Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020 d0i:10.20944/preprints202001.0194.v1

Article

Energy-Efficient Method for Wireless Sensor
Networks Low-Power Radio Operation in Internet of
Things

Mehdi Amiri Nasab 1, Shahaboddin Shamshirband %3* and Anthony Theodore Chronopoulos 45,
Amir Mosavi 67, Narjes Nabipour 8*,

1 Internet of Things Laboratory of Iran (ISVA), Hamedan, Iran

2 Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi
Minh City, Viet Nam

3 Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Viet Nam;

4 Department of Computer Science, University of Texas, San Antonio, USA;

5 Department of Engineering & Informatics, University of Patras, Greece

¢ Institute of Structural Mechanics, Bauhaus Universitdt Weimar, Germany; amir.mosavi@uni-weimar.de

7 Faculty of Health, Queensland University of Technology, 130 Victoria Park Road, Kelvin Grove, QLD 4059,
Australia

8 Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam;

* Correspondence: shahaboddin.shamshirband@tdtu.edu.vn, narjesnabipour@duytan.edu.vn

Abstract: The radio operation in wireless sensor networks (WSN) in the Internet of Things (IoT)
applications are the most common source for power consumption. However, recognizing and
controlling the factors affecting radio operation can be valuable for managing the node power
consumption. ContikiMAC is a low-power Radio Duty-Cycle protocol in Contiki OS used in
WakeUp mode, which is a clear channel assessment (CCA) to check radio status periodically. The
time spent to check the radio is of utmost importance for monitoring power consumption. It can
lead to false WakeUp or idle listening in Radio Duty-Cycles and ContikiMAC. This paper presents
a detailed analysis of radio WakeUp time factors of ContikiMAC. Then, we propose lightweight
CCA (LW-CCA) as an extension to ContikiMAC to reduce the percentage of Radio Duty-Cycles in
false WakeUps and idle listenings by using dynamic received signal strength indicators (RSSI) status
check time. The simulation results in the Cooja simulator show that LW-CCA reduces about 8%
energy consumption in nodes while maintaining up to 99% of the packet delivery rate (PDR).

Keywords: Internet of Things; IoT; Wireless Sensor Networks; ContikiMAC; Energy Efficiency;
Duty-Cycles; Clear Channel Assessments; Received Signal Strength Indicator (RSSI)

1. Introduction

The advancement of hardware systems for IoT is an essential research domain of large-scale
wireless sensor networks (WSN). In this realm, the development of low-power wireless
communication is of utmost importance. Since these types of devices are usually powered by low
capacity batteries to provide both sensing and actuation capabilities, managing power consumption
is one of the major challenges in designing their hardware and software. The radio is the greatest
source of power consumption in a sensor node. Although the sensor network improves and enhances
the performance of other technologies, it also presents challenges due to some of their inherent
characteristics and location in a variety of environments. The nodes comprising a wireless sensor
network are expected to be small, reliable, low cost, and low power. In some situations, the nodes are
in hard-to-reach areas, so their power supply is usually battery or harvest energy from the
environment. In both models of power supply the management of power consumption in the nodes

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.


mailto:amir.mosavi@uni-weimar.de
mailto:shahaboddin.shamshirband@tdtu.edu.vn
mailto:narjesnabipour@duytan.edu.vn
https://doi.org/10.20944/preprints202001.0194.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics9020320

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020 d0i:10.20944/preprints202001.0194.v1

is mandatory, in the former case to avoid battery replacement and in latter case to reduce the cost of
the energy harvesting system[1]-[3].

Contiki OS is a well-known lightweight operating system that can be used to manage low-power
wireless platforms based on wireless internet communication. In wireless networks, in many cases,
it is necessary to relay data between nodes to reach the destination. The Radio Duty Cycle (RDC)
protocols available on Contiki OS allow end nodes and even relay nodes to sleep and save energy
between each message sending or relay, so the network lifetime is increased. ContikiMAC is a radio
duty cycling protocol available in Contiki OS based on the Low Power Listening (LPL)
mechanism[4]. It uses the periodic WakeUps method to monitor the communication medium for
ongoing transmissions from neighbor nodes. ContikiMAC tries to reduce the amount of energy
consumed by radio activities by using pairs of Clear Channel Assessments (CCA) in every sleep and
wake up sequence and providing a model of radio management. CCA identifies to recognize the
difference interference by measuring the Received Signal Strength Indicator (RSSI) thresholds [5],[6].

Obviously, much of the amount of power consumed in ContikiMAC is spent on the WakeUps
of nodes. The WakeUp is known as a single radio check with a chance to detect the activity of a radio.
The WakeUps can be considered in three categories, positive WakeUps, which results in the receipt
of the packet, false WakeUps, which results in noise or interferences, and idle listening[7]. Idle
listening occurs when the communication medium monitoring does not detect any activity on the
radio. Implementing the CCA model on WSN hardware to recognize the different interference is
extremely challenging due to the limitations of the low power radio, such as TT CC2420. The power
consumption over Radio listening mode(Rx) is unavoidable. Nodes should periodically listen to the
radio channel to reduce the communication latency in network, even if data traffic is slow [8]. In this
paper, we carefully investigate the time factors associated with a radio WakeUp on the ContikiMAC
and to reduce the radio power consumption by dynamic radio check time in WakeUps on the Rx
mode. RSSI status check is an essential timing parameter during radio check-in nodes. Consequently,
in this research particular attention has been paid to RSSI status check to enable an efficient
manipulation of radio check within the limits during the Rx. The maximum timing of radio check is
used when RSSI is either new or identified as a positive WakeUp. Otherwise, the false WakeUp or
idle listening are associate with minimum timing of radio check. In the proposed method the radio
check is essentially based on RSSI where the use of CCA is minimized. CCA is used only for the
purpose of RSSI validation and classification.

The remainder of this paper is structured as follows. Section 2 provides an overview of related
works. Section 3 identifies the hardware and software tools, as well as the scenario used in this paper.
Section 4 highlights the challenge of ContikiMAC in WakeUps as a problem statement. Section 5
proposes a Light Weight Clear channel Assessment (LW-CCA) method to reduce power
consumption in WakeUp mode. Section 6 contains simulations to compare the proposed method to
the ContikiMAC base method. Section 7 presents concluding remarks and future work.

2. Related works

One of the most important challenges in implementing some IoT applications is the power
management of hardware platforms. Nowadays, researchers are using many new technologies to
minimize radio power consumption so that they can pave the way for IoT. The communication to
sending and receiving data on the network is typically the most energy-consuming task in IoT
applications[9]. Since the communication of the nodes is in the radio WakeUp state, so a lot of effort
has been devoted to designing energy-efficient radio WakeUp models in the last decades. Different
methods based on hardware and software have been suggested to control the radio WakeUp mode.
Some of these methods are discussed below:

Magno et al. [10] have considered the combination of energy harvesting WakeUp receiver and
LoRa radio technology to design a new IoT node for long and short-range networking. In another
method in [11], BLE technology and WakeUp radio are integrated with energy harvesting. The design
of both proposed methods is hardware-based so that a dual-radio mechanism using separate


https://doi.org/10.20944/preprints202001.0194.v1
https://doi.org/10.3390/electronics9020320

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020

components is used in Node radio structure on a single chip that is expensive for IoT devices. When
implementing WSN on a large scale, small hardware size and low cost are very important factors.
CTP-WURJ[12], Guo et al [13], and WUR-MAC[14] have introduced other methods that are more
responsive to channel changes using protocol-based design. Recently, cognitive radio has been used
as a solution to the opportunistic spectrum access in WSN [15]. ZIPPY [16] reduces latency and power
consumption as a synchronization method using WakeUp radio and the MAC synchronization
protocol.

