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Abstract: The radio operation in wireless sensor networks (WSN) in the Internet of Things (IoT) 

applications are the most common source for power consumption. However, recognizing and 

controlling the factors affecting radio operation can be valuable for managing the node power 

consumption. ContikiMAC is a low-power Radio Duty-Cycle protocol in Contiki OS used in 

WakeUp mode, which is a clear channel assessment (CCA) to check radio status periodically. The 

time spent to check the radio is of utmost importance for monitoring power consumption. It can 

lead to false WakeUp or idle listening in Radio Duty-Cycles and ContikiMAC. This paper presents 

a detailed analysis of radio WakeUp time factors of ContikiMAC. Then, we propose lightweight 

CCA (LW-CCA) as an extension to ContikiMAC to reduce the percentage of Radio Duty-Cycles in 

false WakeUps and idle listenings by using dynamic received signal strength indicators (RSSI) status 

check time. The simulation results in the Cooja simulator show that LW-CCA reduces about 8% 

energy consumption in nodes while maintaining up to 99% of the packet delivery rate (PDR).  

Keywords: Internet of Things; IoT; Wireless Sensor Networks; ContikiMAC; Energy Efficiency; 

Duty-Cycles; Clear Channel Assessments; Received Signal Strength Indicator (RSSI) 

 

 

1. Introduction 

The advancement of hardware systems for IoT is an essential research domain of large-scale 

wireless sensor networks (WSN). In this realm, the development of low-power wireless 

communication is of utmost importance. Since these types of devices are usually powered by low 

capacity batteries to provide both sensing and actuation capabilities, managing power consumption 

is one of the major challenges in designing their hardware and software. The radio is the greatest 

source of power consumption in a sensor node. Although the sensor network improves and enhances 

the performance of other technologies, it also presents challenges due to some of their inherent 

characteristics and location in a variety of environments. The nodes comprising a wireless sensor 

network are expected to be small, reliable, low cost, and low power. In some situations, the nodes are 

in hard-to-reach areas, so their power supply is usually battery or harvest energy from the 

environment. In both models of power supply the management of power consumption in the nodes 
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is mandatory, in the former case to avoid battery replacement and in latter case to reduce the cost of 

the energy harvesting system[1]–[3]. 

Contiki OS is a well-known lightweight operating system that can be used to manage low-power 

wireless platforms based on wireless internet communication. In wireless networks, in many cases, 

it is necessary to relay data between nodes to reach the destination. The Radio Duty Cycle (RDC) 

protocols available on Contiki OS allow end nodes and even relay nodes to sleep and save energy 

between each message sending or relay, so the network lifetime is increased. ContikiMAC is a radio 

duty cycling protocol available in Contiki OS based on the Low Power Listening (LPL) 

mechanism[4]. It uses the periodic WakeUps method to monitor the communication medium for 

ongoing transmissions from neighbor nodes. ContikiMAC tries to reduce the amount of energy 

consumed by radio activities by using pairs of Clear Channel Assessments (CCA) in every sleep and 

wake up sequence and providing a model of radio management. CCA identifies to recognize the 

difference interference by measuring the Received Signal Strength Indicator (RSSI) thresholds [5],[6]. 

Obviously, much of the amount of power consumed in ContikiMAC is spent on the WakeUps 

of nodes. The WakeUp is known as a single radio check with a chance to detect the activity of a radio. 

The WakeUps can be considered in three categories, positive WakeUps, which results in the receipt 

of the packet, false WakeUps, which results in noise or interferences, and idle listening[7]. Idle 

listening occurs when the communication medium monitoring does not detect any activity on the 

radio. Implementing the CCA model on WSN hardware to recognize the different interference is 

extremely challenging due to the limitations of the low power radio, such as TI CC2420. The power 

consumption over Radio listening mode(Rx) is unavoidable. Nodes should periodically listen to the 

radio channel to reduce the communication latency in network, even if data traffic is slow [8]. In this 

paper, we carefully investigate the time factors associated with a radio WakeUp on the ContikiMAC 

and to reduce the radio power consumption by dynamic radio check time in WakeUps on the Rx 

mode. RSSI status check is an essential timing parameter during radio check-in nodes. Consequently, 

in this research particular attention has been paid to RSSI status check to enable an efficient 

manipulation of radio check within the limits during the Rx. The maximum timing of radio check is 

used when RSSI is either new or identified as a positive WakeUp. Otherwise, the false WakeUp or 

idle listening are associate with minimum timing of radio check. In the proposed method the radio 

check is essentially based on RSSI where the use of CCA is minimized. CCA is used only for the 

purpose of RSSI validation and classification. 

 

The remainder of this paper is structured as follows. Section 2 provides an overview of related 

works. Section 3 identifies the hardware and software tools, as well as the scenario used in this paper. 

Section 4 highlights the challenge of ContikiMAC in WakeUps as a problem statement. Section 5 

proposes a Light Weight Clear channel Assessment (LW-CCA) method to reduce power 

consumption in WakeUp mode. Section 6 contains simulations to compare the proposed method to 

the ContikiMAC base method. Section 7 presents concluding remarks and future work. 

2. Related works 

One of the most important challenges in implementing some IoT applications is the power 

management of hardware platforms. Nowadays, researchers are using many new technologies to 

minimize radio power consumption so that they can pave the way for IoT. The communication to 

sending and receiving data on the network is typically the most energy-consuming task in IoT 

applications[9]. Since the communication of the nodes is in the radio WakeUp state, so a lot of effort 

has been devoted to designing energy-efficient radio WakeUp models in the last decades. Different 

methods based on hardware and software have been suggested to control the radio WakeUp mode. 

Some of these methods are discussed below:  

Magno et al. [10] have considered the combination of energy harvesting WakeUp receiver and 

LoRa radio technology to design a new IoT node for long and short-range networking. In another 

method in [11], BLE technology and WakeUp radio are integrated with energy harvesting. The design 

of both proposed methods is hardware-based so that a dual-radio mechanism using separate 
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components is used in Node radio structure on a single chip that is expensive for IoT devices. When 

implementing WSN on a large scale, small hardware size and low cost are very important factors. 

CTP-WUR[12], Guo et al [13], and WUR-MAC[14] have introduced other methods that are more 

responsive to channel changes using protocol-based design. Recently, cognitive radio has been used 

as a solution to the opportunistic spectrum access in WSN [15]. ZIPPY [16] reduces latency and power 

consumption as a synchronization method using WakeUp radio and the MAC synchronization 

protocol. 

Node mobility is one of the important challenges in designing a wake-up schedule (e.g.,[17]). 

Failure to consider node mobility, where node mobility is likely, lead to excessive overhead and as 

well as this results in poor schedule performance. In addition, the design of WakeUP-based radio 

systems should also address the challenges associated with WakeUp radio signal propagation in the 

forest, industrial, or indoor body environments. 

One of the important issues in low-power radios under WakeUp states is the coexistence with 

unrelated radio. For example, in-home automation systems and medical technologies, 802.15.4 radios 

are commonly used but the interference of these types of radios with waves of radio like Wi-Fi leads 

to a decrease in network performance. Another issue of discussion among researchers is the 

coexistence between 802.15.4 radios and unrelated radios that lead to the classification, detection and 

reduction methods[7]. 

Airshark[18] and WiFiNet[19] get spectrum information using powerful Wi-Fi hardware and 

detect nonWi-Fi interference. Another method based on interference information is DOF[20] that 

provides the local wireless information plane. In the other method in[21], 16 ZigBee channel is 

scanned to classify spectrum characteristics. The authors, in [22], design a framework to scan the 

2.4GHz band. The beacons are periodically detected to be identified as Wi-Fi signals in ZiFi[23] and 

ZiFind. This method is dependent on long-term sampling. SoNIC[24] enables resource-limited sensor 

nodes to detect the type of interference they are exposed to and select an appropriate mitigation 

strategy. The key insight underlying SoNIC is that different interferers disrupt individual 802.15.4 

packets in characteristic ways that can be detected by sensor nodes. 

Tang et al. [25] proposed a CCA threshold adaptation method to reduce the impact of 

interference on packet loss in WSN. Under Wi-Fi interference, the proposed method results showed 

that increasing the CCA threshold has the effect of reducing the CCA collision and, consequently, 

improving the WSN packet delivery rate. In the proposed method, the CCA threshold is adjusted 

adaptively based on the transmit buffer overflows rate in the node. Since there is only one CCA check 

before transmitting in Zigbee, this approach is only Zigbee-based and is not the case for MAC 

protocols that are based on multiple CCA Per transmission. AEDP[6] is an adaptive energy detection 

protocol for LPL, which dynamically adjust a node's CCA threshold to improve network reliability 

and duty cycle based on application-specified bounds. AEDP can effectively mitigate the impact of 

noise on radio duty cycles while maintaining satisfactory link reliability. 

Tang et al. present Interference Aware Adaptive Clear Channel Assessment (IAACCA), which 

more proactively contends for channel access by replacing the standard CCA [26]. In this method, 

unlike the Zigbee that performs single CCA, the sequence of CCAs is performed until found channel 

clear. Under Wi-Fi interference, IAACCA reduces packet loss compared to standard CSMA 

mechanism. In IAACCA, a policy decision is adapted after collision with interference. In the other 

proposed method, ZiSense [27] reduces false WakeUps by using an active scanning technique in duty 

cycling MAC protocols. The authors in Zisense present one approach to realizing DCCA by RSSI 

sampling at high frequency, listening for timing and spectral characteristics indicative of 802.15.4.P-

DCCA[25] proposed an optimized approach to Differentiating Clear Channel Assessment (DCCA), 

so that a variety of output power is considered in the transmission mode. A P-DCCA check indicates 

two states, when the transmission medium is occupied by another WSN node, and when the channel 

is occupied by external interference. This method is based on ContikiMAC, the radio duty 

cycle protocol. 

The above methods are either hardware-based or in some case, they are based on WiFi radio. In 

some methods, they are based on a single CCA in every WakeUp as opposed to the ContikiMAC 

protocol. As well as some of them have high complexity in programming or they are dependent on 
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the sink coordination, routing control and signal modulation. In the current paper, LW-CCA (Light 

Weight Clear Channel Assessment) is presented as an extension of ContikiMAC. It is designed to 

reduce energy consumption caused by idle listenings and false WakeUps in the ContikiMAC 

concerning the high packet delivery rate (PDR)  [28]. LW-CCA mechanism is a non-complex 

method, and it is independent to sink and to route mechanism by minimum complexity in 

programming. The LW-CCA by focusing on the time factors in radio wake-up, offers a method to 

reduce the percentage of radio Duty Cycles in false WakeUps and idle listenings. Finally, LW-CCA 

is compared via simulation to the basic ContikiMAC. The proposed method can be used on low 

power IOT platforms based on 802.15.4 radio and Contiki OS such as Z1, Tmote-SKY, and Micaz [29]. 

 

3. Software platform and simulation tools 

In the present study, we use the latest version of Contiki 3.0. As mentioned above, Contiki is an 

open-source operating system for the Internet of Things that supports tiny low-cost, low-power 

microcontrollers connected to the Internet. We focus on Contiki available features such as platforms, 

network protocols, and radio duty cycles to provide an optimized way to reduce energy consumption 

in IoT nodes [30]. In this research, we use the Cooja simulator available at Contiki Os to simulate the 

network scenario and run the proposed method on the nodes. The Collect-View data gathering 

software is used to evaluate the status of network nodes in terms of different parameters. One of the 

strengths of Cooja is the ability to simulate radio medium activity, that the researchers can graphically 

analyze the radio states[31],[32]. 

 

3.1. Platform 

In the present study, we use the Tmote-Sky platform as the network nodes with MSP430 

microcontroller for network simulation. Contiki OS considers the value of 32768 Hz as tick per the 

second parameter in the RTIMER_SECOND variable based on the MSP430F1611 basic clock 

module[33]. The frequency of a real-time clock varies with the application. The frequency 32768 Hz 

(32.768 kHz) is used, because it is a power of 2 (215) value. Also, one can get a precise 1 second period 

(1 Hz frequency) by using a 15 stage binary counter. RTIMER_SECOND variable has a key role in 

calculating radio activity times [34].  

The radio used in the Tmote-Sky Platform is CC2420. The CC2420 is an IEEE 802.15.4 compliant 

RF transceiver 2.4 GHz designed for low-power and low-voltage WSN applications. CC2420 is 

controlled via SPI port, and a series of digital output and input, as well as interrupts by MSP430. The 

CC2420 driver in Contiki OS provides two types of radio check, CCA and RSSI. CCA is based on the 

measured RSSI value and a programmable threshold[35]. The RSSI value is averaged over 8 symbol 

periods (128 µs), in accordance with [26]. MCU SPI pin takes strobe commands registers and sends 

them to CSn Radio pin for calibration. There are types of registers, status bits, and pins for radio 

control in CC2420 driver in Contiki OS. Table 1 lists the ones which are used in three ON (), RSSI (), 

and OFF () functions in the course of an idle listening channel check by RSSI according to CC2420.c 

file available in Contiki OS. 
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Table 1. Participants in one idle listening based on CC2420 driver source code in Contiki OS. 

Parameter Type ON() RSSI() OFF() 

SRXON register *   

SRFOFF register   * 

RSSI register  *  

SNOP register  * * 

SFLUSHRX register   * 

RXFIFO register   * 

RSSI_VALID Status bit  *  

𝑇𝑋_ACTIVE Status bit   * 

CSN pin  *  

FIFOP pin *   

3.2. Energest Module 

In implementing the proposed method we use the Enegest module feature to configure the 

application on nodes. Contiki uses the Energest software-based module to estimate the power 

consumption of the nodes. With this module, time spent for every sensor node is measured in some 

states such as CPU, LPM, Tx, and Rx in real-time. The energy estimation module is called when the 

component is turned on to produce a time stamp. The power consumption of nodes is calculated as 

follows: 

 

𝑃 =  𝑃_𝐶𝑃𝑈 +  𝑃_𝐿𝑃𝑀 + 𝑃_𝑅𝑥 +  𝑃_𝑇𝑥  

 

 

(1) 

 

The average power consumption of each node (P) is sum of the average power consumption in 

CPU state (P_CPU) that is activated whenever the node is active (the real-time the CPU is active without using 

the radio transceiver is CPU −Tx –Rx ), LPM state(P_LPM) that is activated when the sensor node goes 

to Low Power Mode, Rx state(P_Rx) that node is active in the radio receive mode and Tx state(P_Tx) 

that radio is active in transmit mode. battery voltage(Vcc) and current power consumption in the 

indicated state are set based on platform datasheet. In fact, the energy consumption in states is 

calculated based on the number of CPU ticks based on microcontroller, current power consumption 

in indicated state and battery voltage [36],[37]. The Tmote-Sky power parameters are considered 

according to table 2 as follows. 

 

Table 2. The power parameters in Tmote-Sky based on[38] 

Unit value power current consumption state  Variable 

volt 3 Supply voltage VCC 

mW 1.8 MCU on, Radio off PC_CPU 

mW 0.0545 MCU idle, Radio off PC_LPM 

mW 17.7 MCU on, Radio Tx PC_Tx 

mW 20 MCU on, Radio Rx PC_Rx 

 

3.3. Network scenario 

Since the purpose of this paper is not merely to provide a method for simple and one hop 

networks, the basis of this research is based on a multi-hop random network in order to make the 

proposed method as practical as possible. In the multi-hop random scenario, nodes are exposed to 

different numbers of neighbors, so interference has a greater impact on nodes. Nodes also have 

different amounts of RSSI. On the other hand, the network packets are more likely to be lost. In 

addition, each node experiences a different number of retries in sending packets[39]. Therefore  in the 
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random scenario, the power consumption in the nodes is not monotonous.  Figure 1 shows a scenario 

and network graph based on RPL routing protocol such that 20 sender nodes and one sink node or 

border router that they are scattered in the environment dimensions one hundred square meters (100 

m x 100 m) randomly. In the current study, nodes are considered to be fix. The transmitter range at 

all nodes is equal to 50 meters.  

  

  

Figure 1. The simulation scenario and network graph based on the RPL routing protocol. 

 

3.4. Network Protocols 

The Network layer protocol’s stack on the nodes list in Table 3 is among the most widely used 

in WSN. We use the feature of a collect-view application available in Contiki OS to allow data to be 

aggregated and categorized by a node in the network. It basically involves a sink node and one (or 

more) sender nodes. Data such as sensor, power, and network information is sent from the sender 

node to the sink node and the collect-view (a java-based application available in Contiki OS Cooja) 

displays them in a graphical form [40]. In this work, the IPv6 Routing Protocol for LLNs (RPL) is set 

as a proactive routing protocol. RPL automatically forms a tree topology by exchanging ICMPv6 

control packets to find a path to the root. 6LowPAN (i.e. IPv6 over Low -Power Wireless Personal Area Networks)  is 

an adaptation layer protocol that allows the transport of IPv6 packets over 802.15.4 links. Carrier 

Sense Multiple Access with Collision Avoidance (CSMA/CA) adopted for Mac layer as the IEEE 

802.15.4 standard and finally ContikiMAC are used as the RDC layer for control 802.15.4 radio based 

on Low Power Listening(LPL). The RDC layer in the sink is set to Null_RDC, so the sink does not 

sleep during network life. 

  

Table 3. Network layers structure used on the nodes[36]. 

Standard Protocol Layer  

- collect view Application 

IETF RFC 768 UDP Transport 

IETF RFC 6550 RPL/IPv6 Network 

IETF RFC 6282 6lowpan Adaptation 

IEEE 802.15.4 IEEE 802.15.4 MAC (CSMA) Data link 

- ContikiMAC Radio Duty Cycling 

IEEE 802.15.4 IEEE 802.15.4 PHY Physical 
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4. Problem statement 

From the moment a ContikiMAC node is turned on, the radio check is repeatedly adapted to 

send and receive data types, such as routing packets, medium control packets, or packets containing 

environment sensor information. Each node performs a large number of WakeUp Rx modes 

depending on the environment. Two conditions can be considered: 1. either the node is ideally 

positioned over minimum interference with other unrelated radio or noise signals. 2. The node is in 

a state of coexistence with unrelated radios, noise or interference. In the state 1 between each data 

reception (positive WakeUp) the node will have a large number of idle listening that plays a 

significant role in the activity of a radio. In the state 2, in addition to idle listening, the node also has 

many false WakeUp. Figure 2 shows samples of positive, false and idle listening WakeUp on the 

Radio Timeline in Cooja. The X and Y axes represent to node numbers and their activity of radio 

respectively. The red, blue, and green colors in activity of radio line show interference, sending packet 

and receiving packet respectively[41]. 

 

 
 

Figure 2. Positive, False and Idle listening WakeUp in Cooja timeline. 

 

The ContikiMAC considers CCA_CHECK_TIME that is the time it takes to perform a CCA 

check. In fact, CCA_CHECK_TIME is a balancing time for other timing parameters in ContikiMAC 

and it has no direct effect on CCA duration. The time spent on each false WakeUp is depending on 

MAX_NONACTIVITY_PERIODS. It is the maximum number of periods we allow the radio to be turned 

on without any packet being received. Each period counts as a sum of CCA_CHECK_TIME and 

CCA_SLEEP_TIME. The  CCA_SLEEP_TIME is the time between two successive CCA checks. The time 

variables in ContikiMAC that affect both idle listening and false WakeUp times are shown in Table 4. 

The Fast-Sleep mechanism is responsible for the diagnosis of false WakeUps in ContikiMAC. So If the 

node fails to receive data after 11 periods (21.1 ms), it quickly returns to sleep mode. 

  

Table 4. The amount of effect on idle listenings and false WakeUps according to ContikiMAC.c 

Variable CPU ticks Unit(ms)    

CCA_CHECK_TIME 32768/8192 0.4 

CCA_SLEEP_TIME (32768/2000) + 1 1.7 

MAX_NONACTIVITY_PERIODS 
10×( CCA_CHECK_TIME + 

CCA_SLEEP_TIME) 
21 

 

Table 5 shows the number of idle listenings and false WakeUps during the 10-minute simulation in 

the 5, 7, 12 nodes according to section 3.3 and 3.4. For example, the time spent in idle listening and 

false WakeUp in Node7 is calculated as Equation 2. In fact, almost 1.6% of the network time is wasted 

in idle listening and false WakeUp in Node 7. This is, of course, a mere indication of the effect of the 

wake-up time loss on idle listenings and WakeUps, and it is not a definite value. Thus except for the 
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positive WakeUps, the node tolerates inefficient energy consumption in idle listenings and false 

WakeUps. Because this value varies depending on the application and location of the nodes. 

 

Table 5. The number of idle listenings and false WakeUps in nodes 5,7 and 12 

Node number Idle listenings False WakeUp    

5 11357 115 

7 13895 220 

12 12082 50 

 

𝑇𝑛𝑜𝑑𝑒 7 =  𝑇𝑖𝑑𝑙𝑒 + 𝑇𝑓𝑎𝑙𝑠𝑒  

 𝑇𝑛𝑜𝑑𝑒 7 = (13895 × 0.4) + (220 × 21) = 5558 + 4620 = 10178 𝑚𝑠 

 

(2) 

 

 

5. Lightweight clear channel assessment (LW-CCA) 

In this paper, we propose the LW-CCA, a lightweight, low-complexity programming method 

designed to minimize WakeUp power on ContikiMAC nodes. In this method, it attempts to reduce 

the time spent in Rx mode by maintaining a PDR rate similar to base ContikiMAC. By focusing on 

software and hardware RSSI status check time, LW-CCA reduces the percentage of Duty cycles as 

much as possible to reduce radio power consumption. The minimum WakeUp time for a medium 

check would take at least one idle listening. In section 5.1, a single idle listening is analyzed to identify 

the essential time factors. Furthermore, the evaluation of the minimum and maximum RSSI status 

check time on nodes is presented in section 5.2. In section 5.3, the LW-CCA node categories RSSI 

based on the CCA verification, whether they are predicted as a false WakeUp, idle listening, or 

positive WakeUp. Finally, in section 5.4, the performance of LW-CCA for the classification and 

validation of RSSI and the dynamic radio check time are described. Worth mentioning that LW-CCA 

runs exclusively on the relay and sender node, not sink or server node. The proposed method is 

considered when the nodes are fixed in the network. The following sections describe the details of 

the proposed method. 

5.1. the time factors in a single RSSI radio check 

The basis of LW-CCA is the momentary check of RSSI. In this study, we examine the time 

parameters involved in an RSSI radio check. The relationship between ContikiMAC functions, the 

CC2420 driver and the Energest module is shown in Figure 3. In general, each RSSI radio check 

consists of three phases: 

• Phase 1: Checking permissions for radio driver access by RDC, registering radio hardware 

to Rx mode by the radio driver and recording start time of Rx by Energest. 

• Phase 2: Validating the RSSI and returning RSSI value from related radio register. 

• Phase 3: Set the radio registers to Off state, Preparing the radio queue for the next stage of 

radio activity and also announce the end of Rx state to Energest module. 

 

Since our goal is to manage WakeUp time based on radio potentials, so analysis and retrieval of time 

factors affecting WakeUp are inevitable. Figure 3 shows a single WakeUp diagram based on the RSSI 

check. 
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Figure 3. Diagram of the relationship between RDC, the radio driver and the Energest module in performing a 

single RSSI. 

 

Every radio WakeUp lasts between strobe CC2420_SRXON and strobe CC2420_SRFOFF. The 

number of CPU ticks in the radio check is saved in Energest. The wait_for_status(CC2420_RSSI_VALID ) in 

phase 2 is known as an important time factor for a single RSSI check. it takes time equal with Equation 

3.  
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𝑇𝛥 =
RTIMER_SECOND 

10
=

32768 

10
= 3276  (3) 

 

Table 6 shows time factors which are resulted from analyzing the relationship between RDC and 

radio hardware in an RSSI check. The table is extracted from the radio Timeline in Cooja. 

Table 6. Effective time factors per idle listening based on RSSI under Cooja simulator Timeline 

 

 𝑡_𝑤𝑎𝑖𝑡_𝑓𝑜𝑟_𝑠𝑡𝑎𝑡𝑢𝑠(ms) 𝑡_𝑅𝑆𝑆𝐼(ms) 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒(ms) 

 0.32 0.128 0.448 

 

Every RSSI check involves the different action timings:. t_wait_for_status is time spent for RSSI 

status check based on equation 3. t_RSSI is time spent for the read of RSSI status check. Total_time is 

the sum of the time spent in an RSSI radio check. Actually in an RSSI check, the 𝑡_𝑤𝑎𝑖𝑡_𝑓𝑜𝑟_𝑠𝑡𝑎𝑡𝑢𝑠 

takes the longest time 0.32 milliseconds (20 symbols period according to[42]) to doing a reliable RSSI 

status check-in ContikiMAC. So it indicates that ContikiMAC devotes more time to RSSI status check 

than 8 symbols periods suggested in CC2420 datasheet.  It should be noted that 20 Symbols has no 

role in RSSI reception. In fact, it is a BackOFF for reliable time to wake the radio. 

 

5.2  The RSSI check time models in LW-CCA 

This section examines the hardware and software RSSI status check time. Based on the phase 2 

section 5.1, LW-CCA divides the radio check time into 𝑇𝛥 and t_RSSI time periods. The following 

function is responsible for doing the RSSI validation under a period of time t_RSSI=0.128 ms (8 

symbols) and 𝑇𝛥 = 0.32 ms (20 symbols) in cc2420.c.  

 

 static void 

wait_for_status(uint8_t status_bit) 

{ 

rtimer_clock_t t0; 

t0 = RTIMER_NOW(); 

while(!(get_status() & status_bit) 

&& RTIMER_CLOCK_LT(RTIMER_NOW(), t + 

RTIMER_SECOND / 10); 

} 

 

The LW-CCA, with respect to radio check time partition, considers two models for a dynamic check in the Rx 

mode. 

Model 1: This model considers RSSI check for measuring signal strength in Rx and uses default 

CCA check-in Tx mode. The RSSI status check time is by default method in CC2420 driver based on 

the sum of 𝑇𝛥 and t_RSSI.  

 

Model 2:  In this model, considering𝑇𝛥 = 0, the RSSI check time is considered to be equal with 

the 8 symbols period’s case. In fact, the RSSI status check is performed over the intended time for the 

cc2420 radio chip. The rest of the conditions are the same as in model 1. The following function is 

responsible for doing the RSSI validation under a period of time t_RSSI=0.128 ms. 
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static void 

wait_for_status(uint8_t status_bit) 

{ 

rtimer_clock_t t0; 

t0 = RTIMER_NOW(); 

while(!(get_status() & status_bit) 

&& RTIMER_CLOCK_LT(RTIMER_NOW(), t0); 

} 

Figure 5. The rssi check time with 0.128 ms (8 symbols periods) by ignoring 𝑇𝛥 and relation source 

code in cc2420.c. 

Table 7 shows a comparison between indicated models in terms of percentage of the listening duty cycle 

according to the scenario in section 3.3 and 3.4 in a 40 minute (High Rate). It shows that ignoring 𝑇𝛥 in RSSI 

status check time for nodes based on model 2 results in about 11 percentage reduction in average of the listening 

duty cycle. The results in Table 7 are extracted based on the Collect-View output. The details of the 

average listen duty cycle calculation are available in section 6. 

Table 7. Comparison of models of 1 and 2 in terms of percentage of listen Duty-Cycle. 

Method Rx| Tx Listen Duty-Cycle (%) 

Model 1 RSSI | CCA 1.451 

Model 2 RSSI | CCA 1.282 

 

Therefore, each RSSI status check can be divided into two states: 8 internal symbols set for CC2420 

radio hardware and 20 symbols for performing a reliable radio WakeUp on Rtimer equal to Equation 

3. In fact, 8 and 20 symbols can be considered as the minimum and maximum periods required to 

perform a minimum radio check time, respectively. Figure 6 illustrates the performance of the RSSI 

status check. The file Msp802154Radio.java in Cooja is responsible for simulating 8 symbols for RSSI 

status check based on CC2420 radio datasheets. 

 

 

Figure 4. The performance of RSSI status checks based on Radio hardware and ContikiMAC. 

 Figures 5 and 6 show changes in RSSI check time in nodes based on model 1 and 2 in Rx and Tx 

mode. The difference between the radio checks is shown in Figure 6 with some zoom to make the 

difference clearer. In both models, the radio check is assumed to be based on default CCA in Tx mode. 
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Figure 5. Model 1: RSSI check in Rx(28 symbols) and Tx(28 symbols) in Cooja Timeline. 

 

Figure 6. Model 2: RSSI check-in Rx (8 symbols) and Tx (28 symbols) in Cooja Timeline. 

5.3. Categories of RSSIs in LW-CCA 

The CC2420 in our application returns [-100, 0] as the normal range of RSSI, where -100 is the 

minimum level of the noise floor. In performing each RSSI check, the values obtained for RSSI can be 

divided into three categories: Firstly, the values that are valid and determine the radio activity and 

ultimately, it results in the receipt of the data frame (positive WakeUP); Secondly, the values that are 

valid and determine the radio activity and ultimately, it results in the noise or interference (false 

WakeUp); and third the values that are invalid and do not specify any activity on the radio(idle 

listening). In the LW-CCA categories, false WakeUp and Idle listening RSSIs are located in rssi_null. 

Figure 7 shows the RSSIs classified. Identification of idle listening and false WakeUp conducted via 

CC2420 driver’s and ContikiMAC’s side and the false WakeUp is reported to CC2420 driver through 

NETSTACK_RADIO[43].  
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Figure 7. RSSIs classified as Null. 

It is important to note that the classification of RSSIs depends on the return value of CCA check, 

so that if CCA value is 0 so ContikiMAC checks false/positive WakeUp, otherwise it is an idle 

listening. The diagnosis of positive WakeUp and false WakeUp is based on a timing mechanism in 

ContikiMAC. Worth mentioning that, each node when it receiving a new RSSI value, performs the 

validation through CCA. 

 

5.4. The dynamic RSSI check time in LW-CCA 

This section describes the performance of LW-CCA according to the description of the previous 

sections. As mentioned, LW-CCA performance is based on RSSI measurements. In this method, for a 

dynamic check, the radio check time works according to the models 1 and 2 (section 5.2. ). Every node 

has two tasks in receiving RSSIs : i.e., receiving RSSI based on model 1, and re-evaluating RSSI based 

on the model 2 and its classification: 

 

The following proposed method is illustrated in Figure 8. 

Nodes perform radio checks in two modes: listen and transmit mode. In the LW-CCA method, a 

reduction in Rx radio check time is considered. Each ContikiMAC node periodically checks the radio 

with CCA pairs. In fact, each CCA recognizes the validity and invalidity of radio activity by 

comparing the RSSI threshold. Based on Section 5.1, in LW-CCA each radio check uses the RSSI 

directly. LW-CCA nodes first assign a value of 8 symbols (Model 2) to the status check RSSI. The 

value obtained is evaluated based on the classification in Section 5.3. In this case, two states are 

considered: 

 

RSSI is a member of rssi_null list: 

If the RSSI value is a member of the rssi_null list, the node returns 1 to ContikiMAC and quickly 

go to sleep. In fact, the node does just 8 Symbols RSSI status check. 

 

RSSI is a member of the rssi_active List or it is a new RSSI: 

If the RSSI value is outside the rssi_null list, it is either a new value or a member of rssi_active. 

In both cases, the node re-evaluates the radio based on Model 1. In this case, after the RSSI check, 

the CCA check will be considered for validation and classification of RSSI. If CCA returns a value 

of 1, the RSSI value is detected as an idle listening and stored as a worthless value in the rssi_null 
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list. Otherwise, ContikiMAC applies its timing based on Section 4 to check for false Wake Up or 

positive WakeUp. If the radio activity in the node results in a false WakeUp the RSSI value is 

stored in the rssi_null list and the node goes to sleep quickly based on the Fast-Sleep mechanism. 

If the RSSI results in positive Wake Up the node stays on the receiving mode. 

 

 

 

Figure 8. The diagram of the LW-CCA method. 

The proposed method actually uses the maximum value of the RSSI status check time when 

the RSSI value is detected either new or active. Therefore, in other cases at least 8 symbols are 

considered. LW-CCA thus reduces the amount of radio check-in false WakeUps and idle 

listening as much as possible to reduces the inefficient power consumption caused by radio 

activity in Rx mode. Also, using RSSI validation based on the CCA value makes the node 

performance reliable in the real environment as well. 

6. Comparison of LW-CCA with ContikiMAC 

We evaluated the proposed method LW-CCA and compared it with ContikiMAC using the 

Cooja simulator. Tmote-Sky is used as a hardware platform for nodes on the network. The network 

protocol for all nodes is the same as in Table 3. Figure 1 illustrates the network scenario with respect 

to the RPL routing protocol graph. It is a random scenario with a variety of hops and neighbors 

consists of: 

 

• One emulated node that is programmed as a sink that plays the role of the root node for RPL in 

the network graph. In fact, it is a UDP server that collects data from client nodes; 

• 21 emulated duty cycle nodes as UDP clients in network graph that send data to sink ; 

• The power consumption of the nodes is estimated by the Energest module available at Contiki. 

 

The LW-CCA method is compared with the ContikiMAC in terms of the average CPU ticks in 

CPU, LPM, Rx and Tx, CPU Power, LPM Power, Rx and Tx Duty-Cycle(%), Rx and Tx Power, Total 

Power consumption and PDR. LW-CCA and ContikiMAC nodes are evaluated based on the two data 

transmission rates, once every 60 seconds (Low Rate) and once every 30 seconds (High Rate). 

Simulation time for each of Low rate and High rate scenario is 4 hours. The node number “1” is 

considered as a sink and its radio is turned on during the network time, so the network status analysis 

is done based on the sender nodes from 2 to 21. All of the scenarios outputs are based on Collect-

View in Cooja. The equations are based on embedded equations for power consumption in the 

Collect-View source code [31]. The power parameters for simulation are listed in Table 2. 

6.1. The average of ticks in CPU, LPM, Rx, and Tx states in the network 

Tick conversion simply refers to the ability to convert physical units to timer ticks [44]. On a 

system with a 2 MHz timer, for example, 1 ms is mapped to 2000 ticks. The calculation of the power 
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consumption in different states for the nodes depends on how long the node stays in every state. The 

Energest considers the time spent in different states with the number of ticks in that state. Table 8 

shows the average of ticks in CPU, LPM, Rx and Tx states in both low rate and high rate scenarios in 

LW-CCA and ContikiMAC nodes. Table 8 shows the average of ticks for CPU (numbers of ticks for 

CPU in active mode) in CPU_time, LPM(numbers of ticks in low power mode) in LPM_time, 

Rx(numbers of ticks in listening mode) in Rx_time and Tx(numbers of ticks in transition mode) in 

Tx_time. The LPM _time shows that LW-CCA by reducing RSSI status check time in false WakeUps 

and idle listenings, increase low power mode time in nodes. CPU_time simulation result shows that 

there is a small amount of computing overhead in LW-CCA. Rx_time also shows a significant 

decrease in listening time in LW-CCA, although there is little change in Tx_time. It should be noted 

that the parameters are averaged from all of the sender nodes. 

Table 8. The average of CPU ticks in SKY nodes 

RDC CPU_time LPM_time Rx_time Tx_time 

ContikiMAC(Low Rate) 4498.73 46354.15 511.15 145.71 

ContikiMAC(High Rate) 4834.95 47584.65 719.45 273.50 

LW-CCA(Low Rate) 4537.25 47478.90 425.40 147.52 

LW-CCA(High Rate) 5066.35 48036.60 601.05 281.30 

6.1. Average of Percentage for Listen and Transmit Duty Cycle in the network  

This section analyzes the simulation results for a network( 20 sender nodes) in terms of listen 

and transmit Duty Cycle that refers to the percentage of the Duty cycle used to listen and transmit to 

the radio. Table 9 shows the percentage of Listen and transmit Duty Cycle based on Low Send rate 

and High Send Rate for LW-CCA and ContikiMAC nodes.The tputssimulation ou  show that in both 

scenarios, percentage of Listen Duty Cycle in LW-CCA nodes are significantly lower than 

ContikiMAC nodes. LW-CCA decreases average of Listen Duty Cycle about 0.2 in both of Low High 

Send Rate scenarios that It results in a reduction of approximately 18 percent in the average total 

Listen Duty Cycle.The average percentage of transmit Duty Cycle in LW-CCA doesn't make much 

difference to ContikiMAC. The experiment results show that the proposed LW-CCA method can 

reduce the time of Listen Duty Cycle by considering a dynamic RSSI check time so that it tries to 

reduce listen time in false WakeUps and idle listenings. How to calculate the average percentage of 

Listen and transmit Duty Cycle is according to Equations 4 and 5. Rx_time, Tx_time, CPU_time and 

LPM_time are equal with numbers of ticks available in Table 8. 

 

Rx DutyCycle(%) = 100 ∗ (
Rx_time

CPU_time + LPM_time
) (4) 

 

 

Tx DutyCycle(%) = 100 ∗ (
Tx_time

CPU_time + LPM_time
) (5) 
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Table 9. The average of Rx and Tx DutyCycle(%) 

RDC Rx DutyCycle(%) Tx DutyCycle(%) 

ContikiMAC(Low Rate) 1.005 0.286 

ContikiMAC(High Rate) 1.372 0.521 

LW-CCA(Low Rate) 0.817 0.283 

LW-CCA(High Rate) 1.131 0.529 

 

6.2. Network Power Consumption 

The total power consumption of each node comprises the power consumption of the node in 

different states such as CPU, LPM, Rx, and Tx. In this section, the average power consumption on 

indicated states in LW-CCA nodes is compared with the ContikiMAC nodes in both  low and high 

rate scenarios and evaluates the effect of the proposed method on the total power consumption and 

finally the Packet delivery rate (PDR). The power and time parameters in the power consumption 

calculation are obtained from Tables 2 and 8. The average of power consumption in CPU, LPM, Rx 

and Tx states in network is calculated by Equations 6, 7, 8 and 9 respectively. The average of total 

power consumption (P) is calculated according to Equation 1. For example, average of listen power 

for LW-CCA nodes in high rate is calculated in Equation 10. 

 

 

P_CPU(mW) =
CPU_time × VCC × PC_CPU

CPU_time + LPM_time
 (6) 

 

 

P_LPM(mW) =
LPM_time × VCC × PC_LPM

CPU_time + LPM_time
 (7) 

 

 

P_Rx(mW) =
Rx_time × VCC × PC_Rx

CPU_time + LPM_time
 (8) 

 

  

P_Tx(mW) =
Tx_time × VCC × PC_Tx

CPU_time + LPM_time
 (9) 

 

P_Rx(LW − CCA, High_Rate) =
Rx_time × VCC × PC_Rx

CPU_Time + LPM_time
=

601.5 × 3 × 20

5066.35 + 48036.60
= 0.679(mW) (10) 

 

Table 10 compares the network states in terms of average power consumption for LW-CCA and 

ContikiMAC in CPU, LPM, Rx, Tx states, and finally considers the average total power consumption 

and packet delivery rates. The outputs show that the average power consumption in the LPM mode 

for both methods is relatively similar. The average power consumption in the high-rate scenario in 

the LW-CCA represents a relatively higher value in CPU state, which may be due to the processing 

overhead imposed on the CPU in the LW-CCA. But the reduction in average power consumption in 

the listening state and finally, the overall average energy consumption in LW-CCA nodes justify this 

overhead. The LW-CCA is able to reduce average listening power by 0.113 and 0.144 mW in low and 

high rates, respectively. The average power consumed in the transmit state in both methods shows a 

relatively similar value. Finally, the overall average power consumption in LW-CCA nodes has 

decreased by 0.121 and 0.124 mW in low and high rates, respectively compared to ContikiMAC. Table 
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10 shows that LW-CCA is able to retain a 99% packet delivery rate similar to ContikiMAC by 

decreasing overall power consumption by 7.1% and 8.7% for high and low rate scenarios, 

respectively.  

 

Table 10. The average of power consumption in CPU, LPM, Rx, Tx , total power consumption and 

PDR 

RDC P_CPU(mW) P_LPM(mW) P_Rx(mW) P_Tx(mW) P(mW) PDR(%) 

ContikiMAC(Low Rate) 0.477 0.149 0.603 0.152 1.381 99 

ContikiMAC(High Rate) 0.498 0.148 0.823 0.277 1.746 99 

LW-CCA(Low Rate) 0.471 0.149 0.490 0.150 1.260 99 

LW-CCA(High Rate) 0.515 0.147 0.679 0.281 1.622 99 

 

 

7. Conclusions 

The 802.15.4 radios are low power radios that are used in many applications of the IoT and 

wireless sensor networks on a variety of platforms. Some operating systems offer varieties of Radio 

DutyCycle (RDC) mechanism for controlling 802.15.4 radios. One of the challenges in RDC protocols 

is WakeUps in idle listening and falseWakeUps (Section 4). The proposed method LW-CCA aims to 

reduce the wakeup time caused by false WakeUp and idle listening nodes. For this purpose, the 

performance of ContikiMAC is evaluated according to the time factors affecting each WakeUp . RSSI 

status check time is an important time factor to the radio.  ContikiMAC considers a fixed time of 20 

symbols (0.32 ms) to perform an RSSI check time per WakeUp. The proposed LW-CCA method, 

unlike ContikiMAC, considers two values of minimum and maximum 8 symbols (0.128 ms) and 28 

symbols for the radio check. (Section 5). The value of 8 symbols is the minimum value based on the 

CC2420 Datasheet. The LW-CCA nodes classify RSSI values based on CCA validation. LW-CCA 

considers 8 symbol radio check time if RSSI is detected as idle listening or false WakeUp otherwise it 

considers a 28 symbol. LW-CCA nodes, based on the simulations of section 6 have reduced 18% of 

DutyCycle compared to ContikiMAC. based on simulation outputs of section 6. Considering the 

power parameters based on the Tmote-SKY platform and indicated scenario in section 3, the LW-

CCA with approximately 0.12 mW decrease in average power consumed in the listening modeled to 

about 8% reduction in the overall average power consumption in the nodes. LW-CCA reduces energy 

consumption while it maintains packet delivery rate 99%, which is the same as ContikiMAC in sender 

nodes. The proposed method can be applied to all IoT platforms based on 802.15.4 radios such as Z1, 

Tmote-SKY, and Micaz [29]. Since RSSI validation is based on CCA check, therefore it can also be 

exploited in the real environment. The instantaneous categorization mechanism in the LW-CCA 

method can make this method flexible against interference caused by irrelevant radios or noise. 
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Abbreviations 

Abbreviation Definition 

CCA Clear Channel Assessments 

CPU Central Processing Unit 

CSMA Carrier Sense Multiple Access with Collision Avoidance 

IoT Internet of Things 

LPL Low Power Listening 

LPM Low Power Mode 

LW-CCA Light weight CCA 

MAC Medium Access Control 

MCU Microcontroller Unit 

PDR Packet Delivery Rate 

RDC Radio DutyCycle 

RPL Routing Protocol for LLNs 

RSSI Received Signal Strength Indicator 

UDP User Datagram Protocol 

VCC voltage at the common collector 

WSN Wireless Sensor Network 
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