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Abstract 24 

Accurate assessment and projections of extreme climate events requires the use of climate 25 

datasets with no or minimal error. This study uses quantile mapping bias correction (QMBC) 26 

method to correct the bias of five Regional Climate Models (RCMs) from the latest output of 27 

Rossby Climate Model Center (RCA4) over Kenya, East Africa. The outputs were validated 28 

using various scalar metrics such as Root Mean Square Difference (RMSD), Mean Absolute 29 

Error (MAE) and mean Bias. The study found that the QMBC algorithm demonstrate varying 30 

performance among the models in the study domain. The results show that most of the 31 

models exhibit significant improvement after corrections at seasonal and annual timescales. 32 

Specifically, the European community Earth-System (EC-EARTH) and Commonwealth 33 

Scientific and Industrial Research Organization (CSIRO) models depict exemplary 34 

improvement as compared to other models. On the contrary, the Institute Pierre Simon 35 

Laplace Model CM5A-MR (IPSL-CM5A-MR) model show little improvement across 36 

various timescales (i.e. March-April-May (MAM) and October-November-December 37 

(OND)). The projections forced with bias corrected historical simulations tallied observed 38 
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values demonstrate satisfactory simulations as compared to the uncorrected RCMs output 39 

models. This study has demonstrated that using QMBC on outputs from RCA4 is an 40 

important intermediate step to improve climate data prior to performing any regional impact 41 

analysis. The corrected models can be used for projections of drought and flood extreme 42 

events over the study area. This study analysis is crucial from the sustainable planning for 43 

adaptation and mitigation of climate change and disaster risk reduction perspective. 44 

Keywords: Quantile Mapping Bias Correction (QMBC), Regional Climate Models (RCMs), 45 

Rossby Centre Regional Climate Models (RCA4), Drought, Flood, Kenya 46 

1. Introduction 47 

Recently, the changes in the frequency and intensity of extreme events have led to 48 

serious climate related disasters across many parts of the world. These extreme events (i.e. 49 

floods, droughts, and/or heatwaves) have gained considerable attention by climate scientists 50 

and the general public due their devastating impact on ecosystem and different sectors of the 51 

society.  52 

Thus, monitoring and forecasting of such extreme events is crucial steps to ensure that 53 

the Malabo Goals 2025 and the 2030 Agenda for Sustainable Development of the Sustainable 54 

Development Goal 2 (SDG2) are met (FAO, 2019). It is against this backdrop that climate 55 

information’s availability and accuracy are important for climate change assessment (IPCC, 56 

2014). 57 

From a policy formulation perspective, global climate models (GCMs) and regional 58 

climate models (RCMs) are such examples of datasets used in forecasting and projecting 59 

studies. Additionally, model outputs from GCMs and RCMs are sometimes used as input data 60 

source in the forecasting and projection of the extreme events. However, these model outputs 61 

are saddled with uncertainties that arise due to systematic and/or random biases relative to in-62 

situ datasets (Christensen et al., 2008: Teutschbein and Seibert, 2010). For example, Cardell 63 

et al., (2019) associated the model random error to intricate topography or atmosphere-64 

biosphere transition along large water bodies. In a different study, Allen et al., (2006) linked 65 

systematic errors (model biases) to model coarser resolutions or parameterizations schemes.  66 

Other studies (e.g., Mearns et al., 2012; Cannon et al., 2015), also reported 67 

considerable deviations (i.e. over/underestimations) relative to in-situ observations. Thus, 68 

within the context of these studies, readers are cautioned when generalizing results from these 69 

models outputs. Of great interest, are water resource planners and managers, who are required 70 
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to periodically conduct regional impact analysis to assess the impacts of climate change on 71 

watershed hydrology. Thus, to quantify the changes and predict extreme events against the 72 

backdrop of warming climate, scientists and policy analyst alike have no option than to use 73 

the existing GCM and RCM ensembles, despite report of uncertainties in their climate change 74 

assessment (IPCC, 2014). 75 

Meanwhile, different spatial downscaling and bias correction tools have been 76 

proposed and applied extensively to remove this inherent errors or biases. Thus, to correct or 77 

minimize these biases or errors, scientists use two distinct spatial downscaling and bias 78 

correction tools; namely, statistical and dynamic downscaling methods.  79 

In this study, we do not attempt to compare the advantages and disadvantages of these 80 

methods since extensive literature review concludes that it is difficult to define the best 81 

method as the overall output performance of the two methods are able to reproduce the recent 82 

climate (Murphy, 1999; Wilby and Wigley., 2000; Ahmad et al., 2013). From literature, these 83 

two methods have been applied to downscale GCM to RCM (IPCC, 2014). 84 

Several RCMs based on dynamic downscaling are now available for many regions 85 

across the globe (IPCC, 2014). Example includes the RCM precipitation data sourced from 86 

Rossby Centre Climate Model outputs (Samuelsson et al., 2012; Strandberget al., 2014). 87 

However, following a phenomenal study of Ahmed et al., (2013) and Wood et al. (2004), it is 88 

clear that the spatial resolution of the RCM for regional or local applications, may not be high 89 

enough and/or still contain some inherent errors. To use this type of climate data for present 90 

and future climate predictions, the two studies recommended bias corrections of RCM data to 91 

remove possibly the biases prior to their application. In parallel, this is particularly relevant 92 

for the Africa continent as well as her sub-regions where the number of in-situ stations, data 93 

availability, and quality have considerably declined and become less reliable (Malhi and 94 

Wright (2004). 95 

Thus, to remove biases in RCM, recent studies (Christensen et al., 2008; Terink et al., 96 

2008; Teutschbein and Seibert, 2012; Fang et al., 2015; Cardell et al., 2019) have adopted 97 

statistical technique to adjust RCMs simulations and projections of climatic variables using 98 

different bias correction methods.  99 

Examples of the bias correction methods include the delta correction (Moore et al., 100 

2008; Rasmussen et al., 2012); Linear transformation (Lenderink et al., 2007); Local Intensity 101 

Scaling (Schmidli et al., 2006); Power Transformation (Leander et al., 2008); Distribution 102 

mapping (Block et al., 2009; Sun et al., 2011); and the Quantile Mapping Bias Correction 103 
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(QMBC) (Panofsky and Brier, 1968; Piani et al., 2009; Themeßl et al., 2011), just to mention 104 

a few.  105 

The conclusions drawn from these studies suggest that QMBC algorithm outperform 106 

other methods (Gudmundsson et al., 2012; Teutschbein and Seibert, 2012; Chen et al., 2013). 107 

It is important to note that QMBC is also referred as quantile-quantile mapping (Sun et al., 108 

2011), probability mapping (Ines and Hansen, 2006), statistical downscaling (Piani et al., 109 

2010), or histogram equalization (Rojas et al., 2011). 110 

The QMBC method is based on the hypothesis that climate biases that need to be 111 

corrected are unchanging hence its features in historical data will persist into the future 112 

projections (Maraun et al., 2010, 2012). Although, this study acknowledges that QMBC 113 

technique has limitations (see Boé et al., 2007; Cannon et al., 2015), QMBC usage is widely 114 

preferred for impact analysis (Maraun, 2013; Hempel et al., 2013; Maurer and Pierce, 2014; 115 

Cannon et al., 2015).  116 

Over the East Africa region, recent studies have reported existence of biases in RCMs 117 

and GCMs datasets (Endris et al., 2013; Kisembe et al., 2018; Ongoma et al., 2019). To 118 

illustrate, Ayugi et al. (2020) demonstrated the manifestation of systematic dry (wet) biases 119 

over regions of low (high) altitude characterized by arid and semi-arid lands (ASALs) or 120 

complex topography. Furthermore, the study highlighted that most mean spatial biases tend to 121 

follow the physiographic features in the study domain, which RCMs could not clearly 122 

reproduce due to its coarser resolution (~50 km) and physical parameterization. 123 

Despite the observed biases, few studies have attempted to correct systematic 124 

distributional biases relative to historical observations, and possible future simulations on the 125 

RCMs or GCMs. A number of studies have however improved the quality of satellite-derived 126 

estimates using other techniques, such as Bayessian approach (Kimani et al., 2018a,b).  127 

In order to improve the accuracy of projections of extreme events such as drought and 128 

flood over East Africa, better performing RCMs and satellite datasets (Endris et al., 2013; 129 

Kimani et al., 2018a, b; Ayugi et al., 2019, 2020) ought to be further improved using 130 

correctional techniques so as to minimize possible biases and enhance the quality (Maraun et 131 

al., 2010).  132 

Thus, as a follow-up from Ayugi et al. (2020), this study focuses on assessing the 133 

importance and performance of QMBC on model outputs over East Africa as an intermediate 134 

step prior to performing any regional impact analysis. This analysis is crucial from the 135 

sustainable planning for adaptation and mitigation of climate change and disaster risk 136 

reduction perspective. The objective of this study is to perform bias correction on the RCMs 137 
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over Kenya, using QMBC prior to the assessment and projections of floods and droughts in 138 

the mentioned study domain. 139 

The remaining section of the paper are organized as follows: Section 2 highlights data 140 

and methods used whilst results and discussions are presented in section 3. The last sections 141 

summarize conclusion of the study with possible recommendation.  142 

 143 

2. Study Area, Data and Techniques 144 

2.1 Study Area 145 

The region under study is situated in East Africa located along the celestial longitude 34° E- 146 

42° E and latitude 5° S - 5° N (Figure 1). Diverse physical features that play significant role 147 

in climate modulation from one locality to another characterize this region (Bowen et al., 148 

2007). For instance, the maximum thermal heat evidenced over the eastern and northeast 149 

parts that are predominantly Arid and Semi-Arid Lands (ASALs) and minimum temperatures 150 

over central regions is due to high elevation point. Moreover, the uppermost (lowest) 151 

elevation with altitude (>5000 m/<0 m) often leads to random uncertainties in climatic 152 

variables during the quantification process (Allen et al., 2006). Consequently, the terrestrial 153 

heterogeneous classification influences socio-economic activity with a great inclination to 154 

rain fed agriculture (Mumo et al., 2018).   155 

Meanwhile, the region is classified as tropical climate (Kottek et al., 2006) with 156 

bimodal patterns of rainfall is experienced during March to May (MAM) and October to 157 

December (OND) (Ongoma and Chen, 2017; Ayugi et al., 2019). Looking more closely at the 158 

two seasons, the months of May and November record the highest amount of rainfall across 159 

the study domain whilst March and October signify the onset of the seasons and record the 160 

least rainfall quantity (Ayugi et al., 2016, 2018; Ongoma and Chen., 2017; Mumo et al., 161 

2019).    162 

On the other hand, the highest temperature climatology is observed during January 163 

and February (JF) whereas lowest is observed during June to September (JJAS) (Kinguyu et 164 

al., 2000; Ongoma et al., 2017; Ayugi and Tan, 2019). Generally, microclimate features over 165 

the study area is mostly regulated by the existence of unique geomorphology while synoptic 166 

features are influenced by interaction between atmosphere and hydrosphere within the lower 167 

troposphere. For example, the changes in Hadley circulation which has an influence in the 168 

oscillation of Inter tropical convergence zone (ITCZ), strongly regulate seasonal climate 169 

patterns over the study domain (Nicholson, 2008; Hastenrath et al., 2011). 170 
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 171 

Fig. 1 The study area [34°E–42°E and 5°S–5°N ] with topographical elevation (m) in dark 172 

color. Enclosed is map of African domain with study domain situated in Eastern region 173 

marked with dark color. 174 

 175 

2.3 Data and Techniques 176 

2.3.1 Bias correction method 177 

Biases in climate model simulation are commonly detected by validation, (i.e. comparison 178 

with observation) through computational of mean, or/and other complex analysis 179 

(Teutschbein and Seibert, 2013). A number of correction techniques have been proposed to 180 

rectify the existing biases in climate datasets (Lenderink et al., 2007; Leander et al., 2008; 181 

Moore et al., 2008; Sun et al., 2011).  182 

The current study employed QMBC algorithm to evaluate monthly RCMs 183 

precipitation data sourced from Rossby Centre Climate Model outputs (Samuelsson et al., 184 

2012; Strandberget al., 2014) and their respective Mean Multi-model Ensemble (MME). 185 

They are as follows: Model for Interdisciplinary Research on Climate (MIROC5), 186 

Commonwealth Scientific and Industrial Research Organization (CSIRO), Institute Pierre 187 

Simon Laplace Model CM5A-MR (IPSL-CM5A-MR), Max Planck Institute Earth System 188 

Model at base resolution (MPI-ESM-LR) and European community Earth-System (EC-189 
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EARTH). The RCMs have spatial resolution of resolution of 0.44° × 0.44° (~50 × 50 km) 190 

with a historical coverage spanning from 1951 to 2005 for the simulations run whilst 191 

projections has temporal span from 2006 to 2100 for both RCP 4.5 and 8.5. The datasets were 192 

retrieved from Deutsches Klimarechenzentrum GmbH (DRKZ) website (CERA-WDCC. 193 

https://cera-www.dkrz.de). 194 

Recent version Climatic Research Unit (CRU TS4.02) datasets were employed as 195 

observed datasets during the validation period. Harris et al. (2014) detailed more on this 196 

dataset. The CRU datasets utilized in this study has temporal scale ranging from 1901-2017 197 

and spatial coverage of ~50 km. The RCMs datasets were evaluated in a recent study (Ayugi 198 

et al., 2020) and elucidated the listed models as better performing from the ten GCMs that 199 

were dynamically downscaled based on RCA4 model. Despite the skillful simulation of 200 

observed rainfall as compared to other models, the datasets still reported glaring biases 201 

(Figure 2; Ayugi et al., 2020). Most models exhibit the overestimation during OND season 202 

and underestimation throughout MAM season (Figure 2). This has prompted the need for 203 

minimizing the biases in order to employ the models for drought and flood projections in a 204 

region that is vulnerable to occurrence of extreme events. 205 

The QMBC constructs cumulative distribution functions (CDFs) of the model and 206 

observations using a transfer function, which in turn translates the raw model outputs into 207 

corrected output. Thus, the CDF of the corrected model are transformed to match that of the 208 

observed datasets (Piani et al., 2009; Sun et al., 2011; Teutschbein and Seibert, 2012). 209 

Mathematically, quantile mapping is constructed using Eqn 1; 210 

𝑦 = 𝐹𝑜𝑏𝑠
−1 (𝐹𝑅𝐶𝑀(𝑥)) (1) 

 211 

where y is the corrected rainfall value, while x is the value of precipitation to be corrected. On 212 

the other hand, 𝐹0𝑏𝑠
−1  is the inverse of the CDF of the observation and 𝐹𝑅𝐶𝑀 is the CDF of the 213 

RCM employed. The likelihood of detecting x (mm/month) or less in the model is then 214 

transferred to the quantile of the observed CDF, matching very similar to observed 215 

probability. The QMBC was conducted using available qmap package on the R software 216 

(Gudmundsson et al., 2012). 217 

 218 
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 219 

Fig. 2 Monthly precipitation for the period 1951-2005 as simulated by 5 individual models of 220 

RCA4 over Kenya, depicting underestimation or overestimation of observed precipitation. 221 

Observation (black dotted line) and RCMs Multi-Model Mean (MME) ensemble (gray line) 222 

are displayed as well. 223 

 224 

2.3.2 Testing the reliability of model correction approach 225 

A number of approaches are utilized in a bid to affirm the reliability of the model correction 226 

approach. The present study uses a split sample testing (SST) to examine how effective 227 

QMBC algorithm work under different conditions. More information regarding this approach 228 

is presented in Klemeš (1986). Meanwhile, SST technique involves splitting the data into two, 229 

preferably equal size segment in order to use one as calibration and the one for validation.   230 

In the current study, the SST approach was conducted by first training data for 29 231 

years, (1951-1979), to derive biases field for monthly averages in model and observed 232 

precipitation simulations. The monthly biased field were then used to correct independent 233 

RCMs during the next 26-year validation period (1980-2005). Additionally, projections 234 

estimates were corrected for the whole period, i.e., 2006-2100. The hypothesis for SST 235 

technique is the temporal consistency of average errors. Figure 3 shows a summary flow of 236 

the SST approach used in this study.   237 

 238 
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 239 

Fig. 3 Flowchart of model bias correction procedure 240 

 241 

2.3.3 Evaluation of bias correction approach 242 

Evaluation of bias corrected RCMs; historical simulations, and projection estimates was 243 

conducted using raw and bias corrected RCMs related to the observed gridded precipitation 244 

datasets on monthly and year basis. Statistical metrics such as the Mean Bias, Mean Absolute 245 

Error (MAE), and customized RMSE to a space and time scenario, were employed to 246 

compute their relationships. The mathematical formulas of the aforementioned metrics are 247 

given in Eqns 2 – 4; 248 

 

 

𝐵𝐼𝐴𝑆 = 𝑛−1 ∑(𝑀𝑖 − 𝑂𝑖)

𝑛

𝑖=1

 

, 

(2) 

𝑀𝐴𝐸 = 𝑛−1 ∑|𝑃𝑀𝑘
− 𝑃𝑅𝑘

|

𝑛

𝑘=1

 (3) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 12 January 2020                   doi:10.20944/preprints202001.0119.v1

Peer-reviewed version available at Water 2020, 12; doi:10.3390/w12030801

https://doi.org/10.20944/preprints202001.0119.v1
https://doi.org/10.3390/w12030801


10 

 

𝑅𝑀𝑆𝐸 = √𝑛−1 ∑(𝑃𝑀𝑘
− 𝑃𝑅𝑘

)

𝑛

𝑖=1

 (4) 

 

 249 

where 𝑃𝑀𝑘
 is the model estimate for the considered data point k. 𝑃𝑅𝑘

is the observed value for 250 

the considered data point k, and N is the length of the distribution of the data point being 251 

analyzed. For graphical displays, the study used Empirical quantile mapping distribution 252 

(ECDF) and spatial maps to demonstrate the effectiveness of QMBC algorithm. 253 

3. Results and Discussions 254 

 255 

3.1 Evaluation of Bias-corrected RCMs Simulations. 256 

3.1.1 Temporal assessment 257 

Figure 4 presents ECDF analysis for 5 GCMs dynamically downscaled with the Rossby 258 

Centre Regional Climate Model (RCA4), as well as their ensemble average. The plots (a-b) 259 

represent March-May (MAM) season, (c-d) October-December (OND), and (e-f) annual 260 

before and after corrections, abbreviated with ‘BC’ and ‘AC’, respectively. The MAM period 261 

experiences substantial amount of rainfall in terms of magnitude, intensity and frequency, 262 

thereby exhibiting large biases (Yang et al., 2015; Nicholson et al., 2017). The observed 263 

biases were noted from a recent studies (Endris et al., 2013; Ayugi et al., 2020) that evaluated 264 

the performance of RCMs in simulating precipitation climatology over the Great Horn of 265 

Africa domain. The aforementioned studies demonstrated the under/overestimations of MAM 266 

rainfall in regions mostly associated with complex physiographical features. Compared to the 267 

observed datasets (CRU TS4.02; dotted line in Figure 4), it is apparent that QMBC technique 268 

significantly improved the accuracy of most models and their ensemble after the corrections. 269 

Specifically, there was a remarkable reduction in Mean Bias, RMSD and MAE in most 270 

models with significant performance depicted during May (Table 1).  271 

Majority of the models show insignificant improvement after correction during MAM. 272 

For example, the mean absolute error (MAE) was generally large in MME-AC (24 273 

mm/month) as compared to MME-BC (18.77 mm/month) (Table 1). Interestingly, CSIRO 274 

and EC-EARTH show a remarkable enhancement during the wet months as compared to 275 

other models that exhibited variations from one month to another. Overly, these results show 276 

that the algorithm improved the model accuracy despite the noteworthy variation based on 277 

the magnitude of rainfall experienced over the study domain. For instance, there are large 278 
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incidences of biases noted in May as compared to model underestimations during March and 279 

April. 280 

 281 
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Fig. 4 The ECDF plots for 5 GCMs dynamically downscaled with the Rossby Centre 282 

Regional Climate Model (RCA4), as well as their ensemble average. The plots (a-b) represent 283 

March-May (MAM) season, (c-d) October-December (OND), and (e-f) annual before and 284 

after corrections.  285 

 286 

In OND season (Figure 4c-d), a number of models show large biases before 287 

corrections that are mostly associated with orographic processes and related teleconnections 288 

thus influencing rainfall variability and trends (Camberlin and Okoola, 2003; Ogwang et al., 289 

2014). Most biases increased with increase in rainfall magnitude with some models 290 

exhibiting considerable biases even after correction (Figure 4c-d and Table 1). In general, 291 

the results of this analysis show consistent notable improvement by most models during OND 292 

season.  293 

 294 

Table 1. Comparison of different RCMs using summary statistics against the observed data for the validation. 295 
The effect of bias correction on other statistics (Correlation coefficient), in this case, very small, and the results 296 
not reported.  297 

 RCMs validation 

RCMs Mean 

Bias 

Bias 

(bc) 

RMSD RMSD 

(bc) 

MAE MAE 

(bc) 

 

 

MAM 

CM5A-MR 6.52 -8.54 24.38 27.84 20.95 22.42 

CSIRO 31.98 -2.58 40.20 26.93 32.75 22.16 

EC-EARTH 8.57 -6.04 25.33 25.11 18.46 16.96 

MIROC5 8.48 -17.31 29.21 47.51 24.21 37.61 

MPI-ESM-LR 8.11 19.66 28.75 36.20 20.94 29.98 

MME 12.73 -16.28 23.61 31.12 18.77 24.37 

 

 

 

OND 

CM5A-MR -26.68 -27.32 38.11 46.49 31.86 36.77 

CSIRO 24.23 0.53 38.22 40.82 27.92 28.38 

EC-EARTH -31.01 2.90 47.75 36.69 40.22 26.18 

MIROC5 13.15 -15.29 30.81 37.88 22.69 31.91 

MPI-ESM-LR -22.52 -6.70 45.53 44.54 34.80 31.87 

MME -8.56 -14.64 28.58 42.04 22.15 32.48 

 

 

Annual 

CM5A-MR -3.49 -11.53 11.07 17.85 9.11 14.46 

CSIRO 20.94 -1.37 22.94 13.29 20.56 9.55 

EC-EARTH -6.14 1.38 12.68 15.36 10.64 11.07 

MIROC5 10.59 -11.21 15.77 19.05 12.23 16.00 

MPI-ESM-LR -1.58 -8.93 8.92 14.99 6.66 11.14 

MME 3.89 -9.60 9.23 16.09 7.04 12.89 

*Bold values denotes models that exhibited notable improvements 298 

 299 

 300 
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This concurs with a study Kimani et al. (2018b), that similarly observed the bias 301 

dependence on rainfall amounts over larger domain of East Africa using satellite derived 302 

precipitation estimates. In fact, Eden et al. (2012) and, Cannon et al. (2015) demonstrated that 303 

persistent biases even after model corrections are as a result of systematic errors in model 304 

outputs from diverse sources. For instance, these studies reported that biases field observed 305 

are originating from either unrealistic response to climate forcing or unpredictable internal 306 

variability that differs from observations. Hence, such biases cannot be corrected by most 307 

correction algorithms. The conclusions from these studies highlighted that only errors in 308 

convective parameterizations and unresolved sub grid-scale orography can be corrected using 309 

univariate statistical bias correction techniques like QMBC employed in the present study. 310 

Nevertheless, Teng et al. (2015) proposed a mitigation measure of enhancing the 311 

quality of the datasets that could not be corrected on first attempt by further calibrating the 312 

post processing corrections on adequately long historical records.  313 

Further analysis of model bias correction at annual level (Figure 4e-f) show 314 

upgrading of most models, most specially the EC-EARTH and CSIRO. However, despite the 315 

corrected model, underestimation of annual rainfall continues to persist even in the corrected 316 

model output. The performance of the algorithm in enhancing the quality of model data 317 

affirms the view of Ehret et al. (2012). To illustrate this view, the study pointed out the 318 

possibility of less value added to models after corrections in situations of complex modelling 319 

chain when considering other sources of uncertainties (Muerth et al., 2013). The persistent 320 

biases in Figure 4e-f (AC) could be associated with dry biases, originating from the ASAL 321 

regions, characterized by moisture outflow over the study region (Kisembe et al., 2018; 322 

Ayugi et al., 2020). In addition, the high underestimation of wet season (MAM), could have 323 

contributed to overall underestimation of annual rainfall, despite the correction.  324 

A summary of performance of bias correction method during the wet season and 325 

annual is shown in Figure 5. As noted earlier, most models show improvement after 326 

correction across the diverse timescales. For instance, significant improvement is exhibited 327 

during MAM season as compared to OND. It is worth noting that CM5A-MR had least 328 

improvement during the OND, while substantial improvement is demonstrated by EC-329 

EARTH during similar season. This confirms the need to improve the models before 330 

employing them for climate change impact studies (Sillmann et al., 2013). 331 

 332 
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 333 

 334 

Fig. 5 Heat plot of seasonal and annual Mean Absolute Error (MAE) relative to each model during 335 

(1980-2005). A lighter color denotes better results whilst deep color represents unsatisfactory biased 336 

corrected value during the wet season and yearly basis. 337 

 338 

3.1.2 Spatial bias correction estimates 339 

Figure 6 presents spatial patterns of mean annual root mean square difference (RMSD) 340 

during the period 1980-2005 derived from five RCMs as well as their ensemble average. Also 341 

shown in the plots are corresponding bias corrected (abbreviated as AC) RCMs from Rossby 342 

Centre Regional Climate Model (RCA4), as well as the corrected multi model ensemble 343 

(MME). The models were corrected relative to climatic research unit (CRU TS4.02) datasets. 344 

The spatial plots depict regions of underestimations and overestimations and respective areas 345 

of enhancement after employment of quantile mapping technique.  346 

It is apparent that significant biases simulated by the models corresponded with the 347 

regions that experience highest rainfall amount. This agrees with observed west to east 348 

gradient demonstrating heavier to lighter rainfall events over the study domain (Kimani et al., 349 

2018a; Ayugi et al., 2019). As a result, the highest RMSD is noted in central and western 350 

sections of the study area whilst lowest biases (< 22.1 mm/month) is exhibited in the eastern 351 
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and north western areas. The observed values of RMSD are mostly as a result of complex 352 

terrains such as high-altitude topographies. The central and western parts of Kenya has a 353 

varying topography explained by the presence of mountains like Mount Kenya and Mount 354 

Elgon, respectively. The areas are generally wet and humid, explained by large water bodies 355 

notable Lake Victoria.  356 

As result, most models exhibited satisfactory performance after corrections with EC-357 

EARTH, MPI-ESM-LR, and MME demonstrating exemplary improvement as compared to 358 

other models. The results concur with recent study that noted linear relationship between 359 

increased rainfall values and subsequent increase of systematic uncertainties (Kimani et al., 360 

2018b). The overall monthly reduction in RMSD after correction ranged between 27 361 

mm/month < RMSD < 11.0 mm/month.  362 

 363 

 364 
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Figure 6. Spatial pattern of mean annual RMSD (before correction [BC] and after correction [AC] 365 

for five global climate models (GCMs) dynamically downscaled with the Rossby Centre Regional 366 

Climate Model (RCA4), as well as their ensemble average.  367 

 368 

Further analysis was conducted in an effort to evaluate how correction algorithm 369 

improves the model projections under RCP4.5 ‘stabilization scenario’ and RCP8.5 ‘business 370 

as usual scenario’. Figure 7 provides spatial patterns of mean rainfall for seasonal and annual 371 

based on Multi-model ensemble (MME) of five RCMs. The model’s simulations were 372 

corrected using observed data while model projections entailed the simulations and 373 

observations as an input variable. It is apparent that historical simulations after corrections 374 

improved remarkably across various timescales to resemble the spatial patterns of observed 375 

data. Systematic biases appeared to reduce in regions that depicted strong biases, especially 376 

during the MAM rainfall season. Moreover, there was a strong evidence of improvement in 377 

both projections under medium emissions and strong emission scenarios in all the seasons. 378 

However, the regions characterized by complex topography tend to exhibit unsatisfactory 379 

reductions in biases, especially during the OND seasons. For instance, the model corrected 380 

under RCP8.5 depicts strong wet biases over central and western regions as compared to 381 

other timescales. Interestingly, the algorithm tends to show robust performance during the 382 

mean annual cycle that exhibits reduced rainfall occurrence.  383 

These results agree with recent reports over broader study domains that have showed 384 

decreasing trends in rainfall patterns towards the end of twentieth century (Yang et al., 2015; 385 

Ongoma and Chen, 2017; Ayugi et al., 2018; Mumo et al., 2019). Further, these studies 386 

demonstrate a continued declining annual rainfall trends for different future scenarios over 387 

the study domain (Rowell et al., 2015; Tierney et al., 2015; Ongoma et al., 2018). On the 388 

contrary, the observed increment patterns during OND season concur with studies that have 389 

reported overestimations of OND, also referred as ‘short rains’ over the study region 390 

(Shongwe et al., 2011; Liebmann et al., 2014; Ongoma et al, 2018). Yang et al. (2015) 391 

highlighted the aspect of challenges associated with simulations of atmosphere-ocean-392 

monsoon interaction over East Africa region as the major cause of observed bias in models 393 

during OND and MAM projections. According to Liebmann et al. (2014), the warming of 394 

western Indian Ocean continues to play a significant role in simulated and projected patterns 395 

during seasonal rainfall cycle  396 

These results clearly depict that the QMBC can satisfactorily improve the models 397 

under different scenarios and timescales hence its relevance for correcting RCMs outputs. Its 398 
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application will in effect minimize possible biases, therefore it is suitable for evaluation of 399 

extreme events such as drought and flood that continue to pose threat to livelihoods and 400 

socio-economic infrastructure over the study domain. Teleconnection patterns responsible for 401 

influencing the rainfall during the OND is likely to be amplified during the business as usual 402 

model. This scenario could explain the systematic biases that are persistent in models even 403 

after the corrections. This calls for a cautious view of the possible limitations of correction 404 

techniques during the future projections (Cannon et al., 2015). 405 

 406 

 407 

Figure 7. Spatial pattern of mean rainfall for seasonal and annual for observation, simulated, 408 

simulated corrected and model corrected projections based on MME of 5 global climate models 409 

(GCMs) dynamically downscaled with the Rossby Centre Regional Climate Model (RCA4). 410 

 411 

4. Conclusion and Recommendation 412 

The current study examined the effectiveness of quantile mapping bias correction on Rossby 413 

Climate Models (RCA4) for drought and flood analysis. The study is a follow-up study by 414 

Ayugi et al., (2020) on the recent assessment of performance of RCA4 models over the study 415 

domain. Ayugi et al., (2020) elucidated existence of unsystematic and systematic biases in the 416 

better performing models across the region. Thus, the current study was conducted within this 417 
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backdrop. Correction to both mean annual and seasonal variance was conducted by 418 

employing The Split Sample Testing (SST) approach. The correction was conducted by first 419 

training data for 29 years (1951-1979) to derive biases field for monthly averages in model 420 

and observed precipitation simulations. The monthly biased field were then used to correct 421 

independent RCMs during the next 26-year (1980-2005) validation period. The models 422 

corrected are as follows: MIROC5, CSIRO, IPSL-CM5A-MR, MPI-ESM-LR, EC-EARTH, 423 

and MME. Broadly, RCMs simulations depicts significant biases that are mostly associated 424 

with regions of complex terrains such as high altitude or wet humid regions within the study 425 

area. The QMBC demonstrates varying performance from one model to another on both 426 

spatial and temporal scales. However, most models exhibit significant improvement after 427 

corrections on both seasonal and annual timescales. Specifically, the models EC-EARTH and 428 

CSIRO portray exemplary improvement as compared to other models. On the other hand, the 429 

model CM5A-MR model show weak enhancement across various timescales. i.e. MAM and 430 

OND. The corrected models can be employed for projections of extreme events; drought and 431 

flood over the study area. The outputs will aid in appropriate policy formulation for effective 432 

and reliable adaptation techniques. The models showing persistent unsatisfactory 433 

improvement after employing correction approaches should utilized with caution due to the 434 

existence of hidden non-linearity and complex dynamical processes that are uncorrectable.  435 
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