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ABSTRACT

In this research paper, change detection based methods
were considered to find collapsed and intact buildings
using radar remote sensing data or radar imageries. Main
task of this research paper is collection of most relevant
scientific research in field of building damage assessment
using radar remote sensing data. Several methods are
selected and presented as best methods in present time,
there are methods with using interferometric coherence,
backscattering coefficients in different spatial resolution.
In conclusion, methods are given in end, which show,
which methods and radar remote sensing data give more
accuracy and more available for building damage
assessment. Low resolution Sentinel-1A/B radar remote
sensing data are recomended as free available for
monitoring of destruction degree in microdistrict level.
Change detection and texture based method are used
together to increase overall accuracy. Homogeneity and
Dissimilarity GLCM texture parameters found as better
for separation of a collapsed and intact buildings. Dual
polarization (VV,VH) backscattering coefficients and
coherence coefficients (before earthquake and coseismic)
were fully utilized for this study. There were defined the
better multi variable for supervised classification of none
building, damaged and intact buildings features in urban
areas. In this work, we were achieved overall accuracy
0.77, producer’s accuracy for none building is 0.84, for
damaged building case 0.85, for intact building 0.64.
Amatrice town was chosen as most damaged from 2016
Central Italy Earthquake.

Keywords: radar remote sensing; building damage
assessment; change detection method; GLCM

INTRODUCTION

Natural disasters are occurred accidentally and
unpredictable. They create huge amount of losses which
are concentrated mainly in cities, in places where it is
more densely population. It is crucial to rescue and to start
the recovery work after any natural disaster, which must
be done immediately. It is vital to have operational map of
building destruction for a rapid and efficient planning of
rescue operations from the rubble of the building and to
reduce the death rates. Moreover, this information is
necessary for damage assessment of natural disasters in
the field of urban planning and recovery works.

Natural disasters are often accompanied by rain,
clouds and other adverse weather conditions which
affected on optical remote sensing data quality and
applicability. Radar remote sensing data is devoid of such

disadvantages, it can be widely used in respect of its all-
weather and day-night operation, quick access to disaster,
continuous dynamic monitoring over affected territory, it
has becomes an important means for disaster assessment.
Since 2000, European Space Agency (ESA) and French
Space Agency (CNES) became initiators of the agreement
about International Charter on Space and Major Disasters,
which includes charitable use of images acquired from
different satellites of radar remote sensing, these data is
important data source.

Radar remote sensing data with their interferometric
coherence coefficients have been first used to monitor
damage caused by surface deformation, it was the starting
point of the research. These data had been low and midlle
spatial resolution with one or two polarizations. Before
and after earthquake radar remote sensing data were used
for building damage assessment purposes in urban area,
their backscattering, intensity correlation and coherence
coefficients [1-4].

Starting in 2007, TerraSAR-X, Radarsat-2, COSMO-
SkyMed, TANDEM-X satellites were launched, which
had 2-4 polarizations, and the spatial resolution of image
was up to 1 meter. It was possible to see in details city
structures or individual buildings in such spatial resolution
[1,4,5]. These satellite data allow us to identify of building,
because each building has unique backscattering
characteristic and signature (visible shape) under certain
regular conditions, any significant changes can say that
there have damaged buildings or homes.

Building damage assessments methods using radar
remote sensing data is relevant, many scientists try to get
more accurate methods or algorithms for extraction of
damaged buildings or creation damage map.
Characteristics of collapsed and intact buildings in radar
remote sensing data should be considered for that
purposes. In addition, higher accuracy change detection
based building damage assessment methods should be
defined, which methods out of them are accurate and
reliable.

CHANGE DETECTION METHOD

In the context of remote sensing, change detection
refers to the process of identifying differences in the state
of land features by observing them at different times.
Discriminating areas of changes on radar imageries
between different dates is the main objective of change
detection process. Change detection method can be
applicable to assess damage in urban areas for natural
disaster for that purposes, especially earthquakes. Unlike
of optical, where intensity is sensitive to chemical
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properties of surface and roughness, for radar, reflection
and scattering totally depends on geometrical properties of
surface, especially in urban areas, where backscattering
intensity depends on different geometric shape of
buildings and distance between and etc. The use of radar
imageries for detecting change on the earth's surface is
highly dependent on target orientation, azimuth angle, and
sensor depression angle [6,37]. Because of changes in
look direction is as small as 0.8 <between the orientation
of building and the differences in the radar azimuth can
cause major changes in the radar backscatter, which affect
the capability to detect the changes in urban areas [7].
Another important aspect related to depression angle is
affecting the use of radar imageries for change detection
method. For aircraft radar it is more important than space
borne radar, because it varies extensively from near nadir.
There should be such rules in space borne radar systems:
a) gathering data using a constant bearing for any
geographical location (assuming ascending or descending
passes), b) gathering data over an long period of time, ¢)
assemble data at fixed wavelength and polarization, d)
gathering data with a small depression angles (6. The use
radar data sets separated only in time is better than those
separated in time and look direction for change detection
studies [8]. In change detection method, major concern is
speckle noise, it is reported due to speckles in the images
which cannot be avoided results in uncertainty and
decrease value of the image, hence application of the
image automatically becomes very difficult. It is problem
for low resolution radar imageries, when size of building
is comparable with the pixel resolution. For high
resolution SAR imagery, when building is clearly visible,
its edges, like rectangular shape, here it is possible to use
the smoothing algorithms based on local statistics [9].

In general, in monitoring disasters by using pre and
post-earthquake radar imageries had been found problems
[10,11]. Due to earthquakes in backscattering coefficient
occur the change of correlation and coherence for
damaged buildings. Since, building is generally relatively
stable construction, if the coherence changed, it can
deduce that building is damaged. Based on this changing
from aforementioned reference, methods can be divided
into two kinds. One is the use of pre and post-earthquake
data to generate coherence coefficient of INSAR product
for damage detection. Coherence based change detection
method is used for building damage detection via
decoherence. Second is the use of also multi-temporal
radar data to generate intensity correlation coefficient for
damage detection. Intensity correlation based change
detection method is used for building damage detection
via decorrelation.

Since 1998, scientists from Japan began to use the
intensity correlation coefficients for detection of damaged
buildings, for that purposes were used to ERS-1 data.
Intensity correlation coefficient of SAR imageries can
give better result under certain condition for determination
of earthquake zones. Yonezawa et al. [12] offer to use
interferometric coherence coefficient for detection of
damaged buildings in urban areas, there have been used
pre and post-earthquake ERS-1 data for 1995 year, Kobe,

Japan. It was discovered that coherence coefficient in the
damaged part of the city less than intact. In addition,
Matsuoka et al. [13] using ERS-1/2, Hosokawa [14] using
JERS-1 data carried out the same research. However, in
practice the use of interferometric coherence has some
limitations, it is depends of many parameters (baseline
length, time interval, wavelength, surface change,
seasonal vegetation changes and etc.), which affect on loss
of coherence, therefore, the choice of paired radar data
should be rigorous with taking into account the cause of
these losses. By combining these methods it is possible to
achieve efficient detection of damaged buildings.
Yonezawa et al. [15,16] have considered two methods in
their research based on coherence and intensity correlation
for damaged buildings and the extent their relationship.
Relationship intensity correlation and coherence before
and after earthquake under different baseline distances for
damaged and undamaged urban areas was considered in
these research. Both of the correlations are significantly
influenced by the baseline distance. The short baseline
distance data pairs indicated clear decorrelation in the
damaged area than long. However, it is difficult to
distinguish damaged and undamaged areas by long
baseline distance data pairs, because it leads to
decorrelation in whole areas, the greater the distance the
worse it is to distinguish them. The degree of decorrelation
indicated by the normalized difference of two correlation
coefficients increases with the proportion of damaged
buildings in the area.

How to calculate those aforementioned correlation
coefficients and degree of decorrelation? The norm type
correlation coefficient of the two single-look intensity
images (intensity correlation) in a small corresponding
patch is calculated as follows:

EL L) M
Pr = TN 2N1172
[EUDEUN]
where I and I, are corresponding pixel values of the two
single-look intensity data, E( ) denotes statistical
expectation.

The coherence is calculated as complex correlation

coefficient p. in a small corresponding patch as follows:
pe = |€(C1C2)|* )
|E(cic)E (c5) 72
where ¢, and c, are the corresponding complex values of
the two SLC data, ¢; means the complex conjugate of c;.

Two intensity correlation coefficients can be used for

calculation of a normalized difference Nd:

Nd; = [u] X Gn + Of ©))
P, T Pr,

where p, is intensity correlation correlation coefficient,

which obtained before earthquake, p,, is intensity

correlation coefficient from the data pair whose interval

included the earthquake occurrence, Gn is gain and Of is

offset.

Matsuoka et al. have considered the effects of speckle
noise reduction and pixel window size in evaluating
building damage using the difference in the backscattering
coefficient and correlation coefficient of the pre- and post-
event radar imageries. There were used ERS data [3], the
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statistical relationships were presented for classification of
damage level, there achieved good results in the Kobe
earthquake. In further, they were used with Envisat-ASAR
for detection of damaged urban areas due to the Bam
Earthquake in Iran [17]. Additionally, this model was
improved for ALOS-PALSAR L-band, same as that which
was used for the 1995 Kobe earthquake, it was used for
the 2007 Peru earthquake [18]. There were used the
backscattering intensity difference, intensity correlation
and discriminant scores for detection of damaged urban
areas, they also gave good results. Hosokawa [14] had also
conducted relevant researches using JERS-1.

Japanese scientist Matsuoka have proposed to use the
difference of backscattered intensity in dB, correlation
coefficient of intensity, degree of complex coherence by
using pre- and post-earthquake ERS data for different
damaged rank A, B, C, D, E, which represents in
percentage ratio 0 - 6.25, 6.25 - 12.5, 12.5 - 25, 25 - 50,
50-100%.

Correlation and difference in the backscattering
coefficient of the two basic value, which were used as the
indices representing the changes in affected areas. The
correlation coefficient, r, between two intensity images, a
and b, is calculated within a small corresponding window
as follows [3]:

NZ?’=1 Iailbi - §V=11ai ?I:llbi

SO - () (VS 1 - (B2 ))
where i is the sample number, I, and I,,, are the digital
numbers of the post- and pre-images, N is total number of
pixel in window size. The difference of backscattered is
calculated as follows:

d = 101logyo Iy, — 10logyo I, (4)
where I_ai and I_bi are the corresponding averaged digital
numbers over the surroundings of pixel i within a window
size.

Next questions are follows which values of the
correlation and difference in the backscattering coefficient
belong to damaged and undamaged urban areas, the
distribution of these values in two-dimensional plot.
Matsuoka et al. offer to use a linear discriminant line
which used to classify these areas. Here, they introduced
a new value called as discriminant score z.

Interferometric coherence also useful tools for
detection of damaged building. Many scientist tried to use
coherence coefficient before and after earthquake, it gives
good results, if baseline shorter than critical baseline
distance [19] and more longer wavelength [20]. Value of
interferometric coherence coefficient |y| depends on many
factor, it consists of multiply parts, each part can cause
loss of coherence [21]:

r=

I)/l = ythermalymisregyspatydoppYatmytemp (5)

where Yinermar CaUSed by uncorrelated noise inside the
radar sensor itself, y,;seq is due to inaccurate registration
of the two radar imageries, y,,. depends of large baseline
distance [22], it should be less than critical baseline
distance Beyiticar» Yaopp doppler centroid de-correlation,

which mitigates by using the range adaptive azimuth
common band filtering, y.m is due to different
atmospheric conditions, may cause artifacts in the
interferogram, ¥, — caused by changes on the ground
in the time between radar data acquisition dates.

The most important are y,q: and ¥emp, Others can be
accounted. For each of pair SAR data should be selected
baseline distance less critical B, ;+icq;, Which is calculated
as follows:

AR,

Bcritical = ZT(COS 0)2 (6)
where r —range resolution of SAR data, 6 —incidence angle,
A—wavelength, R, — range distance between SAR sensors
and earth surface. Reasons of appearing a low coherence
and decorrelation y;.n, is many, they often found on
areas covered by vegetation, especially forests, lose
coherence within a few days, especially due to wind and
in the long-term also due to plant growth.

Hosokawa et al. proposed temporal coherence ratio for
detection of building damage [20]

e v pp? @)
where pl? ~ p23 then, y®¥ — coseismic coherence
coefficient and y(@?  pre-earthquake coherence
coefficient. Theoretical probability of distribution
temporal coherence ratio range n, is 0.6+0.7. Coherence
ratio value for different type of damaged building shown
in damage estimation model. It is displayed via cumulative
probability of damage degree (%) and temporal coherence
ratio n;, here it is consist four classes serious damaged,
major damaged, minor damaged, undamaged [19].

Yonezawa et al. proposed method based on
decorrelation coherence coefficient for that they used
normalized difference value for estimation of damaged
building in urban area [16]. The normalized difference
calculation is same like for intensity correlation (3), which
was mentioned before:

Nd, = [u
Pc; T Pe,
where p., and p., are coherence coefficients before
earthquake and coseismic respectively.
Hoffman suggested the same temporal coherence ratio
only contrary [22]:

]xGn+0f (8)

p= Ybefore ©)
Ycoseismic

Where Yperore aNd Veoseismic are coherence coefficients

before earthquake and coseismic respectively. Here, this

value was taken from 0 to 3, and held hard classification

at district (segment) level. See Table 1. The averaged

coherence index was computed as

N
1
p= NZ min (p;, 3) (10)
i=1

where N — total number pixels in segment, all of value p;
which will be summed should not be above 3, if they exist
then they are replaced by 3.
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Table 1. Damage class definition [22]
Average coherence index range

Damage level class

p<l.5 No damage
1.5<p<2.0 Light damage
2.0<p<2.5 Significant damage

p=>2.5 Severe damage

Wang et al. have proposed the use of Getis statistical
and K-distribution method for building damage level with
multi-temporal radar imageries [23,24]. This work based
on simulated imageries, here, some parameters K-
distribution from this simulated image and the
standardized version of Getis statistics are calculated:

6@ - E(G; (@)]

Zy(d) = (11)
Var (G{‘(d))
G = o Wiy (@) (12)
= j=1%

where G; - Getis statistics for one n - pixel image, the ratio
of pixels centered on the i - th pixel within distance d and
the pixels of entire image, W;; is a weighting matrix,
which takes “1” for the pixel with distance less than d
from pixel i , and zero otherwise, E(-) denotes the mean
value and Var(-) means variance. These formulas were
used for pre- and post-earthquake ALOS PALSAR
imageries over Beichuan city to detect of changing, by
using difference of Z images [23,25].

Seismic intensity with its integration with existing data
first demonstrated Matsuoka et al. [26], there was defined
the relationship between the discriminant score Zg; and the
JMA (Japan Meteorological Agency) seismic intensity in
this work. See Fig. 1.
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Figure 1. Distribution of estimated severe damage ratios
(average values), estimated from an integrated processing of the
discriminant score Z; of the JERS-1 radar imageries and
seismic intensity information [18]

All presented works have been associated with the use
of low resolution SAR data, then appeared high-resolution
SAR data, such as TerraSAR-X, Radarsat-2, COSMO-
SkyMed and etc., which are able to see individual
buildings and homes. Guida et al. proposed a method
based on double-bounce changing using Cosmo Skymed
data, however, this research is true for single buildings [2].
Uprety and Yamazaki used multi-temporal TerraSAR-X
and high resolution multispectral data, such as Quickbird,

GeoEye-1, which are used to generate intensity correlation
coefficient, backscattering coefficients, their difference
and NDVI values respectively [26]. Early, Stramondo and
Bignami combined the capability of detecting earthquake
damages in urban areas using ERS-1, ENVISAT ASAR,
IRS1-C, TERRA ASTER. They used intensity correlation,
interferometric coherence and NDVI also (masking
vegetation) for building damage estimation [27]. Chini et
al. had been used many optical data with multi-temporal
ENVISAR ASAR data, which include near and termal
infrared band for assessment of Tohoku tsunami
consequences, such as inundation, liquefaction and
washing away effects [28]. In subsequent studies, there
have been used GIS data, which include not only GIS
layers with city parcel boundaries [10], but also individual
information, such as shape, size, high of building [29].

Overall accuracies of damage assessment were
obtained Stramondo et al. in low resolution radar remote
sensing data and their combination with optical data [34],
[35]. It showed maximum overall accuracy with
interferometric coherences (pre-seismic, co-seismic, post-
seismic) and optical (pre- and post-seismic) data. See Fig.
2.

|l Overall Accuracy O Kappa Coefﬁcientl
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Figure 2. Results of pixel-by-pixel classification of damaged
areas in terms of overall accuracy and Kappa coefficient with
six classes: settlement build after earthquake, building with
decreased dimension (probably collapsed), rubbles, subsidence,
damaged (burnt) oil tanks, unchanged urban area (Stramondo
2007) [34]

Overall accuracy of damage assessment becomes
higher when there have more data (including different
sensors). High resolution radar imageries give higher
overall accuracy than low resolution data, for example, it
is greater (by 10 - 13 per cent) with combination of the
difference of backscattering and intensity correlation
coefficients for TerraSAR-X [26]. Overall accuracy is
higher when spatial resolution of radar remote sensing
data is higher.

Karimzadeh et. al. have used these combinations in
their scientific works for detection of damaged urban area
in Amatrice town struck by the Central Italy Earthquake,
2016 [31]. They have used these calculated values: mean
differential intensity and mean differential coherence with
discriminant score. Sentinel-1 and ALOS PALSAR 2 data
were applied, result showed better accuracy with Sentinel-
1A/B. Ferrentino et. al. were proposed to use a coherent
dual-polarimetric feature based on the inter-channel
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coherence [32], then Lagrange optimization of the
difference between two polarimetric covariance matrices
were offered in followed works [33].

PROPOSED METHODOLOGY

A multi-temporal backscattering coefficients and
coherence coefficients (pre-event and post-event) co-
registered dataset was used in new proposed method with
GLCM texture parameters [40-42]. The block diagram of
this method is shown below. See Fig. 3. The satellite
dataset was selected of three Sentinel-1A/B imageries
(pre- and post- events data) from descending orbits for
Amatrice town struck by Italy Earthquake on 24 August
2016. They are shown on Table 2.

Table 2. Satellite data

Acquisition date

Ground

Satellite ;
resolution

13.89 m x3.37 m
Single look complex
(az x rg)

Sentinel-1A  Pre-seismic 9 August 2016
Pre-seismic 21 August 2016
Post-seismic 2 September 2016

| Formation of coherence and bacl

| 1 1 !
Vv Vv VH VH
bt | Lovre | [ obt
vV [ UV VH | VH
I |
4 4 Formation of Mean

Formation of Dissimilarity and Homogeneity GLCM parameters

GLCM parameters (window size 5X 5) (window size 3X3)

uﬂum\'\ Jl“ﬂmvn ﬂl}hs\'\' uni&svn ﬂ(‘uhjm Jl('oh_cu!

| Supervised classification methods: Maximum Likelihood and Mahalanobis |

Figure 3. Block diagram of new proposed method

All of the coregistered SAR values such as pre- seismic
backscattermg coefﬁuent for dual polarizations o pre ,
Opte, POSt-seismic oy, 0pas: and pre-seismic coherence
coefficients p,,., coseismic p.,, are used further for
texture image processing.

To assess the degree of change, the ratio of pre- and
post-seismic backscattering coefficients were computed
for dual polarizations:

VH
__ Opre _ Opre

Nvy = —wv— » Nva = v (13)
Opost Opost

Gray Level Co-ocurrence Matrix (GLCM) is most
common used for calculation of textural features, first time
Haralick et al. have been proposed to use it for image
classification [41]. GLCM has window size and eight
textural features: mean, variance, second moment,
homogeneity, correlation, dissimilarity, entropy, contrast.
Next GLCM parameters are better for for detection of
damaged building, because there are comparable better
separability between damaged and intact buildings cases:

N-1

Z i(P.)) (14)

i,j=0

Mean

N—-

Z 1+ (l N? )

Homogeneity

N

Z Pijli= (16)

Dissimilarity j=0

RESULT ANALYSIS

Simultaneous use of different GLCM textural
parameters for Sentinel-1 radar imageries with VV and
VH polarization channels gave the following results on the
distribution graph of ratio of backscattering coefficients
Opte/ Omast » Oprs | Opar,. Homogeneity and Dissimilarity
GLCM parameters in 5> window size showed good
separation of intact and completely destroyed building
than other textural parameters. See Fig. 4,5.
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Figure 4. 2D-plot of Homogeneity GLCM 5>5, x — axis
opte/Opase » Y — axis oyt /oyt (Black point — intact building:

239 samples, Red — damaged building: 79 samples
4

35 [ ]

0 05 1 15 2 2.5 3
Figure 5. 2D-plot of Dissimilarity GLCM 5>&, x — axis
opte/Opase » Y — axis oyt /oy, (Black point — intact building:
239 samples, Red — damaged building: 79 samples

Histogram of coherence coefficients ratio VV
polarization pYY, /ppre of Mean GLCM parameters
showed showed good separation of intact and damaged
buildings in different damage level (moderately, highly
and completely destroyed) in 0,65 threshold value than
other textural parameters. The window size 3>3 for
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computation of the Mean GLCM textural parameter is the

most optimal for separation than others. See Fig. 6.
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Figure 6. Histogram of mean GLCM 333 of ratio
coherence coefficient pfss/ppre VV polarization (red —
damaged building, blue — intact building)
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Mahalanobis and Maximum Likelihood supervised
classification methods give good optimal results for
building damage assessment using 4 and 6 different inputs
(Table 3):

1) Homogeneity GLCM 5> - apre/a,,ovst (HomVvV)

2) Homogeneity GLCM 556 - gyt /oyt post (HomVH)

3) Dissimilarity GLCM 556 - g}, /oy (DissVV)
4) Dissimilarity GLCM 5> - Upre/ffpost (DissVH)
5) Mean GLCM 33 - pwS (Coh_cos)
6) Mean GLCM 3x3 - py¥, (Coh_pre)

Table 3. Supervised classification results for new
proposed method using GLCM textural parameters

HomVV, HomVH, DissVV, HomVV, HomVH,
DissVH, Coh_pre, Coh_cos Coh_pre, Coh_cos
l]t:lt:llir}:'::; Mabhalanobis ]_]\,/:::lli'l'::(:: Mabhalanobis
OA 0.7708 0.7608 0.7597 0.7497
IN 0.5444 0.6409 0.6216 0.6332
DM 0.8575 0.825 0.8521 0.8172
NB 0.8435 0.7802 0.7637 0.7637

Overall accuracy (OA), producer’s accuracy of intact building
(IN), damaged building (DM), none building (NB). Damaged
building class is result of merging moderately, highly and
completely destroyed building classes.

Result image processing to create damage are showed
in below, it is consists of three class: a) none built-up area;
b) intact building; 3) damaged building. See Fig. 7.
Google Earth image and Damage map of west part of
Amatrice town presented for comparison. See Fig. 8,9.

B None building [ Intact building [ | Damaged building

Figure 7. Mahalanobis distance supervised classification image
with six inputs

"é"\”q‘?é"

Study area is Amatrice town (red rectangular is more damaged
part of town), Italy. Date: 2016-08-29

Flgure 9. Google Earth i |mage and Damage map (from
Copernicus Emergency Management Service) of west part of
Amatrice town. Legend: red — moderately, green — highly
damaged and yellow - completely destroyed building

CONCLUSION

It is found that disadvantages of change detection
method: a) large time between image acquisitions
(especially for low-resolution radar imageries); b)
required at least two acquisitions or more, multi-temporal
data may not always be available (especially before event);
€) more acquisitions means more costs (especially for
high-resolution radar imageries). Advantages of change
detection method: a) when all requirements are met related
to acquisitions imageries (especially high resolution radar
imageries), it is the most suitable to obtain high overall
accuracy with the inclusion of all ancillary data and GIS
data; b) method based on interferometric coherence
enables better differentiation of slightly damaged and
undamaged areas [36].

Low resolution Sentinel-1A/B data should be applied
in future works for building damage assessment methods.
It needs to focus on the use of textural features of
interferometric coherence and intensity correlation
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coefficients for buildings damage assessment in future
research [38].

A new proposed method using change detection
method with GLCM texture parameters gives these
conclusions. It was found that completely destroyed and
intact buildings can be better distinguish by using GLCM
parameters of backscattering coefficients
(0pre/ Ohast » Opte/ Opase)- Ratio of coherence coefficients
0os/Opre is sensitive to moderately damaged, highly
damaged and completely destroyed buildings. It is very
difficult to separate different classes of destruction of the
buildings, for examples, moderately damaged and highly
damaged or highly damaged and completely destroyed
buildings. Producer’s accuracy results are not sufficient
for intact building class, because it is less than other
classes (producer’s accuracy is less than 0,64). Given the
above insights, it is required to improve the method, in
order to increase the producer’s accuracy intact building
GIS data of urban area is required, and also distinguish
different level of damaged buildings.

Change detection methods require huge computational
resources and advanced algorithm with additional GIS
data. Because there is used for processing a pair of radar
images with several tens of gigabytes of data. Radar image
processing is time consuming, and this time depends of
computing power. Parallel calculations are necessary to
divide the radar image into smaller parts and each part is
processed by its own processor. Currently, there are many
solutions for image processing based on various mini PCs
that can be combined into clusters, one of them may be
based on the application of the large number of Raspberry
Pi mini PCs [39].
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