate Model outputs (Samuelsson et al., 2012; Strandberget al., 2014).
88  However, following a phenomenal study of Ahmed et al., (2013) and Wood et al. (2004), it is
89  clear that the spatial resolution of the RCM for regional or local applications, may not be high
90  enough and/or still contain some inherent errors. To use this type of climate data for present
91  and future climate predictions, the two studies recommended bias corrections of RCM data to
92  remove possibly the biases prior to their application. In parallel, this is particularly relevant
93  for the Africa continent as well as her sub-regions where the number of in-situ stations, data
94  availability, and quality have considerably declined and become less reliable (Malhi and
95  Wright (2004).
96 Thus, to remove biases in RCM, recent studies (Christensen et al., 2008; Terink et al.,
97  2008; Teutschbein and Seibert, 2012; Fang et al., 2015; Cardell et al., 2019) have adopted
98  statistical technique to adjust RCMs simulations and projections of climatic variables using
99  different bias correction methods.
100 Examples of the bias correction methods include the delta correction (Moore et al.,
101 2008; Rasmussen et al., 2012); Linear transformation (Lenderink et al., 2007); Local Intensity
102 Scaling (Schmidli et al., 2006); Power Transformation (Leander et al., 2008); Distribution
103 mapping (Block et al., 2009; Sun et al., 2011); and the Quantile Mapping Bias Correction


https://doi.org/10.20944/preprints202001.0119.v1
https://doi.org/10.3390/w12030801

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 January 2020 d0i:10.20944/preprints202001.0119.v1

104  (QMBC) (Panofsky and Brier, 1968; Piani et al., 2009; Theme(d et al., 2011), just to mention
105 afew.

106 The conclusions drawn from these studies suggest that QMBC algorithm outperform
107  other methods (Gudmundsson et al., 2012; Teutschbein and Seibert, 2012; Chen et al., 2013).
108 It is important to note that QMBC is also referred as quantile-quantile mapping (Sun et al.,
109  2011), probability mapping (Ines and Hansen, 2006), statistical downscaling (Piani et al.,
110  2010), or histogram equalization (Rojas et al., 2011).

111 The QMBC method is based on the hypothesis that climate biases that need to be
112 corrected are unchanging hence its features in historical data will persist into the future
113 projections (Maraun et al., 2010, 2012). Although, this study acknowledges that QMBC
114  technique has limitations (see Boé&et al., 2007; Cannon et al., 2015), QMBC usage is widely
115  preferred for impact analysis (Maraun, 2013; Hempel et al., 2013; Maurer and Pierce, 2014;
116  Cannon et al., 2015).

117 Over the East Africa region, recent studies have reported existence of biases in RCMs
118 and GCMs datasets (Endris et al., 2013; Kisembe et al., 2018; Ongoma et al., 2019). To
119  illustrate, Ayugi et al. (2020) demonstrated the manifestation of systematic dry (wet) biases

120  over regions of low (high) altitude characterized by arid and semi-arid lands (ASALS) or
121 complex topography. Furthermore, the study highlighted that most mean spatial biases tend to
122 follow the physiographic features in the study domain, which RCMs could not clearly
123 reproduce due to its coarser resolution (~50 km) and physical parameterization.

124 Despite the observed biases, few studies have attempted to correct systematic
125  distributional biases relative to historical observations, and possible future simulations on the
126  RCMs or GCMs. A number of studies have however improved the quality of satellite-derived
127  estimates using other techniques, such as Bayessian approach (Kimani et al., 2018a,b).

128 In order to improve the accuracy of projections of extreme events such as drought and
129  flood over East Africa, better performing RCMs and satellite datasets (Endris et al., 2013;
130  Kimani et al., 2018a, b; Ayugi et al., 2019, 2020) ought to be further improved using
131  correctional techniques so as to minimize possible biases and enhance the quality (Maraun et
132 al., 2010).

133 Thus, as a follow-up from Ayugi et al. (2020), this study focuses on assessing the
134  importance and performance of QMBC on model outputs over East Africa as an intermediate
135  step prior to performing any regional impact analysis. This analysis is crucial from the
136  sustainable planning for adaptation and mitigation of climate change and disaster risk

137  reduction perspective. The objective of this study is to perform bias correction on the RCMs
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138  over Kenya, using QMBC prior to the assessment and projections of floods and droughts in
139  the mentioned study domain.

140 The remaining section of the paper are organized as follows: Section 2 highlights data
141 and methods used whilst results and discussions are presented in section 3. The last sections
142 summarize conclusion of the study with possible recommendation.

143
144 2. Study Area, Data and Techniques

145 2.1 Study Area

146 The region under study is situated in East Africa located along the celestial longitude 34 E-
147  42°<E and latitude 5°S - 5°N (Figure 1). Diverse physical features that play significant role
148  in climate modulation from one locality to another characterize this region (Bowen et al.,
149  2007). For instance, the maximum thermal heat evidenced over the eastern and northeast
150  parts that are predominantly Arid and Semi-Arid Lands (ASALSs) and minimum temperatures
151  over central regions is due to high elevation point. Moreover, the uppermost (lowest)
152 elevation with altitude (>5000 m/<O m) often leads to random uncertainties in climatic
153  variables during the quantification process (Allen et al., 2006). Consequently, the terrestrial
154  heterogeneous classification influences socio-economic activity with a great inclination to
155  rain fed agriculture (Mumo et al., 2018).

156 Meanwhile, the region is classified as tropical climate (Kottek et al., 2006) with
157  bimodal patterns of rainfall is experienced during March to May (MAM) and October to
158  December (OND) (Ongoma and Chen, 2017; Ayugi et al., 2019). Looking more closely at the
159  two seasons, the months of May and November record the highest amount of rainfall across
160  the study domain whilst March and October signify the onset of the seasons and record the
161 least rainfall quantity (Ayugi et al., 2016, 2018; Ongoma and Chen., 2017; Mumo et al.,
162 2019).

163 On the other hand, the highest temperature climatology is observed during January
164  and February (JF) whereas lowest is observed during June to September (JJAS) (Kinguyu et
165 al., 2000; Ongoma et al., 2017; Ayugi and Tan, 2019). Generally, microclimate features over
166  the study area is mostly regulated by the existence of unique geomorphology while synoptic
167  features are influenced by interaction between atmosphere and hydrosphere within the lower
168  troposphere. For example, the changes in Hadley circulation which has an influence in the
169  oscillation of Inter tropical convergence zone (ITCZ), strongly regulate seasonal climate
170  patterns over the study domain (Nicholson, 2008; Hastenrath et al., 2011).


https://doi.org/10.20944/preprints202001.0119.v1
https://doi.org/10.3390/w12030801

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 January 2020 d0i:10.20944/preprints202001.0119.v1

AN\

2°N A

0°
Elevation (m
2° ’I4786
4°S 1 0 55 110 225Km
-25 I T Y S I Y SO B |
171 34%E 36°E 38E 40%E 42°E

172 Fig. 1 The study area [34 E-42E and 55-5N ] with topographical elevation (m) in dark
173 color. Enclosed is map of African domain with study domain situated in Eastern region
174  marked with dark color.

175

176 2.3 Data and Techniques

177 2.3.1 Bias correction method

178  Biases in climate model simulation are commonly detected by validation, (i.e. comparison
179  with observation) through computational of mean, or/and other complex analysis
180  (Teutschbein and Seibert, 2013). A number of correction techniques have been proposed to
181  rectify the existing biases in climate datasets (Lenderink et al., 2007; Leander et al., 2008;
182  Moore et al., 2008; Sun et al., 2011).

183 The current study employed QMBC algorithm to evaluate monthly RCMs
184  precipitation data sourced from Rossby Centre Climate Model outputs (Samuelsson et al.,
185  2012; Strandberget al., 2014) and their respective Mean Multi-model Ensemble (MME).
186  They are as follows: Model for Interdisciplinary Research on Climate (MIROCS),
187  Commonwealth Scientific and Industrial Research Organization (CSIRO), Institute Pierre
188  Simon Laplace Model CM5A-MR (IPSL-CM5A-MR), Max Planck Institute Earth System
189  Model at base resolution (MPI-ESM-LR) and European community Earth-System (EC-
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EARTH). The RCMs have spatial resolution of resolution of 0.44<°x 0.44°(~50 x50 km)
with a historical coverage spanning from 1951 to 2005 for the simulations run whilst
projections has temporal span from 2006 to 2100 for both RCP 4.5 and 8.5. The datasets were
retrieved from Deutsches Klimarechenzentrum GmbH (DRKZ) website (CERA-WDCC.

https://cera-www.dkrz.de).

Recent version Climatic Research Unit (CRU TS4.02) datasets were employed as
observed datasets during the validation period. Harris et al. (2014) detailed more on this
dataset. The CRU datasets utilized in this study has temporal scale ranging from 1901-2017
and spatial coverage of ~50 km. The RCMs datasets were evaluated in a recent study (Ayugi
et al., 2020) and elucidated the listed models as better performing from the ten GCMs that
were dynamically downscaled based on RCA4 model. Despite the skillful simulation of
observed rainfall as compared to other models, the datasets still reported glaring biases
(Figure 2; Ayugi et al., 2020). Most models exhibit the overestimation during OND season
and underestimation throughout MAM season (Figure 2). This has prompted the need for
minimizing the biases in order to employ the models for drought and flood projections in a
region that is vulnerable to occurrence of extreme events.

The QMBC constructs cumulative distribution functions (CDFs) of the model and
observations using a transfer function, which in turn translates the raw model outputs into
corrected output. Thus, the CDF of the corrected model are transformed to match that of the
observed datasets (Piani et al., 2009; Sun et al., 2011; Teutschbein and Seibert, 2012).

Mathematically, quantile mapping is constructed using Egn 1;

y = Fo_bls (FRCM (x)) @

where y is the corrected rainfall value, while x is the value of precipitation to be corrected. On
the other hand, F,. is the inverse of the CDF of the observation and Fz¢), is the CDF of the
RCM employed. The likelihood of detecting x (mm/month) or less in the model is then
transferred to the quantile of the observed CDF, matching very similar to observed
probability. The QMBC was conducted using available gmap package on the R software
(Gudmundsson et al., 2012).

d0i:10.20944/preprints202001.0119.v1
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220  Fig. 2 Monthly precipitation for the period 1951-2005 as simulated by 5 individual models of
221  RCA4 over Kenya, depicting underestimation or overestimation of observed precipitation.
222 Observation (black dotted line) and RCMs Multi-Model Mean (MME) ensemble (gray line)
223  are displayed as well.

224

225  2.3.2 Testing the reliability of model correction approach

226 A number of approaches are utilized in a bid to affirm the reliability of the model correction
227  approach. The present study uses a split sample testing (SST) to examine how effective
228  QMBC algorithm work under different conditions. More information regarding this approach
229 s presented in Klemes (1986). Meanwhile, SST technique involves splitting the data into two,
230  preferably equal size segment in order to use one as calibration and the one for validation.

231 In the current study, the SST approach was conducted by first training data for 29
232 years, (1951-1979), to derive biases field for monthly averages in model and observed
233 precipitation simulations. The monthly biased field were then used to correct independent
234 RCMs during the next 26-year validation period (1980-2005). Additionally, projections
235 estimates were corrected for the whole period, i.e., 2006-2100. The hypothesis for SST
236  technique is the temporal consistency of average errors. Figure 3 shows a summary flow of
237  the SST approach used in this study.

238
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240 Fig. 3 Flowchart of model bias correction procedure
241

242  2.3.3 Evaluation of bias correction approach

243  Evaluation of bias corrected RCMs; historical simulations, and projection estimates was
244  conducted using raw and bias corrected RCMs related to the observed gridded precipitation
245  datasets on monthly and year basis. Statistical metrics such as the Mean Bias, Mean Absolute
246 Error (MAE), and customized RMSE to a space and time scenario, were employed to
247  compute their relationships. The mathematical formulas of the aforementioned metrics are

248  givenin Eqns 2 —4;

BIAS = Tl_l (Ml - 01.)
; 2)

4

n
MAE =) [Py, = P, 3)

k=1
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RMSE = |n! Z(PMk - Pg,) (4)

i=1

249

250  where Py, is the model estimate for the considered data point k. Py, is the observed value for
251  the considered data point k, and N is the length of the distribution of the data point being
252  analyzed. For graphical displays, the study used Empirical quantile mapping distribution
253  (ECDF) and spatial maps to demonstrate the effectiveness of QMBC algorithm.

254 3. Results and Discussions
255
256 3.1 Evaluation of Bias-corrected RCMs Simulations.

257  3.1.1 Temporal assessment

258  Figure 4 presents ECDF analysis for 5 GCMs dynamically downscaled with the Rossby
259  Centre Regional Climate Model (RCAA4), as well as their ensemble average. The plots (a-b)
260  represent March-May (MAM) season, (c-d) October-December (OND), and (e-f) annual
261  before and after corrections, abbreviated with ‘BC” and ‘AC’, respectively. The MAM period
262  experiences substantial amount of rainfall in terms of magnitude, intensity and frequency,
263  thereby exhibiting large biases (Yang et al., 2015; Nicholson et al., 2017). The observed
264  biases were noted from a recent studies (Endris et al., 2013; Ayugi et al., 2020) that evaluated
265 the performance of RCMs in simulating precipitation climatology over the Great Horn of
266  Africa domain. The aforementioned studies demonstrated the under/overestimations of MAM
267  rainfall in regions mostly associated with complex physiographical features. Compared to the
268  observed datasets (CRU TS4.02; dotted line in Figure 4), it is apparent that QMBC technique
269  significantly improved the accuracy of most models and their ensemble after the corrections.
270  Specifically, there was a remarkable reduction in Mean Bias, RMSD and MAE in most
271 models with significant performance depicted during May (Table 1).

272 Majority of the models show insignificant improvement after correction during MAM.
273  For example, the mean absolute error (MAE) was generally large in MME-AC (24
274  mm/month) as compared to MME-BC (18.77 mm/month) (Table 1). Interestingly, CSIRO
275 and EC-EARTH show a remarkable enhancement during the wet months as compared to
276 other models that exhibited variations from one month to another. Overly, these results show
277  that the algorithm improved the model accuracy despite the noteworthy variation based on

278  the magnitude of rainfall experienced over the study domain. For instance, there are large

10
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279  incidences of biases noted in May as compared to model underestimations during March and

280  April.
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282 Fig. 4 The ECDF plots for 5 GCMs dynamically downscaled with the Rossby Centre
283  Regional Climate Model (RCAA4), as well as their ensemble average. The plots (a-b) represent
284  March-May (MAM) season, (c-d) October-December (OND), and (e-f) annual before and
285  after corrections.

286

287 In OND season (Figure 4c-d), a number of models show large biases before
288  corrections that are mostly associated with orographic processes and related teleconnections
289  thus influencing rainfall variability and trends (Camberlin and Okoola, 2003; Ogwang et al.,
290  2014). Most biases increased with increase in rainfall magnitude with some models
291  exhibiting considerable biases even after correction (Figure 4c-d and Table 1). In general,
292  the results of this analysis show consistent notable improvement by most models during OND
293  season.

294

295  Table 1. Comparison of different RCMs using summary statistics against the observed data for the validation.
296 The effect of bias correction on other statistics (Correlation coefficient), in this case, very small, and the results
297  not reported.

RCMs validation

RCMs Mean Bias RMSD RMSD MAE MAE
Bias (bc) (bc) (bc)
CM5A-MR 6.52 -8.54 24.38 27.84 2095 2242
CSIRO 31.98 -2.58 40.20 26.93 32.75 22.16
MAM EC-EARTH 8.57 -6.04 25.33 25.11 18.46 16.96
MIROC5 8.48 -17.31 29.21 47.51 2421 37.61
MPI-ESM-LR  8.11 19.66 28.75 36.20 20.94 29.98
MME 12.73 -16.28 23.61 31.12 18.77 24.37
CM5A-MR -26.68 -27.32 38.11 46.49 31.86 36.77
CSIRO 24.23 0.53 38.22 40.82 27.92 28.38
OND EC-EARTH -31.01 2.90 47.75 36.69 40.22 26.18
MIROC5 13.15 -15.29 30.81 37.88 22.69 3191
MPI-ESM-LR  -22.52 -6.70 45,53 44,54 34.80 31.87
MME -8.56 -14.64 28.58 42.04 22.15 32.48

CM5A-MR -3.49 -11.53 11.07 1785 9.11 14.46

Annual  CSIRO 2094  -1.37 2294 1329 2056 9.55

EC-EARTH  -6.14 1.38 1268 1536  10.64 11.07
MIROC5S 1059  -11.21 1577 19.05 1223 16.00
MPI-ESM-LR  -1.58 -8.93 8.92 1499 6.66 1114
MME 3.89 -9.60 9.23 16.09 7.04  12.89

298 *Bold values denotes models that exhibited notable improvements

299

300
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301 This concurs with a study Kimani et al. (2018b), that similarly observed the bias
302 dependence on rainfall amounts over larger domain of East Africa using satellite derived
303  precipitation estimates. In fact, Eden et al. (2012) and, Cannon et al. (2015) demonstrated that
304  persistent biases even after model corrections are as a result of systematic errors in model
305  outputs from diverse sources. For instance, these studies reported that biases field observed
306 are originating from either unrealistic response to climate forcing or unpredictable internal
307 variability that differs from observations. Hence, such biases cannot be corrected by most
308  correction algorithms. The conclusions from these studies highlighted that only errors in
309  convective parameterizations and unresolved sub grid-scale orography can be corrected using
310 univariate statistical bias correction techniques like QMBC employed in the present study.
311 Nevertheless, Teng et al. (2015) proposed a mitigation measure of enhancing the
312  quality of the datasets that could not be corrected on first attempt by further calibrating the
313  post processing corrections on adequately long historical records.

314 Further analysis of model bias correction at annual level (Figure 4e-f) show
315  upgrading of most models, most specially the EC-EARTH and CSIRO. However, despite the
316  corrected model, underestimation of annual rainfall continues to persist even in the corrected
317  model output. The performance of the algorithm in enhancing the quality of model data
318  affirms the view of Ehret et al. (2012). To illustrate this view, the study pointed out the
319  possibility of less value added to models after corrections in situations of complex modelling
320 chain when considering other sources of uncertainties (Muerth et al., 2013). The persistent
321  biases in Figure 4e-f (AC) could be associated with dry biases, originating from the ASAL
322  regions, characterized by moisture outflow over the study region (Kisembe et al., 2018;
323  Ayugi et al., 2020). In addition, the high underestimation of wet season (MAM), could have
324  contributed to overall underestimation of annual rainfall, despite the correction.

325 A summary of performance of bias correction method during the wet season and
326  annual is shown in Figure 5. As noted earlier, most models show improvement after
327  correction across the diverse timescales. For instance, significant improvement is exhibited
328 during MAM season as compared to OND. It is worth noting that CM5A-MR had least
329 improvement during the OND, while substantial improvement is demonstrated by EC-
330 EARTH during similar season. This confirms the need to improve the models before
331  employing them for climate change impact studies (Sillmann et al., 2013).

332
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335 Fig. 5 Heat plot of seasonal and annual Mean Absolute Error (MAE) relative to each model during
336  (1980-2005). A lighter color denotes better results whilst deep color represents unsatisfactory biased
337  corrected value during the wet season and yearly basis.

338

339  3.1.2 Spatial bias correction estimates

340 Figure 6 presents spatial patterns of mean annual root mean square difference (RMSD)
341  during the period 1980-2005 derived from five RCMs as well as their ensemble average. Also
342  shown in the plots are corresponding bias corrected (abbreviated as AC) RCMs from Rosshy
343  Centre Regional Climate Model (RCA4), as well as the corrected multi model ensemble
344  (MME). The models were corrected relative to climatic research unit (CRU TS4.02) datasets.
345  The spatial plots depict regions of underestimations and overestimations and respective areas
346  of enhancement after employment of quantile mapping technique.

347 It is apparent that significant biases simulated by the models corresponded with the
348  regions that experience highest rainfall amount. This agrees with observed west to east
349  gradient demonstrating heavier to lighter rainfall events over the study domain (Kimani et al.,
350 2018a; Ayugi et al., 2019). As a result, the highest RMSD is noted in central and western
351  sections of the study area whilst lowest biases (< 22.1 mm/month) is exhibited in the eastern
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and north western areas. The observed values of RMSD are mostly as a result of complex

terrains such as high-altitude topographies. The central and western parts of Kenya has a

varying topography explained by the presence of mountains like Mount Kenya and Mount

Elgon, respectively. The areas are generally wet and humid, explained by large water bodies

notable Lake Victoria.

As result, most models exhibited satisfactory performance after corrections with EC-

EARTH, MPI-ESM-LR, and MME demonstrating exemplary improvement as compared to

other models. The results concur with recent study that noted linear relationship between

increased rainfall values and subsequent increase of systematic uncertainties (Kimani et al.,

2018b). The overall monthly reduction in RMSD after correction ranged between 27
mm/month < RMSD < 11.0 mm/month.
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365 Figure 6. Spatial pattern of mean annual RMSD (before correction [BC] and after correction [AC]
366  for five global climate models (GCMs) dynamically downscaled with the Rossby Centre Regional
367  Climate Model (RCAA4), as well as their ensemble average.

368

369 Further analysis was conducted in an effort to evaluate how correction algorithm
370  improves the model projections under RCP4.5 ‘stabilization scenario” and RCP8.5 ‘business
371  asusual scenario’. Figure 7 provides spatial patterns of mean rainfall for seasonal and annual
372  based on Multi-model ensemble (MME) of five RCMs. The model’s simulations were
373  corrected using observed data while model projections entailed the simulations and
374  observations as an input variable. It is apparent that historical simulations after corrections
375  improved remarkably across various timescales to resemble the spatial patterns of observed
376  data. Systematic biases appeared to reduce in regions that depicted strong biases, especially
377  during the MAM rainfall season. Moreover, there was a strong evidence of improvement in
378  both projections under medium emissions and strong emission scenarios in all the seasons.
379  However, the regions characterized by complex topography tend to exhibit unsatisfactory
380 reductions in biases, especially during the OND seasons. For instance, the model corrected
381 under RCP8.5 depicts strong wet biases over central and western regions as compared to
382  other timescales. Interestingly, the algorithm tends to show robust performance during the
383  mean annual cycle that exhibits reduced rainfall occurrence.

384 These results agree with recent reports over broader study domains that have showed
385  decreasing trends in rainfall patterns towards the end of twentieth century (Yang et al., 2015;
386 Ongoma and Chen, 2017; Ayugi et al., 2018; Mumo et al., 2019). Further, these studies
387 demonstrate a continued declining annual rainfall trends for different future scenarios over
388  the study domain (Rowell et al., 2015; Tierney et al., 2015; Ongoma et al., 2018). On the
389  contrary, the observed increment patterns during OND season concur with studies that have
390 reported overestimations of OND, also referred as ‘short rains’ over the study region
391  (Shongwe et al., 2011; Liebmann et al., 2014; Ongoma et al, 2018). Yang et al. (2015)
392  highlighted the aspect of challenges associated with simulations of atmosphere-ocean-
393  monsoon interaction over East Africa region as the major cause of observed bias in models
394  during OND and MAM projections. According to Liebmann et al. (2014), the warming of
395 western Indian Ocean continues to play a significant role in simulated and projected patterns
396  during seasonal rainfall cycle

397 These results clearly depict that the QMBC can satisfactorily improve the models

398 under different scenarios and timescales hence its relevance for correcting RCMs outputs. Its
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399  application will in effect minimize possible biases, therefore it is suitable for evaluation of
400 extreme events such as drought and flood that continue to pose threat to livelihoods and
401  socio-economic infrastructure over the study domain. Teleconnection patterns responsible for
402  influencing the rainfall during the OND is likely to be amplified during the business as usual
403  model. This scenario could explain the systematic biases that are persistent in models even
404  after the corrections. This calls for a cautious view of the possible limitations of correction

405  techniques during the future projections (Cannon et al., 2015).
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408 Figure 7. Spatial pattern of mean rainfall for seasonal and annual for observation, simulated,
409  simulated corrected and model corrected projections based on MME of 5 global climate models
410  (GCMs) dynamically downscaled with the Rossby Centre Regional Climate Model (RCAA4).

411

412 4. Conclusion and Recommendation

413  The current study examined the effectiveness of quantile mapping bias correction on Rossby
414  Climate Models (RCA4) for drought and flood analysis. The study is a follow-up study by
415  Ayugi et al., (2020) on the recent assessment of performance of RCA4 models over the study
416  domain. Ayugi et al., (2020) elucidated existence of unsystematic and systematic biases in the
417  better performing models across the region. Thus, the current study was conducted within this
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backdrop. Correction to both mean annual and seasonal variance was conducted by
employing The Split Sample Testing (SST) approach. The correction was conducted by first
training data for 29 years (1951-1979) to derive biases field for monthly averages in model
and observed precipitation simulations. The monthly biased field were then used to correct
independent RCMs during the next 26-year (1980-2005) validation period. The models
corrected are as follows: MIROCS5, CSIRO, IPSL-CM5A-MR, MPI-ESM-LR, EC-EARTH,
and MME. Broadly, RCMs simulations depicts significant biases that are mostly associated
with regions of complex terrains such as high altitude or wet humid regions within the study
area. The QMBC demonstrates varying performance from one model to another on both
spatial and temporal scales. However, most models exhibit significant improvement after
corrections on both seasonal and annual timescales. Specifically, the models EC-EARTH and
CSIRO portray exemplary improvement as compared to other models. On the other hand, the
model CM5A-MR model show weak enhancement across various timescales. i.e. MAM and
OND. The corrected models can be employed for projections of extreme events; drought and
flood over the study area. The outputs will aid in appropriate policy formulation for effective
and reliable adaptation techniques. The models showing persistent unsatisfactory
improvement after employing correction approaches should utilized with caution due to the

existence of hidden non-linearity and complex dynamical processes that are uncorrectable.
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