Preprint
Article

A Gray System Theory Based Multi-Path Routing Method for Improving Network Lifetime in Internet of Things Systems

Altmetrics

Downloads

480

Views

261

Comments

0

This version is not peer-reviewed

Submitted:

23 January 2020

Posted:

26 January 2020

You are already at the latest version

Alerts
Abstract
Internet of things (IoT) is a network of smart things. This indicates the ability of these physical things to transfer information with other physical things. IoT has introduced various services and daily human life depends on its reliable and accessible operation. The characteristics of these networks, such as topology dynamicity and energy constraint, challenges the routing problem in these networks. Previous routing methods could not achieve the required performance in this type of network. Therefore, developers of this network designed and developed specific methods in order to satisfy the requirements of these networks. One of the routing methods is utilization of multi-path protocols which send data to its destination using routs with separate links. One of such protocols is AOMDV routing protocol. AOMDV protocol is a multi-path protocol which uses multiple different paths for sending information in order to maintain the network traffic balance, manage and control node energy, decrease latency, etc. In this paper, this method is improved using gray system theory which chooses the best paths used for separate routes to send packets. To do this, AOMDV packet format is altered and some fields are added to it so that energy criteria, link expiration time, and signal to noise ratio can also be considered while selecting the best route. The proposed method named GSTMPR-IoT is introduced which chooses the routs with highest rank for concurrent transmission of data, using a specific routine based on the gray system theory. In order to evaluate and report the results, the proposed GSTMPR-IoT method is compared to the EECRP and AOMDV approaches with regard to throughput, packet delivery rate, end to end delay, average residual energy, and network lifetime. The results demonstrate the superior performance of the proposed GSTMPR-IoT compared to the EECRP and AOMDV approaches.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated