Preprint
Article

An Efficient Electrocatalyst for Oxygen Evolution Reaction in Alkaline Solutions Derived from a Copper Chelate Polymer via in-situ Electrochemical Transformation

Altmetrics

Downloads

1339

Views

330

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

21 January 2020

Posted:

21 January 2020

You are already at the latest version

Alerts
Abstract
Efficient oxygen evolution reaction (OER) electrocatalysts are highly desired in the field of water electrolysis and rechargeable metal-air batteries. In this study, a chelate polymer, composed of copper (II) and dithiooxamide, was used to derive an efficient catalytic system for OER. Upon potential sweep in 1M KOH, copper (II) centers of the chelate polymer were transformed to CuO and Cu(OH)2. The carbon-dispersed CuO nanostructures formed a nanocomposite which exhibits an enhanced catalytic activity for OER in alkaline media. The nanocomposite catalyst has overpotential of 280 mV (at 1 mA/cm2) and a Tafel slope of 81 mV/dec in 1M KOH solution. It has a seven-fold higher current than IrO2/C electrode, per metal loading. A catalytic cycle is proposed, in which, CuO undergoes electrooxidation to Cu2O3 that further decomposes to CuO with releasing oxygen. This work reveals a new method to produce an active nanocomposite catalyst for OER in alkaline media using a non-noble metal chelate polymer and a porous carbon. This method can be applied to the synthesis of transition metal oxide nanoparticles used in the preparation of composite electrodes for water electrolyzers and can be used to derive cathode materials for aqueous-type metal-air batteries.
Keywords: 
Subject: Chemistry and Materials Science  -   Applied Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated