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ABSTRACT 

 

In this research paper, change detection based methods 

were considered to find collapsed and intact buildings 

using radar remote sensing data or radar imageries. Main 

task of this research paper is collection of most relevant 

scientific research in field of building damage assessment 

using radar remote sensing data. Several methods are 

selected and presented as best methods in present time, 

there are methods with using interferometric coherence, 

backscattering coefficients in different spatial resolution. 

In conclusion, methods are given in end, which show, 

which methods and radar remote sensing data give more 

accuracy and more available for building damage 

assessment. Low resolution Sentinel-1A/B radar remote 

sensing data are recomended as free available for 

monitoring of destruction degree in microdistrict level.  

Change detection and texture based method are used 

together to increase overall accuracy. Homogeneity and 

Dissimilarity GLCM texture parameters found as better 

for separation of a collapsed and intact buildings. Dual 

polarization (VV,VH) backscattering coefficients and 

coherence coefficients (before earthquake and coseismic) 

were fully utilized for this study. There were defined the 

better multi variable for supervised classification of none 

building, damaged and intact buildings features in urban 

areas. In this work, we were achieved overall accuracy 

0.77, producer’s accuracy for none building is 0.84, for 

damaged building case 0.85, for intact building 0.64. 

Amatrice town was chosen as most damaged from 2016 

Central Italy Earthquake. 

Keywords: radar remote sensing; building damage 

assessment; change detection method; GLCM 

 

 

INTRODUCTION 

 

       Natural disasters are occurred accidentally and 

unpredictable. They create huge amount of losses which 

are concentrated mainly in cities, in places where it is 

more densely population. It is crucial to rescue and to start 

the recovery work after any natural disaster, which must 

be done immediately. It is vital to have operational map of 

building destruction for a rapid and efficient planning of 

rescue operations from the rubble of the building and to 

reduce the death rates. Moreover, this information is 

necessary for damage assessment of natural disasters in 

the field of urban planning and recovery works. 

       Natural disasters are often accompanied by rain, 

clouds and other adverse weather conditions which 

affected on optical remote sensing data quality and 

applicability. Radar remote sensing data is devoid of such 

disadvantages, it can be widely used in respect of its all-

weather and day-night operation, quick access to disaster, 

continuous dynamic monitoring over affected territory, it 

has becomes an important means for disaster assessment. 

Since 2000, European Space Agency (ESA) and French 

Space Agency (CNES) became initiators of the agreement 

about International Charter on Space and Major Disasters, 

which includes charitable use of images acquired from 

different satellites of radar remote sensing, these data is 

important data source. 

       Radar remote sensing data with their interferometric 

coherence coefficients have been first used to monitor 

damage caused by surface deformation, it was the starting 

point of the research. These data had been low and midlle 

spatial resolution with one or two polarizations. Before 

and after earthquake radar remote sensing data were used 

for building damage assessment purposes in urban area, 

their backscattering, intensity correlation and coherence 

coefficients [1-4]. 

Starting in 2007, TerraSAR-X, Radarsat-2, COSMO-

SkyMed, TANDEM-X satellites were launched, which 

had 2-4 polarizations, and the spatial resolution of image 

was up to 1 meter. It was possible to see in details city 

structures or individual buildings in such spatial resolution 

[1,4,5]. These satellite data allow us to identify of building, 

because each building has unique backscattering 

characteristic and signature (visible shape) under certain 

regular conditions, any significant changes can say that 

there have damaged buildings or homes. 

Building damage assessments methods using radar 

remote sensing data is relevant, many scientists try to get 

more accurate methods or algorithms for extraction of 

damaged buildings or creation damage map. 

Characteristics of collapsed and intact buildings in radar 

remote sensing data should be considered for that 

purposes. In addition, higher accuracy change detection 

based building damage assessment methods should be 

defined, which methods out of them are accurate and 

reliable. 

 

 

CHANGE DETECTION METHOD 

 

In the context of remote sensing, change detection 

refers to the process of identifying differences in the state 

of land features by observing them at different times. 