Node mobility is one of the important challenges in designing a wake-up schedule (e.g.,[17]).
Failure to consider node mobility, where node mobility is likely, lead to excessive overhead and as
well as this results in poor schedule performance. In addition, the design of WakeUP-based radio
systems should also address the challenges associated with WakeUp radio signal propagation in the
forest, industrial, or indoor body environments.

One of the important issues in low-power radios under WakeUp states is the coexistence with
unrelated radio. For example, in-home automation systems and medical technologies, 802.15.4 radios
are commonly used but the interference of these types of radios with waves of radio like Wi-Fi leads
to a decrease in network performance. Another issue of discussion among researchers is the
coexistence between 802.15.4 radios and unrelated radios that lead to the classification, detection and
reduction methods[7].

Airshark[18] and WiFiNet[19] get spectrum information using powerful Wi-Fi hardware and
detect nonWi-Fi interference. Another method based on interference information is DOF[20] that
provides the local wireless information plane. In the other method in[21], 16 ZigBee channel is
scanned to classify spectrum characteristics. The authors, in [22], design a framework to scan the
2.4GHz band. The beacons are periodically detected to be identified as Wi-Fi signals in ZiFi[23] and
ZiFind. This method is dependent on long-term sampling. SONIC[24] enables resource-limited sensor
nodes to detect the type of interference they are exposed to and select an appropriate mitigation
strategy. The key insight underlying SoNIC is that different interferers disrupt individual 802.15.4
packets in characteristic ways that can be detected by sensor nodes.

Tang et al. [25] proposed a CCA threshold adaptation method to reduce the impact of
interference on packet loss in WSN. Under Wi-Fi interference, the proposed method results showed
that increasing the CCA threshold has the effect of reducing the CCA collision and, consequently,
improving the WSN packet delivery rate. In the proposed method, the CCA threshold is adjusted
adaptively based on the transmit buffer overflows rate in the node. Since there is only one CCA check
before transmitting in Zigbee, this approach is only Zigbee-based and is not the case for MAC
protocols that are based on multiple CCA Per transmission. AEDP[6] is an adaptive energy detection
protocol for LPL, which dynamically adjust a node's CCA threshold to improve network reliability
and duty cycle based on application-specified bounds. AEDP can effectively mitigate the impact of
noise on radio duty cycles while maintaining satisfactory link reliability.

Tang et al. present Interference Aware Adaptive Clear Channel Assessment (IAACCA), which
more proactively contends for channel access by replacing the standard CCA [26]. In this method,
unlike the Zigbee that performs single CCA, the sequence of CCAs is performed until found channel
clear. Under Wi-Fi interference, IAACCA reduces packet loss compared to standard CSMA
mechanism. In JAACCA, a policy decision is adapted after collision with interference. In the other
proposed method, ZiSense [27] reduces false WakeUps by using an active scanning technique in duty
cycling MAC protocols. The authors in Zisense present one approach to realizing DCCA by RSSI
sampling at high frequency, listening for timing and spectral characteristics indicative of 802.15.4.P-
DCCA[25] proposed an optimized approach to Differentiating Clear Channel Assessment (DCCA),
so that a variety of output power is considered in the transmission mode. A P-DCCA check indicates
two states, when the transmission medium is occupied by another WSN node, and when the channel
is occupied by external interference. This method is based on ContikiMAC, the radio duty
cycle protocol.

The above methods are either hardware-based or in some case, they are based on WiFi radio. In
some methods, they are based on a single CCA in every WakeUp as opposed to the ContikiMAC
protocol. As well as some of them have high complexity in programming or they are dependent on

d0i:10.20944/preprints202001.0194.v1


https://doi.org/10.20944/preprints202001.0194.v1
https://doi.org/10.3390/electronics9020320

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020

the sink coordination, routing control and signal modulation. In the current paper, LW-CCA (Light
Weight Clear Channel Assessment) is presented as an extension of ContikiMAC. It is designed to
reduce energy consumption caused by idle listenings and false WakeUps in the ContikiMAC
concerning the high packet delivery rate (PDR) [28]. LW-CCA mechanism is a non-complex
method, and it is independent to sink and to route mechanism by minimum complexity in
programming. The LW-CCA by focusing on the time factors in radio wake-up, offers a method to
reduce the percentage of radio Duty Cycles in false WakeUps and idle listenings. Finally, LW-CCA
is compared via simulation to the basic ContikiMAC. The proposed method can be used on low
power IOT platforms based on 802.15.4 radio and Contiki OS such as Z1, Tmote-SKY, and Micaz [29].

3. Software platform and simulation tools

In the present study, we use the latest version of Contiki 3.0. As mentioned above, Contiki is an
open-source operating system for the Internet of Things that supports tiny low-cost, low-power
microcontrollers connected to the Internet. We focus on Contiki available features such as platforms,
network protocols, and radio duty cycles to provide an optimized way to reduce energy consumption
in IoT nodes [30]. In this research, we use the Cooja simulator available at Contiki Os to simulate the
network scenario and run the proposed method on the nodes. The Collect-View data gathering
software is used to evaluate the status of network nodes in terms of different parameters. One of the
strengths of Cooja is the ability to simulate radio medium activity, that the researchers can graphically
analyze the radio states[31],[32].

3.1. Platform

In the present study, we use the Tmote-Sky platform as the network nodes with MSP430
microcontroller for network simulation. Contiki OS considers the value of 32768 Hz as tick per the
second parameter in the RTIMER_SECOND variable based on the MSP430F1611 basic clock
module[33]. The frequency of a real-time clock varies with the application. The frequency 32768 Hz
(32.768 kHz) is used, because it is a power of 2 (2'%) value. Also, one can get a precise 1 second period
(1 Hz frequency) by using a 15 stage binary counter. RTIMER_SECOND variable has a key role in
calculating radio activity times [34].

The radio used in the Tmote-Sky Platform is CC2420. The CC2420 is an IEEE 802.15.4 compliant
RF transceiver 2.4 GHz designed for low-power and low-voltage WSN applications. CC2420 is
controlled via SPI port, and a series of digital output and input, as well as interrupts by MSP430. The
CC2420 driver in Contiki OS provides two types of radio check, CCA and RSSI. CCA is based on the
measured RSSI value and a programmable threshold[35]. The RSSI value is averaged over 8 symbol
periods (128 us), in accordance with [26]. MCU SPI pin takes strobe commands registers and sends
them to CSn Radio pin for calibration. There are types of registers, status bits, and pins for radio
control in CC2420 driver in Contiki OS. Table 1 lists the ones which are used in three ON (), RSSI (),
and OFF () functions in the course of an idle listening channel check by RSSI according to CC2420.c
file available in Contiki OS.

d0i:10.20944/preprints202001.0194.v1


https://doi.org/10.20944/preprints202001.0194.v1
https://doi.org/10.3390/electronics9020320

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020 d0i:10.20944/preprints202001.0194.v1

Table 1. Participants in one idle listening based on CC2420 driver source code in Contiki OS.

Parameter Type ON() RSSI() OFE()
SRXON register *
SRFOFF register *
RSSI register *
SNOP register * *
SFLUSHRX register *
RXFIFO register *
RSSI_VALID Status bit *
Tx_ACTIVE Status bit *
CSN pin *
FIFOP pin *

3.2. Energest Module

In implementing the proposed method we use the Enegest module feature to configure the
application on nodes. Contiki uses the Energest software-based module to estimate the power
consumption of the nodes. With this module, time spent for every sensor node is measured in some
states such as CPU, LPM, Tx, and Rx in real-time. The energy estimation module is called when the
component is turned on to produce a time stamp. The power consumption of nodes is calculated as
follows:

P=PCPU+ P.LPM+ P Rx+ P.Tx (1)

The average power consumption of each node (P) is sum of the average power consumption in
CPU state (P_CPU) that is activated whenever the node is active (the real-time the CPU is active without using
the radio transceiver is CPU —Tx —Rx ), LPM state(P_LPM) that is activated when the sensor node goes
to Low Power Mode, Rx state(P_Rx) that node is active in the radio receive mode and Tx state(P_Tx)
that radio is active in transmit mode. battery voltage(Vcc) and current power consumption in the
indicated state are set based on platform datasheet. In fact, the energy consumption in states is
calculated based on the number of CPU ticks based on microcontroller, current power consumption
in indicated state and battery voltage [36],[37]. The Tmote-Sky power parameters are considered
according to table 2 as follows.

Table 2. The power parameters in Tmote-Sky based on[38]

Variable power current consumption state value Unit
vCC Supply voltage 3 volt
PC_CPU MCU on, Radio off 1.8 mW
PC_LPM MCU idle, Radio off 0.0545 mW
PC_Tx MCU on, Radio Tx 17.7 mW
PC_Rx MCU on, Radio Rx 20 mW

3.3. Network scenario

Since the purpose of this paper is not merely to provide a method for simple and one hop
networks, the basis of this research is based on a multi-hop random network in order to make the
proposed method as practical as possible. In the multi-hop random scenario, nodes are exposed to
different numbers of neighbors, so interference has a greater impact on nodes. Nodes also have
different amounts of RSSI. On the other hand, the network packets are more likely to be lost. In
addition, each node experiences a different number of retries in sending packets[39]. Therefore in the


https://doi.org/10.20944/preprints202001.0194.v1
https://doi.org/10.3390/electronics9020320

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020 d0i:10.20944/preprints202001.0194.v1

random scenario, the power consumption in the nodes is not monotonous. Figure 1 shows a scenario
and network graph based on RPL routing protocol such that 20 sender nodes and one sink node or
border router that they are scattered in the environment dimensions one hundred square meters (100
m x 100 m) randomly. In the current study, nodes are considered to be fix. The transmitter range at
all nodes is equal to 50 meters.

A

SHCIN
O o oo

100m

Figure 1. The simulation scenario and network graph based on the RPL routing protocol.

3.4. Network Protocols

The Network layer protocol’s stack on the nodes list in Table 3 is among the most widely used
in WSN. We use the feature of a collect-view application available in Contiki OS to allow data to be
aggregated and categorized by a node in the network. It basically involves a sink node and one (or
more) sender nodes. Data such as sensor, power, and network information is sent from the sender
node to the sink node and the collect-view (a java-based application available in Contiki OS Cooja)
displays them in a graphical form [40]. In this work, the IPv6 Routing Protocol for LLNs (RPL) is set
as a proactive routing protocol. RPL automatically forms a tree topology by exchanging ICMPv6
control packets to find a path to the root. 6(LoWPAN (i.e. IPv6 over Low -Power Wireless Personal Area Networks)  is
an adaptation layer protocol that allows the transport of IPv6 packets over 802.15.4 links. Carrier
Sense Multiple Access with Collision Avoidance (CSMA/CA) adopted for Mac layer as the IEEE
802.15.4 standard and finally ContikiMAC are used as the RDC layer for control 802.15.4 radio based
on Low Power Listening(LPL). The RDC layer in the sink is set to Null_RDC, so the sink does not
sleep during network life.

Table 3. Network layers structure used on the nodes[36].

Layer Protocol Standard
Application collect view -
Transport ubDbP IETF RFC 768
Network RPL/IPv6 IETF RFC 6550
Adaptation 6lowpan IETF RFC 6282
Data link IEEE 802.15.4 MAC (CSMA) IEEE 802.15.4
Radio Duty Cycling ContikiMAC -

Physical IEEE 802.15.4 PHY IEEE 802.15.4



https://doi.org/10.20944/preprints202001.0194.v1
https://doi.org/10.3390/electronics9020320

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020 d0i:10.20944/preprints202001.0194.v1

4. Problem statement

From the moment a ContikiMAC node is turned on, the radio check is repeatedly adapted to
send and receive data types, such as routing packets, medium control packets, or packets containing
environment sensor information. Each node performs a large number of WakeUp Rx modes
depending on the environment. Two conditions can be considered: 1. either the node is ideally
positioned over minimum interference with other unrelated radio or noise signals. 2. The node is in
a state of coexistence with unrelated radios, noise or interference. In the state 1 between each data
reception (positive WakeUp) the node will have a large number of idle listening that plays a
significant role in the activity of a radio. In the state 2, in addition to idle listening, the node also has
many false WakeUp. Figure 2 shows samples of positive, false and idle listening WakeUp on the
Radio Timeline in Cooja. The X and Y axes represent to node numbers and their activity of radio
respectively. The red, blue, and green colors in activity of radio line show interference, sending packet
and receiving packet respectively[41].

...... S ———— —— ————
idle listening **

false Wakellp ——

positive WakelUp s
.

PoOWOWO~~-NaUAEWNPE

o

Figure 2. Positive, False and Idle listening WakeUp in Cooja timeline.

The ContikiMAC considers CCA_CHECK_TIME that is the time it takes to perform a CCA
check. In fact, CCA_CHECK_TIME is a balancing time for other timing parameters in ContikiMAC
and it has no direct effect on CCA duration. The time spent on each false WakeUp is depending on
MAX_NONACTIVITY_PERIODS. It is the maximum number of periods we allow the radio to be turned
on without any packet being received. Each period counts as a sum of CCA_CHECK_TIME and
CCA_SLEEP_TIME. The CCA_SLEEP_TIME is the time between two successive CCA checks. The time
variables in ContikiMAC that affect both idle listening and false WakeUp times are shown in Table 4.
The Fast-Sleep mechanism is responsible for the diagnosis of false WakeUps in ContikiMAC. So If the
node fails to receive data after 11 periods (21.1 ms), it quickly returns to sleep mode.

Table 4. The amount of effect on idle listenings and false WakeUps according to ContikiMAC.c

Variable CPU ticks Unit(ms)
CCA_CHECK_TIME 32768/8192 0.4
CCA_SLEEP_TIME (32768/2000) + 1 1.7

10x( CCA_CHECK_TIME +
CCA_SLEEP_TIME)

MAX_NONACTIVITY_PERIODS 21

Table 5 shows the number of idle listenings and false WakeUps during the 10-minute simulation in
the 5, 7, 12 nodes according to section 3.3 and 3.4. For example, the time spent in idle listening and
false WakeUp in Node? is calculated as Equation 2. In fact, almost 1.6% of the network time is wasted
in idle listening and false WakeUp in Node 7. This is, of course, a mere indication of the effect of the
wake-up time loss on idle listenings and WakeUps, and it is not a definite value. Thus except for the


https://doi.org/10.20944/preprints202001.0194.v1
https://doi.org/10.3390/electronics9020320

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020 d0i:10.20944/preprints202001.0194.v1

positive WakeUps, the node tolerates inefficient energy consumption in idle listenings and false
WakeUps. Because this value varies depending on the application and location of the nodes.

Table 5. The number of idle listenings and false WakeUps in nodes 5,7 and 12

Node number Idle listenings False WakeUp
5 11357 115
7 13895 220
12 12082 50
Thode7 = Tigre + Tfalse @)

Trode7 = (13895 x 0.4) + (220 x 21) = 5558 + 4620 = 10178 ms

5. Lightweight clear channel assessment (LW-CCA)

In this paper, we propose the LW-CCA, a lightweight, low-complexity programming method
designed to minimize WakeUp power on ContikiMAC nodes. In this method, it attempts to reduce
the time spent in Rx mode by maintaining a PDR rate similar to base ContikiMAC. By focusing on
software and hardware RSSI status check time, LW-CCA reduces the percentage of Duty cycles as
much as possible to reduce radio power consumption. The minimum WakeUp time for a medium
check would take at least one idle listening. In section 5.1, a single idle listening is analyzed to identify
the essential time factors. Furthermore, the evaluation of the minimum and maximum RSSI status
check time on nodes is presented in section 5.2. In section 5.3, the LW-CCA node categories RSSI
based on the CCA verification, whether they are predicted as a false WakeUp, idle listening, or
positive WakeUp. Finally, in section 5.4, the performance of LW-CCA for the classification and
validation of RSSI and the dynamic radio check time are described. Worth mentioning that LW-CCA
runs exclusively on the relay and sender node, not sink or server node. The proposed method is
considered when the nodes are fixed in the network. The following sections describe the details of
the proposed method.

5.1. the time factors in a single RSSI radio check

The basis of LW-CCA is the momentary check of RSSI. In this study, we examine the time
parameters involved in an RSSI radio check. The relationship between ContikiMAC functions, the
CC2420 driver and the Energest module is shown in Figure 3. In general, each RSSI radio check
consists of three phases:

e Phase 1: Checking permissions for radio driver access by RDC, registering radio hardware

to Rx mode by the radio driver and recording start time of Rx by Energest.

e Phase 2: Validating the RSSI and returning RSSI value from related radio register.

e Phase 3: Set the radio registers to Off state, Preparing the radio queue for the next stage of

radio activity and also announce the end of Rx state to Energest module.

Since our goal is to manage WakeUp time based on radio potentials, so analysis and retrieval of time
factors affecting WakeUp are inevitable. Figure 3 shows a single WakeUp diagram based on the RSSI
check.


https://doi.org/10.20944/preprints202001.0194.v1
https://doi.org/10.3390/electronics9020320

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020 d0i:10.20944/preprints202001.0194.v1

Phase 1 Phase 2 Phase 3

powercycle_turn_radio_off( );

(powercycle_l urn_radio_on( ); ]

no

we_are_sending &&
we_are_receiving_burst

we_are_sending &&
we_are receiving_burst

is_on 1= 0 &
contikimac_keep_radio_on == g

NETS TACK_RADIO.off( );

contikimac_is_on &&
radio_js_on==0

radio_is_on = 1;

NETSTACK_RADIO.on{ };

MNULL

[NETSTACK_RADIO.channeI_r\eart ):]
[y

b

ContikiMAC

4

4

cc2420 on( ); |l

.2

€c2420 _rssi{ );

cc2420_off( )

receive_on Ireceive_on

radio_was_off = 1;
4 y

GD

3

_(CC2420_ENABLE_FI FOP_INT(); ]

(wait_for_stal us (BV(CCZGZO_RSSI_VALIDJ);]—

wait_for_transmission();

_,( rssi = get reg(CC242(]7RSSI)],‘]
A 4

- 1 ENERGEST_OFF(ENERG EET_TYPE_LISTEN];]

strobe(CC2420_SRXON); 4
| return rssi |

( ENERGES[ON(ENERGESTiTYDEiLISTENl;}— -

strobe{ CC2420_SRFOFF};

((czqzo DISABLE_FIFOP _INT(J;]—

4

I receive on = 1; I

1CC2420 FIFOP_IS_1

€c2420 radio

Energest software mechanism

Figure 3. Diagram of the relationship between RDC, the radio driver and the Energest module in performing a

single RSSL.

Every radio WakeUp lasts between strobe CC2420_SRXON and strobe CC2420_SRFOFF. The
number of CPU ticks in the radio check is saved in Energest. The wait_for_status(CC2420_RSSI_VALID ) in

phase 2 is known as an important time factor for a single RSSI check. it takes time equal with Equation
3.

cc2420 driver


https://doi.org/10.20944/preprints202001.0194.v1
https://doi.org/10.3390/electronics9020320

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020 d0i:10.20944/preprints202001.0194.v1

- RTIMER _SECOND 32768 2276 3
a~ 10 10

Table 6 shows time factors which are resulted from analyzing the relationship between RDC and
radio hardware in an RSSI check. The table is extracted from the radio Timeline in Cooja.

Table 6. Effective time factors per idle listening based on RSSI under Cooja simulator Timeline

t_wait_for_status(ms t_RSSI(ms) total_time(ms)

0.32 0.128 0.448

Every RSSI check involves the different action timings:. t_wait_for_status is time spent for RSSI
status check based on equation 3. t_RSSI is time spent for the read of RSSI status check. Total_time is
the sum of the time spent in an RSSI radio check. Actually in an RSSI check, the t_wait_for_status
takes the longest time 0.32 milliseconds (20 symbols period according to[42]) to doing a reliable RSSI
status check-in ContikiMAC. So it indicates that ContikiMAC devotes more time to RSSI status check
than 8 symbols periods suggested in CC2420 datasheet. It should be noted that 20 Symbols has no
role in RSSI reception. In fact, it is a BackOFF for reliable time to wake the radio.

5.2 The RSSI check time models in LW-CCA

This section examines the hardware and software RSSI status check time. Based on the phase 2
section 5.1, LW-CCA divides the radio check time into T, and t_RSSI time periods. The following
function is responsible for doing the RSSI validation under a period of time t_RSSI=0.128 ms (8
symbols) and T, =0.32 ms (20 symbols) in cc2420.c.

static void
wait_for_status(uint8_t status_bit)
{
rtimer_clock_t t0;
t0 = RTIMER_NOW();
while(!(get_status() & status_bit)
&& RTIMER_CLOCK_LT(RTIMER_NOW)(), t +
RTIMER_SECOND / 10);

}

The LW-CCA, with respect to radio check time partition, considers two models for a dynamic check in the Rx

mode.

Model 1: This model considers RSSI check for measuring signal strength in Rx and uses default
CCA check-in Tx mode. The RSSI status check time is by default method in CC2420 driver based on
the sum of T, and t_RSSI.

Model 2: In this model, consideringT, = 0, the RSSI check time is considered to be equal with
the 8 symbols period’s case. In fact, the RSSI status check is performed over the intended time for the
cc2420 radio chip. The rest of the conditions are the same as in model 1. The following function is
responsible for doing the RSSI validation under a period of time t_RSSI=0.128 ms.


https://doi.org/10.20944/preprints202001.0194.v1
https://doi.org/10.3390/electronics9020320

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020 d0i:10.20944/preprints202001.0194.v1

static void

wait_for_status(uint8_t status_bit)

{

rtimer_clock_t t0;

t0 = RTIMER_NOW();

while(!(get_status() & status_bit)

&& RTIMER_CLOCK_LT(RTIMER_NOWA(), t0);
}

Figure 5. The rssi check time with 0.128 ms (8 symbols periods) by ignoring T, and relation source
code in cc2420.c.

Table 7 shows a comparison between indicated models in terms of percentage of the listening duty cycle
according to the scenario in section 3.3 and 3.4 in a 40 minute (High Rate). It shows that ignoring T, in RSSI
status check time for nodes based on model 2 results in about 11 percentage reduction in average of the listening
duty cycle. The results in Table 7 are extracted based on the Collect-View output. The details of the
average listen duty cycle calculation are available in section 6.

Table 7. Comparison of models of 1 and 2 in terms of percentage of listen Duty-Cycle.

Method Rx| Tx Listen Duty-Cycle (%)
Model 1 RSSI | CCA 1.451
Model 2 RSSI | CCA 1.282

Therefore, each RSSI status check can be divided into two states: 8 internal symbols set for CC2420
radio hardware and 20 symbols for performing a reliable radio WakeUp on Rtimer equal to Equation
3. In fact, 8 and 20 symbols can be considered as the minimum and maximum periods required to
perform a minimum radio check time, respectively. Figure 6 illustrates the performance of the RSSI
status check. The file Msp802154Radio.java in Cooja is responsible for simulating 8 symbols for RSSI
status check based on CC2420 radio datasheets.

8 symbols (0.128 ms)
CC2420 RSSI check time

Radio ON

Radio OFF

20 symbols (0.32 ms)
backoff time

Figure 4. The performance of RSSI status checks based on Radio hardware and ContikiMAC.

Figures 5 and 6 show changes in RSSI check time in nodes based on model 1 and 2 in Rx and Tx
mode. The difference between the radio checks is shown in Figure 6 with some zoom to make the
difference clearer. In both models, the radio check is assumed to be based on default CCA in Tx mode.


https://doi.org/10.20944/preprints202001.0194.v1
https://doi.org/10.3390/electronics9020320

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020 d0i:10.20944/preprints202001.0194.v1

28 symbol
Sna— T Y

28 symbol

Figure 5. Model 1: RSSI check in Rx(28 symbols) and Tx(28 symbols) in Cooja Timeline.

8 symbaol
‘ 28 symbol

Figure 6. Model 2: RSSI check-in Rx (8 symbols) and Tx (28 symbols) in Cooja Timeline.

5.3. Categories of RSSIs in LW-CCA

The CC2420 in our application returns [-100, 0] as the normal range of RSSI, where -100 is the
minimum level of the noise floor. In performing each RSSI check, the values obtained for RSSI can be
divided into three categories: Firstly, the values that are valid and determine the radio activity and
ultimately, it results in the receipt of the data frame (positive WakeUP); Secondly, the values that are
valid and determine the radio activity and ultimately, it results in the noise or interference (false
WakeUp); and third the values that are invalid and do not specify any activity on the radio(idle
listening). In the LW-CCA categories, false WakeUp and Idle listening RSSIs are located in rssi_null.
Figure 7 shows the RSSIs classified. Identification of idle listening and false WakeUp conducted via
CC2420 driver’s and ContikiMAC’s side and the false WakeUp is reported to CC2420 driver through
NETSTACK_RADIO[43].


https://doi.org/10.20944/preprints202001.0194.v1
https://doi.org/10.3390/electronics9020320

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020 d0i:10.20944/preprints202001.0194.v1

CC2420 ContikiMAC
RSS1 |+ > MNETSTACK_RADIO
cCA=1 CCA=0 Contiki Timing check
r CCA check
idle listening positive WakeUp false WakeUp
receiving fast-sleep
b3 rssi_null list NETSTACK_RADIO |afm—

Figure 7. RSSIs classified as Null.

It is important to note that the classification of RSSIs depends on the return value of CCA check,
so that if CCA value is 0 so ContikiMAC checks false/positive WakeUp, otherwise it is an idle
listening. The diagnosis of positive WakeUp and false WakeUp is based on a timing mechanism in
ContikiMAC. Worth mentioning that, each node when it receiving a new RSSI value, performs the
validation through CCA.

5.4. The dynamic RSSI check time in LW-CCA

This section describes the performance of LW-CCA according to the description of the previous
sections. As mentioned, LW-CCA performance is based on RSSI measurements. In this method, for a
dynamic check, the radio check time works according to the models 1 and 2 (section 5.2. ). Every node
has two tasks in receiving RSSIs : i.e., receiving RSSI based on model 1, and re-evaluating RSSI based
on the model 2 and its classification:

The following proposed method is illustrated in Figure 8.

Nodes perform radio checks in two modes: listen and transmit mode. In the LW-CCA method, a
reduction in Rx radio check time is considered. Each ContikiMAC node periodically checks the radio
with CCA pairs. In fact, each CCA recognizes the validity and invalidity of radio activity by
comparing the RSSI threshold. Based on Section 5.1, in LW-CCA each radio check uses the RSSI
directly. LW-CCA nodes first assign a value of 8 symbols (Model 2) to the status check RSSI. The
value obtained is evaluated based on the classification in Section 5.3. In this case, two states are
considered:

RSSI is a member of rssi_null list:
If the RSSI value is a member of the rssi_null list, the node returns 1 to ContikiMAC and quickly
go to sleep. In fact, the node does just 8 Symbols RSSI status check.

RSSI is a member of the rssi_active List or it is a new RSSI:

If the RSSI value is outside the rssi_null list, it is either a new value or a member of rssi_active.
In both cases, the node re-evaluates the radio based on Model 1. In this case, after the RSSI check,
the CCA check will be considered for validation and classification of RSSI. If CCA returns a value
of 1, the RSSI value is detected as an idle listening and stored as a worthless value in the rssi_null


https://doi.org/10.20944/preprints202001.0194.v1
https://doi.org/10.3390/electronics9020320

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020 d0i:10.20944/preprints202001.0194.v1

list. Otherwise, ContikiMAC applies its timing based on Section 4 to check for false Wake Up or
positive WakeUp. If the radio activity in the node results in a false WakeUp the RSSI value is
stored in the rssi_null list and the node goes to sleep quickly based on the Fast-Sleep mechanism.
If the RSSI results in positive Wake Up the node stays on the receiving mode.

[Get RSSI based on model 2 ]

!

[ContikiMAC timing]

no if RSSI value is

member of
rssi_null list

add to rssi_null lis

return 1 ves

if false WakeUp

:{Get RSSI based on model 1]—/ [packet receiving ] [add to rssi_null Iist)

The proposed method actually uses the maximum value of the RSSI status check time when

Figure 8. The diagram of the LW-CCA method.

the RSSI value is detected either new or active. Therefore, in other cases at least 8 symbols are
considered. LW-CCA thus reduces the amount of radio check-in false WakeUps and idle
listening as much as possible to reduces the inefficient power consumption caused by radio
activity in Rx mode. Also, using RSSI validation based on the CCA value makes the node
performance reliable in the real environment as well.

6. Comparison of LW-CCA with ContikiMAC

We evaluated the proposed method LW-CCA and compared it with ContikiMAC using the
Cooja simulator. Tmote-Sky is used as a hardware platform for nodes on the network. The network
protocol for all nodes is the same as in Table 3. Figure 1 illustrates the network scenario with respect
to the RPL routing protocol graph. It is a random scenario with a variety of hops and neighbors
consists of:

e  One emulated node that is programmed as a sink that plays the role of the root node for RPL in
the network graph. In fact, it is a UDP server that collects data from client nodes;

e 21 emulated duty cycle nodes as UDP clients in network graph that send data to sink ;

e  The power consumption of the nodes is estimated by the Energest module available at Contiki.

The LW-CCA method is compared with the ContikiMAC in terms of the average CPU ticks in
CPU, LPM, Rx and Tx, CPU Power, LPM Power, Rx and Tx Duty-Cycle(%), Rx and Tx Power, Total
Power consumption and PDR. LW-CCA and ContikiMAC nodes are evaluated based on the two data
transmission rates, once every 60 seconds (Low Rate) and once every 30 seconds (High Rate).
Simulation time for each of Low rate and High rate scenario is 4 hours. The node number “1” is
considered as a sink and its radio is turned on during the network time, so the network status analysis
is done based on the sender nodes from 2 to 21. All of the scenarios outputs are based on Collect-
View in Cooja. The equations are based on embedded equations for power consumption in the
Collect-View source code [31]. The power parameters for simulation are listed in Table 2.

6.1. The average of ticks in CPU, LPM, Rx, and Tx states in the network

Tick conversion simply refers to the ability to convert physical units to timer ticks [44]. On a
system with a 2 MHz timer, for example, 1 ms is mapped to 2000 ticks. The calculation of the power


https://doi.org/10.20944/preprints202001.0194.v1
https://doi.org/10.3390/electronics9020320

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020 d0i:10.20944/preprints202001.0194.v1

consumption in different states for the nodes depends on how long the node stays in every state. The
Energest considers the time spent in different states with the number of ticks in that state. Table 8
shows the average of ticks in CPU, LPM, Rx and Tx states in both low rate and high rate scenarios in
LW-CCA and ContikiMAC nodes. Table 8 shows the average of ticks for CPU (numbers of ticks for
CPU in active mode) in CPU_time, LPM(numbers of ticks in low power mode) in LPM_time,
Rx(numbers of ticks in listening mode) in Rx_time and Tx(numbers of ticks in transition mode) in
Tx_time. The LPM_time shows that LW-CCA by reducing RSSI status check time in false WakeUps
and idle listenings, increase low power mode time in nodes. CPU_time simulation result shows that
there is a small amount of computing overhead in LW-CCA. Rx_time also shows a significant
decrease in listening time in LW-CCA, although there is little change in Tx_time. It should be noted
that the parameters are averaged from all of the sender nodes.

Table 8. The average of CPU ticks in SKY nodes

RDC CPU_time LPM_time Rx_time Tx_time
ContikiMAC(Low Rate) 4498.73 46354.15 511.15 145.71
ContikiMAC(High Rate) 4834.95 47584.65 719.45 273.50

LW-CCA(Low Rate) 4537.25 47478.90 425.40 147.52
LW-CCA(High Rate) 5066.35 48036.60 601.05 281.30

6.1. Average of Percentage for Listen and Transmit Duty Cycle in the network

This section analyzes the simulation results for a network( 20 sender nodes) in terms of listen
and transmit Duty Cycle that refers to the percentage of the Duty cycle used to listen and transmit to
the radio. Table 9 shows the percentage of Listen and transmit Duty Cycle based on Low Send rate
and High Send Rate for LW-CCA and ContikiMAC nodes.The simulation outputs show that in both
scenarios, percentage of Listen Duty Cycle in LW-CCA nodes are significantly lower than
ContikiMAC nodes. LW-CCA decreases average of Listen Duty Cycle about 0.2 in both of Low High
Send Rate scenarios that It results in a reduction of approximately 18 percent in the average total
Listen Duty Cycle.The average percentage of transmit Duty Cycle in LW-CCA doesn't make much
difference to ContikiMAC. The experiment results show that the proposed LW-CCA method can
reduce the time of Listen Duty Cycle by considering a dynamic RSSI check time so that it tries to
reduce listen time in false WakeUps and idle listenings. How to calculate the average percentage of
Listen and transmit Duty Cycle is according to Equations 4 and 5. Rx_time, Tx_time, CPU_time and
LPM_time are equal with numbers of ticks available in Table 8.

Rx_time
CPU_time + LPM_time

Rx DutyCycle(%) = 100 * ( ) 4)

Tx_time

Tx DutyCycle(%) = 100 * G554 e LM time

) )


https://doi.org/10.20944/preprints202001.0194.v1
https://doi.org/10.3390/electronics9020320

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020 d0i:10.20944/preprints202001.0194.v1

Table 9. The average of Rx and Tx DutyCycle(%)

RDC Rx DutyCycle(%)  Tx DutyCycle(%)
ContikiMAC(Low Rate) 1.005 0.286
ContikiMAC(High Rate) 1.372 0.521

LW-CCA(Low Rate) 0.817 0.283
LW-CCA(High Rate) 1.131 0.529

6.2. Network Power Consumption

The total power consumption of each node comprises the power consumption of the node in
different states such as CPU, LPM, Rx, and Tx. In this section, the average power consumption on
indicated states in LW-CCA nodes is compared with the ContikiMAC nodes in both low and high
rate scenarios and evaluates the effect of the proposed method on the total power consumption and
finally the Packet delivery rate (PDR). The power and time parameters in the power consumption
calculation are obtained from Tables 2 and 8. The average of power consumption in CPU, LPM, Rx
and Tx states in network is calculated by Equations 6, 7, 8 and 9 respectively. The average of total
power consumption (P) is calculated according to Equation 1. For example, average of listen power
for LW-CCA nodes in high rate is calculated in Equation 10.

CPU_time x VCC x PC_CPU

P_CPUMW) = =50 time + LPM time ©)

o Lpamyyy  LPM_time X VCC X PC_LPM ,

LPM(MW) = — 50 time + LPM time )

PR W) = Rx_time X VCC X PC_Rx g

Rx(mW) = =5 ime + LPM time ®)
Tx_time X VCC X PC_Tx

P_Tx(mW) = )

CPU_time + LPM_time

Rx_time X VCC x PC_Rx _ 601.5x 3 x 20
CPU_Time + LPM_time = 5066.35 + 48036.60

P_Rx(LW — CCA, High_Rate) = = 0.679(mW) (10)

Table 10 compares the network states in terms of average power consumption for LW-CCA and
ContikiMAC in CPU, LPM, Rx, Tx states, and finally considers the average total power consumption
and packet delivery rates. The outputs show that the average power consumption in the LPM mode
for both methods is relatively similar. The average power consumption in the high-rate scenario in
the LW-CCA represents a relatively higher value in CPU state, which may be due to the processing
overhead imposed on the CPU in the LW-CCA. But the reduction in average power consumption in
the listening state and finally, the overall average energy consumption in LW-CCA nodes justify this
overhead. The LW-CCA is able to reduce average listening power by 0.113 and 0.144 mW in low and
high rates, respectively. The average power consumed in the transmit state in both methods shows a
relatively similar value. Finally, the overall average power consumption in LW-CCA nodes has
decreased by 0.121 and 0.124 mW in low and high rates, respectively compared to ContikiMAC. Table


https://doi.org/10.20944/preprints202001.0194.v1
https://doi.org/10.3390/electronics9020320

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020

10 shows that LW-CCA is able to retain a 99% packet delivery rate similar to ContikiMAC by
decreasing overall power consumption by 7.1% and 8.7% for high and low rate scenarios,
respectively.

Table 10. The average of power consumption in CPU, LPM, Rx, Tx, total power consumption and

PDR
RDC P_CPUmMW) P_LPM(mW) P _Rx(mW) P_Tx(mW) P@mW) PDR(%)
ContikiMAC(Low Rate) 0.477 0.149 0.603 0.152 1.381 99
ContikiMAC(High Rate) 0.498 0.148 0.823 0.277 1.746 99
LW-CCA(Low Rate) 0.471 0.149 0.490 0.150 1.260 99
LW-CCA(High Rate) 0.515 0.147 0.679 0.281 1.622 99

7. Conclusions

The 802.15.4 radios are low power radios that are used in many applications of the IoT and
wireless sensor networks on a variety of platforms. Some operating systems offer varieties of Radio
DutyCycle (RDC) mechanism for controlling 802.15.4 radios. One of the challenges in RDC protocols
is WakeUps in idle listening and falseWakeUps (Section 4). The proposed method LW-CCA aims to
reduce the wakeup time caused by false WakeUp and idle listening nodes. For this purpose, the
performance of ContikiMAC is evaluated according to the time factors affecting each WakeUp . RSSI
status check time is an important time factor to the radio. ContikiMAC considers a fixed time of 20
symbols (0.32 ms) to perform an RSSI check time per WakeUp. The proposed LW-CCA method,
unlike ContikiMAC, considers two values of minimum and maximum 8 symbols (0.128 ms) and 28
symbols for the radio check. (Section 5). The value of 8 symbols is the minimum value based on the
CC2420 Datasheet. The LW-CCA nodes classify RSSI values based on CCA validation. LW-CCA
considers 8 symbol radio check time if RSSI is detected as idle listening or false WakeUp otherwise it
considers a 28 symbol. LW-CCA nodes, based on the simulations of section 6 have reduced 18% of
DutyCycle compared to ContikiMAC. based on simulation outputs of section 6. Considering the
power parameters based on the Tmote-SKY platform and indicated scenario in section 3, the LW-
CCA with approximately 0.12 mW decrease in average power consumed in the listening modeled to
about 8% reduction in the overall average power consumption in the nodes. LW-CCA reduces energy
consumption while it maintains packet delivery rate 99%, which is the same as ContikiMAC in sender
nodes. The proposed method can be applied to all IoT platforms based on 802.15.4 radios such as 71,
Tmote-SKY, and Micaz [29]. Since RSSI validation is based on CCA check, therefore it can also be
exploited in the real environment. The instantaneous categorization mechanism in the LW-CCA
method can make this method flexible against interference caused by irrelevant radios or noise.

Acknowledgments

We acknowledge the support of the German Research Foundation (DFG) and the Bauhaus-
Universitat Weimar within the Open-Access Publishing Programme.

Conflicts of Interest

The authors declare no conflict of interest.

d0i:10.20944/preprints202001.0194.v1


https://doi.org/10.20944/preprints202001.0194.v1
https://doi.org/10.3390/electronics9020320

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020 d0i:10.20944/preprints202001.0194.v1

Author Contributions

Conceptualization, modeling, data curation, data analysis, and analysis of results, M.A.N, S.S,,
AT.C, AM, and N.N.; IoT, machine learning and soft computing expertise, M.A.N, S.S., A.T.C,
A.M.,, and N.N.; mathematics expertise, M.A.N, 5.S., A.T.C., AM.,, and N.N.; management, database,
writing, administration, and methodology M.A.N, S.S., A T.C., A M., and N.N; visualization, M.A.N,
5.5, A.T.C, AM.,, and N.N,; supervision, resources, software, revision, and verification of the results,
AT.C,AM, and S.S,, funding, A.M.

Abbreviations

Abbreviation Definition

CCA Clear Channel Assessments

CPU Central Processing Unit

CSMA Carrier Sense Multiple Access with Collision Avoidance

IoT Internet of Things

LPL Low Power Listening

LPM Low Power Mode

LW-CCA Light weight CCA

MAC Medium Access Control

MCU Microcontroller Unit

PDR Packet Delivery Rate

RDC Radio DutyCycle

RPL Routing Protocol for LLNs

RSSI Received Signal Strength Indicator

ubpP User Datagram Protocol

vCC voltage at the common collector

WSN Wireless Sensor Network
References

[1] S. Avallone, S. Guadagno, D. Emma, A. Pescape, and G. Ventre, “D-ITG distributed internet traffic
generator,” Proc. - First Int. Conf. Quant. Eval. Syst. QEST 2004, no. ii, pp. 316-317, 2004.

[2] P. Dutta and A. Dunkels, “Operating systems and network protocols for wireless sensor networks,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 370, no. 1958, pp. 68-84, 2012.

[3] M. H. Homaei, E. Salwana, and S. Shamshirband, “An Enhanced Distributed Data Aggregation Method
in the Internet of Things,” Sensors, vol. 19, no. 14. MDPI, 2019.

[4] V. C. Thang, “A Comparative Study of Network Performance between ContikiMAC and XMAC
Protocols in Data Collection Application with ContikiRPL,” Int. J. Comput. Netw. Inf. Secur., vol. 11, no.
8, p. 32, 2019.

[5] J. Bhar, “A Mac Protocol Implementation for Wireless Sensor Network,” J. Comput. Networks Commun.,
vol. 2015, pp. 1-12, 2015.

[6] M. Sha, G. Hackmann, and C. Lu, “Energy-efficient Low Power Listening for Wireless Sensor Networks
in Noisy Environments,” Proc. 12th Int. Conf. Inf. Process. Sens. Networks, vol. 61, pp. 277-288, 2013.

[7] X. Zheng, Z. Cao, J]. Wang, Y. He, and Y. Liu, “Interference resilient duty cycling for sensor networks
under co-existing environments,” IEEE Trans. Commun., vol. 65, no. 7, pp. 2971-2984, 2017.

[8] Y. Huang, W. XIANG, S. WEN, and Y. JIN, “The Study of Traffic-Aware ContikiMAC,” DEStech Trans.
Comput. Sci. Eng., no. wcne, 2016.

[9] F. A. Aoudia, M. Magno, M. Gautier, O. Berder, and L. Benini, “Wake-up receivers for energy efficient


https://doi.org/10.20944/preprints202001.0194.v1
https://doi.org/10.3390/electronics9020320

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020 d0i:10.20944/preprints202001.0194.v1

and low latency communication,” in Proceedings of the 15th International Conference on Information
Processing in Sensor Networks, 2016, p. 53.

[10] M. Magno, F. A. Aoudia, M. Gautier, O. Berder, and L. Benini, “WULoRa: An energy efficient IoT end-
node for energy harvesting and heterogeneous communication,” Proc. 2017 Des. Autom. Test Eur. DATE
2017, pp. 1528-1533, 2017.

[11] M. M. D. Khomami, A. Rezvanian, and M. R. Meybodi, “A new cellular learning automata-based
algorithm for community detection in complex social networks,” J. Comput. Sci., vol. 24, pp. 413426,
2018.

[12] S. Basagni, “CTP-WUR: The Collection Tree Protocol in Wake-up Radio WSNs for Critical
Applications,” in 2016 International Conference on Computing, Networking and Communications (ICNC),
2016, pp. 0-5.

[13] C. Guo, L. C. Zhong, and ]. M. Rabaey, “Low power distributed MAC for ad hoc sensor radio networks,”
in GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No. 01CH37270), 2001, vol. 5, pp.
2944-2948.

[14] S. Mahlknecht and M. S. Durante, “WUR-MAC: energy efficient wakeup receiver based MAC protocol,”
IFAC Proc. Vol., vol. 42, no. 3, pp. 79-83, 2009.

[15] G. P. Joshi, S. Y. Nam, and S. W. Kim, “Cognitive radio wireless sensor networks: applications,
challenges and research trends,” Sensors, vol. 13, no. 9, pp. 11196-11228, 2013.

[16] F. Sutton, B. Buchli, J. Beutel, and L. Thiele, “Zippy: On-demand network flooding,” in Proceedings of the
13th ACM Conference on Embedded Networked Sensor Systems, 2015, pp. 45-58.

[17] F. Dressler et al., “Protocol design for ultra-low power wake-up systems for tracking bats in the wild,”
IEEE Int. Conf. Commun., vol. 2015-Septe, no. Section IIL, pp. 6345-6350, 2015.

[18]  S. Rayanchu, A. Patro, and S. Banerjee, “Airshark: Detecting non-WiFi RF Devices Using Commodity
WiFi Hardware,” Proc. 2011 ACM SIGCOMM Conf. Internet Meas. Conf., pp. 137-154, 2011.

[19] S. Rayanchu, A. Patro, and S. Banerjee, “Catching Whales and Minnows using Wifinet: Deconstructing
Non-wifi Interference using Wifi Hardware,” USENIX Conf. Networked Syst. Des. Implement., pp. 57-70,
2012.

[20] S. Hong and S. Katti, “DOF: A Local Wireless Information Plane,” Sigcomm 2011, pp. 230-241, 2013.

[21] K. R. Chowdhury and I. F. Akyildiz, “Interferer classification, channel selection and transmission
adaptation for wireless sensor networks,” IEEE Int. Conf. Commun., pp. 1-5, 2009.

[22] B. Bloessl, S. Joerer, E. Mauroner, F. Dressler, and S. Joerer, “ACM MobiCom 2012 Poster : Low-Cost
Interferer Detection and Classification using TelosB Sensor Motes,” Proc. 18th Annu. Int. Conf. Mob.
Comput. Netw., vol. 16, no. 4, pp. 403-406, 2012.

[23] R. Zhou, Y. Xiong, G. Xing, L. Sun, and J. Ma, “ZiFi: wireless LAN discovery via ZigBee interference
signatures,” in MobiCom 10 Proceedings of the sixteenth annual international conference on Mobile computing
and networking, 2010, pp. 49-60.

[24]  F. Hermans and E. Ngai, “SoNIC : Classifying Interference in 802 . 15 . 4 Sensor Networks,” in ACM,
2013, pp. 55-66.

[25]  A.King and U. Roedig, “Differentiating Clear Channel Assessment Using Transmit Power Variation,”
ACM Trans. Sens. Networks, vol. 14, no. 2, pp. 1-28, 2018.

[26] M. P. Uwase, M. Bezunartea, J. Tiberghien, ]J. M. Dricot, and K. Steenhaut, “Experimental Comparison
of Radio Duty Cycling Protocols for Wireless Sensor Networks,” IEEE Sens. J., vol. 17, no. 19, pp. 6474—
6482, 2017.

[27] X. Zheng, Z. Cao, ]. Wang, Y. He, and Y. Liu, “ZiSense: Towards Interference Resilient Duty Cycling in


https://doi.org/10.20944/preprints202001.0194.v1
https://doi.org/10.3390/electronics9020320

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 January 2020 d0i:10.20944/preprints202001.0194.v1

Wireless Sensor Networks,” Sensys'14, pp. 119-133, 2014.

[28] J. Oller, 1. Demirkol, J. Casademont, J. Paradells, G. U. Gamm, and L. Reindl, “Has Time Come to Switch
from Duty-Cycled MAC Protocols to Wake-Up Radio for Wireless Sensor Networks?,” IEEE/ACM Trans.
Netw., vol. 24, no. 2, pp. 674-687, 2016.

[29] M. O. Ojo, S. Member, S. Giordano, S. Member, G. Procissi, and I. N. Seitanidis, “A Review of Low-End
, Middle-End, and High-End Iot Devices,” IEEE Access, vol. 6, pp. 70528-70554, 2019.

[30] M. Joshi and B. Kaur, “Web Integrated Smart Home Infrastructure Using Internet of Things,” Int. J. Eng.
Res. Gen. Sci., vol. 3, no. 6, pp. 153-158, 2015.

[31]  A. Velinov and A. Mileva, “Running and Testing Applications for Contiki OS Using Cooja Simulator,”
Int. Conf. Inf. Technol. Dev. Educ., pp. 279-285, 2016.

[32] S. Sadiki, M. Ramadany, M. Faccio, D. Amegouz, and S. Boutahari, “Running Smart Monitoring
Maintenance Application Using Cooja Simulator,” in International Journal of Engineering Research in
Africa, 2019, vol. 42, pp. 149-159.

[33] T. Instruments and I Slas, “MSP430F15x, MSP430F16x, MSP430F161x MIXED SIGNAL
MICROCONTROLLER,” Office, no. October 2002. p. 77, 2011.

[34] M. Nasseri, H. Al-Olimat, M. Alam, J. Kim, R. Green, and W. Cheng, “Contiki Cooja Simulation for Time
Bounded Localization in Wireless Sensor Network,” Proc. 18th Symp. Commun. Netw., pp. 1-7, 2015.

[35] P. Description and K. Features, “SmartRF ® CC2420,” 2004.

[36] J. Schandy, L. Steinfeld, and F. Silveira, “Average power consumption breakdown of Wireless Sensor
Network nodes using IPv6 over LLNs,” in 2015 International Conference on Distributed Computing in Sensor
Systems, 2015, no. June, pp. 242-247.

[37] N. M. Son, T. N. Thinh, N. D. Thi, N. C. Nhan, and I. Technology, “An Approach of Low Power Wifi
Sensor Mote for Internet of Things Applications Faculty of Computer Engineering , Faculty of Computer
Science and Engineering , Corresponding Author : Nguyen Minh Son,” vol. 7, no. 4, pp. 161-166, 2016.

[38] SNM, “Tmote Sky sensor datasheet,” pp. 1-28, 2007.

[39] M. Michel and B. Quoitin, “Technical Report: ContikiMAC vs X-MAC performance analysis,” Netw.
Internet Archit., vol. 5, pp. 1-28, Apr. 2015.

[40] L. Sitanayah, C.]. Sreenan, and S. Fedor, “A Cooja-based tool for maintaining sensor network coverage
requirements in a building,” in Proceedings of the 11th ACM Conference on Embedded Networked Sensor
Systems, 2013, p. 70.

[41] F. Osterlind, J. Eriksson, and A. Dunkels, “Cooja TimeLine: a power visualizer for sensor network
simulation,” in Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, 2010, pp.
385-386.

[42] T. C. O.S. O. for the I. of T. Dunkels, Adam(Member of The Contiki Open Source OS for the Internet of
Things), Simon Duquennoy(Member of Contiki-NG, “Contiki OS,” 2015. [Online]. Available:
https://github.com/contiki-os/contiki/blob/master/dev/cc2420/cc2420.c.

[43] Y. Quan, “Topology-based Device Self-identification in Wireless Mesh Networks,” School of Electrical
Engineering and Computer Science, STOCKHOLM, SWEDEN, 2019.

[44] E. Baccelli et al., “RIOT: An open source operating system for low-end embedded devices in the IoT,”

IEEE Internet Things J., vol. 5, no. 6, pp. 4428-4440, 2018.


https://doi.org/10.20944/preprints202001.0194.v1
https://doi.org/10.3390/electronics9020320