Discriminating areas of changes on radar imageries 

between different dates is the main objective of change 

detection process. Change detection method can be 

applicable to assess damage in urban areas for natural 

disaster for that purposes, especially earthquakes. Unlike 

of optical, where intensity is sensitive to chemical 
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properties of surface and roughness, for radar, reflection 

and scattering totally depends on geometrical properties of 

surface, especially in urban areas, where backscattering 

intensity depends on different geometric shape of 

buildings and distance between and etc. The use of radar 

imageries for detecting change on the earth's surface is 

highly dependent on target orientation, azimuth angle, and 

sensor depression angle [6,37]. Because of changes in 

look direction is as small as 0.8° between the orientation 

of building and the differences in the radar azimuth can 

cause major changes in the radar backscatter, which affect 

the capability to detect the changes in urban areas [7]. 

Another important aspect related to depression angle is 

affecting the use of radar imageries for change detection 

method. For aircraft radar it is more important than space 

borne radar, because it varies extensively from near nadir. 

There should be such rules in space borne radar systems: 

a) gathering data using a constant bearing for any 

geographical location (assuming ascending or descending 

passes), b) gathering data over an long period of time, c) 

assemble data at fixed wavelength and polarization, d) 

gathering data with a small depression angles (6°). The use 

radar data sets separated only in time is better than those 

separated in time and look direction for change detection 

studies [8]. In change detection method, major concern is 

speckle noise, it is reported due to speckles in the images 

which cannot be avoided results in uncertainty and 

decrease value of the image, hence application of the 

image automatically becomes very difficult. It is problem 

for low resolution radar imageries, when size of building 

is comparable with the pixel resolution. For high 

resolution SAR imagery, when building is clearly visible, 

its edges, like rectangular shape, here it is possible to use 

the smoothing algorithms based on local statistics [9]. 

In general, in monitoring disasters by using pre and 

post-earthquake radar imageries had been found problems 

[10,11]. Due to earthquakes in backscattering coefficient 

occur the change of correlation and coherence for 

damaged buildings. Since, building is generally relatively 

stable construction, if the coherence changed, it can 

deduce that building is damaged. Based on this changing 

from aforementioned reference, methods can be divided 

into two kinds. One is the use of pre and post-earthquake 

data to generate coherence coefficient of InSAR product 

for damage detection. Coherence based change detection 

method is used for building damage detection via 

decoherence. Second is the use of also multi-temporal 

radar data to generate intensity correlation coefficient for 

damage detection. Intensity correlation based change 

detection method is used for building damage detection 

via decorrelation. 

Since 1998, scientists from Japan began to use the 

intensity correlation coefficients for detection of damaged 

buildings, for that purposes were used to ERS-1 data. 

Intensity correlation coefficient of SAR imageries can 

give better result under certain condition for determination 

of earthquake zones. Yonezawa et al. [12] offer to use 

interferometric coherence coefficient for detection of 

damaged buildings in urban areas, there have been used 

pre and post-earthquake ERS-1 data for 1995 year, Kobe, 

Japan. It was discovered that coherence coefficient in the 

damaged part of the city less than intact. In addition, 

Matsuoka et al. [13] using ERS-1/2, Hosokawa [14] using 

JERS-1 data carried out the same research. However, in 

practice the use of interferometric coherence has some 

limitations, it is depends of many parameters (baseline 

length, time interval, wavelength, surface change, 

seasonal vegetation changes and etc.), which affect on loss 

of coherence, therefore, the choice of paired radar data 

should be rigorous with taking into account the cause of 

these losses. By combining these methods it is possible to 

achieve efficient detection of damaged buildings. 

Yonezawa et al. [15,16] have considered two methods  in 

their research based on coherence and intensity correlation 

for damaged buildings and the extent their relationship. 

Relationship intensity correlation and coherence before 

and after earthquake under different baseline distances for 

damaged and undamaged urban areas was considered in 

these research. Both of the correlations are significantly 

influenced by the baseline distance. The short baseline 

distance data pairs indicated clear decorrelation in the 

damaged area than long. However, it is difficult to 

distinguish damaged and undamaged areas by long 

baseline distance data pairs, because it leads to 

decorrelation in whole areas, the greater the distance the 

worse it is to distinguish them. The degree of decorrelation 

indicated by the normalized difference of two correlation 

coefficients increases with the proportion of damaged 

buildings in the area. 

How to calculate those aforementioned correlation 

coefficients and degree of decorrelation? The norm type 

correlation coefficient of the two single-look intensity 

images (intensity correlation) in a small corresponding 

patch is calculated as follows:  

𝜌𝐼 =
|𝐸(𝐼1𝐼2)|

[𝐸(𝐼1
2)𝐸(𝐼2

2)]1/2
 

where 𝐼1 and 𝐼2 are corresponding pixel values of the two 

single-look intensity data, 𝐸( ) denotes statistical 

expectation. 

The coherence is calculated as complex correlation 

coefficient 𝜌𝑐 in a small corresponding patch as follows: 

𝜌𝑐 =
|𝐸(𝑐1𝑐2

∗)|

|𝐸(𝑐1𝑐1
∗)𝐸(𝑐2𝑐2

∗)|1/2
 

where 𝑐1 and 𝑐2 are the corresponding complex values of 

the two SLC data, 𝑐𝑖
∗ means the complex conjugate of 𝑐𝑖. 

Two intensity correlation coefficients can be used for 

calculation of a normalized difference 𝑁𝑑: 

𝑁𝑑𝑖 = [
𝜌𝐼1

− 𝜌𝐼2

𝜌𝐼1
+ 𝜌𝐼2

] × 𝐺𝑛 + 𝑂𝑓 

where 𝜌𝐼1
 is intensity correlation correlation coefficient, 

which obtained before earthquake, 𝜌𝐼2
 is intensity 

correlation coefficient from the data pair whose interval 

included the earthquake occurrence, 𝐺𝑛 is gain and 𝑂𝑓 is 

offset. 

Matsuoka et al. have considered the effects of speckle 

noise reduction and pixel window size in evaluating 

building damage using the difference in the backscattering 

coefficient and correlation coefficient of the pre- and post-

event radar imageries. There were used ERS data [3], the 

(2) 

(3) 

(1) 
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statistical relationships were presented for classification of 

damage level, there achieved good results in the Kobe 

earthquake. In further, they were used with Envisat-ASAR 

for detection of damaged urban areas due to the Bam 

Earthquake in Iran [17]. Additionally, this model was 

improved for ALOS-PALSAR L-band, same as that which 

was used for the 1995 Kobe earthquake, it was used for 

the 2007 Peru earthquake [18]. There were used the 

backscattering intensity difference, intensity correlation 

and discriminant scores for detection of damaged urban 

areas, they also gave good results. Hosokawa [14] had also 

conducted relevant researches using JERS-1. 

Japanese scientist Matsuoka have proposed to use the 

difference of backscattered intensity in dB, correlation 

coefficient of intensity, degree of complex coherence  by 

using pre- and post-earthquake ERS data for different 

damaged rank A, B, C, D, E, which represents in 

percentage ratio 0 - 6.25, 6.25 - 12.5, 12.5 - 25, 25 - 50, 

50-100%.        

Correlation and difference in the backscattering 

coefficient of the two basic value, which were used as the 

indices representing the changes in affected areas. The 

correlation coefficient, 𝑟, between two intensity images, 𝑎 

and b, is calculated within a small corresponding window 

as follows [3]:  

𝑟 =
𝑁 ∑ 𝐼𝑎𝑖

𝐼𝑏𝑖
− ∑ 𝐼𝑎𝑖

∑ 𝐼𝑏𝑖

𝑁
𝑖=1

𝑁
𝑖=1

𝑁
𝑖=1

√(𝑁 ∑ 𝐼𝑎𝑖

2 − (∑ 𝐼𝑎𝑖

𝑁
𝑖=1 )

2𝑁
𝑖=1 ) (𝑁 ∑ 𝐼𝑏𝑖

2 − (∑ 𝐼𝑏𝑖

𝑁
𝑖=1 )

2𝑁
𝑖=1 )

 

where 𝑖 is the sample number, 𝐼𝑎𝑖
 and 𝐼𝑏𝑖

 are the digital 

numbers of the post- and pre-images, 𝑁 is total number of 

pixel in window size. The difference of backscattered is 

calculated as follows:  

𝑑 = 10 log10 𝐼𝑎̅𝑖
− 10 𝑙𝑜𝑔10 𝐼𝑏̅𝑖

 

where 𝐼𝑎̅𝑖
 and 𝐼𝑏̅𝑖

 are the corresponding averaged digital 

numbers over the surroundings of pixel 𝑖 within a window 

size. 

Next questions are follows which values of the 

correlation and difference in the backscattering coefficient 

belong to damaged and undamaged urban areas, the 

distribution of these values in two-dimensional plot. 

Matsuoka et al. offer to use a linear discriminant line 

which used to classify these areas. Here, they introduced 

a new value called as discriminant score 𝑧. 

Interferometric coherence also useful tools for 

detection of damaged building. Many scientist tried to use 

coherence coefficient before and after earthquake, it gives 

good results, if baseline shorter than critical baseline 

distance [19] and more longer wavelength [20]. Value of 

interferometric coherence coefficient |𝛾| depends on many 

factor, it consists of multiply parts, each part can cause 

loss of coherence [21]: 

 
|𝛾| = 𝛾𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝛾𝑚𝑖𝑠𝑟𝑒𝑔𝛾𝑠𝑝𝑎𝑡𝛾𝑑𝑜𝑝𝑝𝛾𝑎𝑡𝑚𝛾𝑡𝑒𝑚𝑝 

 

where 𝛾𝑡ℎ𝑒𝑟𝑚𝑎𝑙  caused by uncorrelated noise inside the 

radar sensor itself, 𝛾𝑚𝑖𝑠𝑟𝑒𝑔 is due to inaccurate registration 

of the two radar imageries, 𝛾𝑠𝑝𝑎𝑡 depends of large baseline 

distance [22], it should be less than critical baseline 

distance 𝐵𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 , 𝛾𝑑𝑜𝑝𝑝  doppler centroid de-correlation, 

which mitigates by using the range adaptive azimuth 

common band filtering, 𝛾𝑎𝑡𝑚  is due to different 

atmospheric conditions, may cause artifacts in the 

interferogram, 𝛾𝑡𝑒𝑚𝑝 – caused by changes on the ground 

in the time between radar data acquisition dates. 

The most important are 𝛾𝑠𝑝𝑎𝑡 and  𝛾𝑡𝑒𝑚𝑝, others can be 

accounted. For each of pair SAR data should be selected 

baseline distance less critical 𝐵𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 , which is calculated 

as follows:  

𝐵𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 =
𝜆𝑅𝑠

2𝑟(cos 𝜃)2
 

where 𝑟 –range resolution of SAR data, 𝜃 –incidence angle, 

𝜆 – wavelength, 𝑅𝑠 – range distance between SAR sensors 

and earth surface. Reasons of appearing a low coherence 

and decorrelation 𝛾𝑡𝑒𝑚𝑝  is many, they often found on 

areas covered by vegetation, especially forests, lose 

coherence within a few days, especially due to wind and 

in the long-term also due to plant growth. 

Ноsokawa et al. proposed temporal coherence ratio for 

detection of building damage [20]  

𝜂𝑡 =
𝜌𝑡

23

𝜌𝑡
12 =

𝛾(23)

𝛾(12)
∙

𝜌𝑛
12

𝜌𝑛
23

 

where 𝜌𝑛
12  ≈ 𝜌𝑛

23 , then, 𝛾(23)  – coseismic coherence 

coefficient and 𝛾(12)  pre-earthquake coherence 

coefficient. Theoretical probability of distribution 

temporal coherence ratio range 𝜂0 is 0.6÷0.7. Coherence 

ratio value for different type of damaged building shown 

in damage estimation model. It is displayed via cumulative 

probability of damage degree (%) and temporal coherence 

ratio 𝜂𝑡, here it is consist four classes serious damaged, 

major damaged, minor damaged, undamaged [19]. 

Yonezawa et al. proposed method based on 

decorrelation coherence coefficient for that they used 

normalized difference value for estimation of damaged 

building in urban area [16]. The normalized difference 

calculation is same like for intensity correlation (3), which 

was mentioned before:  

𝑁𝑑𝑐 = [
𝜌𝑐1

− 𝜌𝑐2

𝜌𝑐1
+ 𝜌𝑐2

] × 𝐺𝑛 + 𝑂𝑓 

where 𝜌𝑐1
 and 𝜌𝑐2

 are coherence coefficients before 

earthquake and coseismic respectively.  

Hoffman suggested the same temporal coherence ratio 

only contrary [22]:  

𝜌 =
𝛾𝑏𝑒𝑓𝑜𝑟𝑒

𝛾𝑐𝑜𝑠𝑒𝑖𝑠𝑚𝑖𝑐

 

where 𝛾𝑏𝑒𝑓𝑜𝑟𝑒  and 𝛾𝑐𝑜𝑠𝑒𝑖𝑠𝑚𝑖𝑐  are coherence coefficients 

before earthquake and coseismic respectively. Here, this 

value was taken from 0 to 3, and held hard classification 

at district (segment) level. See Table 1. The averaged 

coherence index was computed as 

𝜌̅ =
1

𝑁
∑ 𝑚𝑖𝑛

𝑁

𝑖=1

(𝜌𝑖 , 3) 

where 𝑁 – total number pixels in segment, all of value 𝜌𝑖 

which will be summed should not be above 3, if they exist 

then they are replaced by 3. 

 

 

 

(4) 

(5) 

(6) 

(7) 

(8) 

(10) 

(9) 
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Table 1. Damage class definition [22] 

 
 

Wang et al. have proposed the use of Getis statistical 

and K-distribution method for building damage level with 

multi-temporal radar imageries [23,24]. This work based 

on simulated imageries, here, some parameters K-

distribution from this simulated image and the 

standardized version of Getis statistics are calculated:  

𝑍𝑖(𝑑) =
[𝐺𝑖(𝑑) − 𝐸(𝐺𝑖

∗(𝑑))]

√𝑉𝑎𝑟 (𝐺𝑖
∗(𝑑))

 

𝐺𝑖
∗ = ∑

𝑊𝑖𝑗(𝑑)𝑥𝑗

∑ 𝑥𝑗
𝑛
𝑗=1

𝑛

𝑗=1

 

where 𝐺𝑖
∗ - Getis statistics for one 𝑛 - pixel image, the ratio 

of pixels centered on the 𝑖 - th pixel within distance d and 

the pixels of entire image, 𝑊𝑖𝑗  is a weighting matrix, 

which takes “1” for the pixel with distance less than 𝑑 

from pixel 𝑖 , and zero otherwise, 𝐸(∙) denotes the mean 

value and 𝑉𝑎𝑟(∙) means variance. These formulas were 

used for pre- and post-earthquake ALOS PALSAR 

imageries over Beichuan city to detect of changing, by 

using difference of 𝑍 images [23,25]. 

Seismic intensity with its integration with existing data 

first demonstrated Matsuoka et al. [26], there was defined 

the relationship between the discriminant score ZRj and the 

JMA (Japan Meteorological Agency) seismic intensity in 

this work. See Fig. 1. 
 

 
Figure 1. Distribution of estimated severe damage ratios 

(average values), estimated from an integrated processing of the 

discriminant score 𝑍𝑅𝑗  of the JERS-1 radar imageries and 

seismic intensity information [18] 

 

All presented works have been associated with the use 

of low resolution SAR data, then appeared high-resolution 

SAR data, such as TerraSAR-X, Radarsat-2, COSMO-

SkyMed and etc., which are able to see individual 

buildings and homes. Guida et al. proposed a method 

based on double-bounce changing using Cosmo Skymed 

data, however, this research is true for single buildings [2]. 

Uprety and Yamazaki used multi-temporal TerraSAR-X 

and high resolution multispectral data, such as Quickbird, 

GeoEye-1, which are used to generate intensity correlation 

coefficient, backscattering coefficients, their difference 

and NDVI values respectively [26]. Early, Stramondo and 

Bignami combined the capability of detecting earthquake 

damages in urban areas using ERS-1, ENVISAT ASAR, 

IRS1-C, TERRA ASTER. They used intensity correlation, 

interferometric coherence and NDVI also (masking 

vegetation) for building damage estimation [27]. Chini et 

al. had been used many optical data with multi-temporal 

ENVISAR ASAR data, which include near and termal 

infrared band for assessment of Tohoku tsunami 

consequences, such as inundation, liquefaction and 

washing away effects [28]. In subsequent studies, there 

have been used GIS data, which include not only GIS 

layers with city parcel boundaries [10], but also individual 

information, such as shape, size, high of building [29]. 

Overall accuracies of damage assessment were 

obtained Stramondo et al. in low resolution radar remote 

sensing data and their combination with optical data [34], 

[35]. It showed maximum overall accuracy with 

interferometric coherences (pre-seismic, co-seismic, post-

seismic) and optical (pre- and post-seismic) data. See Fig. 

2. 

 
Figure 2. Results of pixel-by-pixel classification of damaged 

areas in terms of overall accuracy and Kappa coefficient with 

six classes: settlement build after earthquake, building with 

decreased dimension (probably collapsed), rubbles, subsidence, 

damaged (burnt) oil tanks, unchanged urban area (Stramondo 

2007) [34] 

 

Overall accuracy of damage assessment becomes 

higher when there have more data (including different 

sensors). High resolution radar imageries give higher 

overall accuracy than low resolution data, for example, it 

is greater (by 10 - 13 per cent) with combination of the 

difference of backscattering and intensity correlation 

coefficients for TerraSAR-X [26]. Overall accuracy is 

higher when spatial resolution of radar remote sensing 

data is higher. 

Karimzadeh et. al. have used these combinations in 

their scientific works for detection of damaged urban area 

in Amatrice town struck by the Central Italy Earthquake, 

2016 [31]. They have used these calculated values: mean 

differential intensity and mean differential coherence with 

discriminant score. Sentinel-1 and ALOS PALSAR 2 data 

were applied, result showed better accuracy with Sentinel-

1A/B. Ferrentino et. al. were proposed to use a coherent 

dual-polarimetric feature based on the inter-channel 

(11) 

(12) 
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coherence [32], then Lagrange optimization of the 

difference between two polarimetric covariance matrices 

were offered in followed works [33]. 

 

 

PROPOSED METHODOLOGY 

 

 A multi-temporal backscattering coefficients and 

coherence coefficients (pre-event and post-event) co-

registered dataset was used in new proposed method with 

GLCM texture parameters [40-42]. The block diagram of 

this method is shown below. See Fig. 3. The satellite 

dataset  was selected of three Sentinel-1A/B imageries 

(pre- and post- events data) from descending orbits for 

Amatrice town struck by Italy Earthquake on 24 August 

2016. They are shown on Table 2. 

 

Table 2. Satellite data 

 
 

 
Figure 3. Block diagram of new proposed method  

 

All of the coregistered SAR values such as pre-seismic 

backscattering coefficient for dual polarizations 𝜎𝑝𝑟𝑒
𝑉𝑉 , 

𝜎𝑝𝑟𝑒
𝑉𝐻 , post-seismic 𝜎𝑝𝑜𝑠𝑡

𝑉𝑉 , 𝜎𝑝𝑜𝑠𝑡
𝑉𝐻  and pre-seismic coherence 

coefficients 𝜌𝑝𝑟𝑒 , coseismic 𝜌𝑐𝑜𝑠  are used further for 

texture image processing. 

To assess the degree of change, the ratio of pre- and 

post-seismic backscattering coefficients were computed 

for dual polarizations: 

𝜂𝑉𝑉 =
𝜎𝑝𝑟𝑒

𝑉𝑉

𝜎𝑝𝑜𝑠𝑡
𝑉𝑉   , 𝜂𝑉𝐻 =

𝜎𝑝𝑟𝑒
𝑉𝐻

𝜎𝑝𝑜𝑠𝑡
𝑉𝐻  

Gray Level Co-ocurrence Matrix (GLCM) is most 

common used for calculation of textural features, first time 

Haralick et al. have been proposed to use it for image 

classification [41]. GLCM has window size and eight 

textural features: mean, variance, second moment, 

homogeneity, correlation, dissimilarity, entropy, contrast. 

Next GLCM parameters are better for for detection of 

damaged building, because there are comparable better 

separability between damaged and intact buildings cases: 

 

∑ 𝑖(𝑃𝑖,𝑗)

𝑁−1

𝑖,𝑗=0

 

∑
𝑃𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

 

∑ 𝑃𝑖.𝑗|𝑖 − 𝑗|

𝑁−1

𝑖,𝑗=0

 

 

 

 

RESULT ANALYSIS 

 

Simultaneous use of different GLCM textural 

parameters for Sentinel-1 radar imageries with VV and 

VH polarization channels gave the following results on the 

distribution graph of ratio of backscattering coefficients 

𝜎𝑝𝑟𝑒
𝑉𝑉 𝜎𝑝𝑜𝑠𝑡

𝑉𝑉⁄  , 𝜎𝑝𝑟𝑒
𝑉𝐻 𝜎𝑝𝑜𝑠𝑡

𝑉𝐻⁄ . Homogeneity and Dissimilarity 

GLCM parameters in 5×5 window size showed good 

separation оf intact and completely destroyed building 

than other textural parameters. See Fig. 4,5. 

 

 
Figure 4. 2D-plot of Homogeneity GLCM 5×5, x – axis 

𝜎𝑝𝑟𝑒
𝑉𝑉 𝜎𝑝𝑜𝑠𝑡

𝑉𝑉⁄  , y – axis 𝜎𝑝𝑟𝑒
𝑉𝐻 𝜎𝑝𝑜𝑠𝑡

𝑉𝐻⁄  (Black point – intact building: 

239 samples, Red – damaged building: 79 samples 

 
Figure 5. 2D-plot of Dissimilarity GLCM 5×5, x – axis 

𝜎𝑝𝑟𝑒
𝑉𝑉 𝜎𝑝𝑜𝑠𝑡

𝑉𝑉⁄  , y – axis 𝜎𝑝𝑟𝑒
𝑉𝐻 𝜎𝑝𝑜𝑠𝑡

𝑉𝐻⁄  (Black point – intact building: 

239 samples, Red – damaged building: 79 samples 

 

Histogram of coherence coefficients ratio VV 

polarization 𝜌𝑐𝑜𝑠
𝑉𝑉 𝜌𝑝𝑟𝑒

𝑉𝑉⁄  of Mean GLCM parameters 

showed showed good separation оf intact and damaged 

buildings in different damage level (moderately, highly 

and completely destroyed) in 0,65 threshold value than 

other textural parameters. The window size 3×3 for 

(13) 

(14) 

(15) 

(16) 

Mean 

Homogeneity 

Dissimilarity 
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computation of the Mean GLCM textural parameter is the 

most optimal for separation than others. See Fig. 6.  

 
Figure 6. Histogram of mean GLCM 3×3 of ratio 

coherence coefficient 𝜌𝑐𝑜𝑠
𝑉𝑉 𝜌𝑝𝑟𝑒

𝑉𝑉⁄  VV polarization (red – 

damaged building, blue – intact building) 

 

Mahalanobis and Maximum Likelihood supervised 

classification methods give good optimal results for 

building damage assessment using 4 and 6 different inputs 

(Table 3): 

1) Homogeneity GLCM 5×5 - 𝜎𝑝𝑟𝑒
𝑉𝑉 𝜎𝑝𝑜𝑠𝑡

𝑉𝑉⁄  (HomVV) 

2) Homogeneity GLCM 5×5 -  𝜎𝑝𝑟𝑒
𝑉𝐻 𝜎𝑝𝑜𝑠𝑡

𝑉𝐻⁄  (HomVH) 

3) Dissimilarity GLCM 5×5 - 𝜎𝑝𝑟𝑒
𝑉𝑉 𝜎𝑝𝑜𝑠𝑡

𝑉𝑉⁄  (DissVV) 

4) Dissimilarity GLCM 5×5 - 𝜎𝑝𝑟𝑒
𝑉𝐻 𝜎𝑝𝑜𝑠𝑡

𝑉𝐻⁄  (DissVH) 

5) Mean GLCM 3×3 -  𝜌𝑐𝑜𝑠
𝑉𝑉  (Coh_cos) 

6) Mean GLCM 3×3 -  𝜌𝑝𝑟𝑒
𝑉𝑉  (Coh_pre) 

 

Table 3. Supervised classification results for new 

proposed method using GLCM textural parameters 

 
Overall accuracy (OA), producer’s accuracy of intact building 

(IN), damaged building (DM), none building (NB). Damaged 

building class is result of merging moderately, highly and 

completely destroyed building classes. 

 

Result image processing to create damage are showed 

in below, it is consists of three class: a) none built-up area; 

b) intact building; 3) damaged building. See Fig. 7. 

Google Earth image and Damage map of west part of 

Amatrice town presented for comparison. See Fig. 8,9.  

 

 

      
Figure 7. Mahalanobis distance supervised classification image 

with six inputs 

 
Study area is Amatrice town (red rectangular is more damaged 

part of town), Italy. Date: 2016-08-29 

 

 
Figure 9. Google Earth image and Damage map (from 

Copernicus Emergency Management Service) of west part of 

Amatrice town. Legend: red – moderately, green – highly 

damaged and yellow - completely destroyed building 

 

 

CONCLUSION 

 

It is found that disadvantages of change detection 

method: a) large time between image acquisitions 

(especially for low-resolution radar imageries); b) 

required at least two acquisitions or more, multi-temporal 

data may not always be available (especially before event); 

c) more acquisitions means more costs (especially for 

high-resolution radar imageries). Advantages of change 

detection method: a) when all requirements are met related 

to acquisitions imageries (especially high resolution radar 

imageries), it is the most suitable to obtain high overall 

accuracy with the inclusion of all ancillary data and GIS 

data; b) method based on interferometric coherence 

enables better differentiation of slightly damaged and 

undamaged areas [36]. 

       Low resolution Sentinel-1A/B data should be applied 

in future works for building damage assessment methods.  

It needs to focus on the use of textural features of 

interferometric coherence and intensity correlation 
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coefficients for buildings damage assessment in future 

research [38]. 

A new proposed method using change detection 

method with GLCM texture parameters gives these 

conclusions. It was found that completely destroyed and 

intact buildings can be better distinguish by using GLCM 

parameters of backscattering coefficients 

(𝜎𝑝𝑟𝑒
𝑉𝑉 𝜎𝑝𝑜𝑠𝑡

𝑉𝑉⁄  , 𝜎𝑝𝑟𝑒
𝑉𝐻 𝜎𝑝𝑜𝑠𝑡

𝑉𝐻⁄ ). Ratio of coherence coefficients 

𝜎𝑐𝑜𝑠
𝑉𝑉 𝜎𝑝𝑟𝑒

𝑉𝑉⁄  is sensitive to moderately damaged, highly 

damaged and completely destroyed buildings. It is very 

difficult to separate different classes of destruction of the 

buildings, for examples, moderately damaged and highly 

damaged or highly damaged and completely destroyed 

buildings. Producer’s accuracy results are not sufficient 

for intact building class, because it is less than other 

classes (producer’s accuracy is less than 0,64). Given the 

above insights, it is required to improve the method, in 

order to increase the producer’s accuracy intact building 

GIS data of urban area is required, and also distinguish 

different level of damaged buildings.  

Change detection methods require huge computational 

resources and advanced algorithm with additional GIS 

data. Because there is used for processing a pair of radar 

images with several tens of gigabytes of data. Radar image 

processing is time consuming, and this time depends of 

computing power.  Parallel calculations are necessary to 

divide the radar image into smaller parts and each part is 

processed by its own processor. Currently, there are many 

solutions for image processing based on various mini PCs 

that can be combined into clusters, one of them may be 

based on the application of the large number of Raspberry 

Pi mini PCs [39]. 
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