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Abstract: Pressure fluctuations beneath hydraulic jumps downstream of Ogee spillways potentially
damage stilling basin beds. This paper deals with the extreme pressures underneath free hydraulic
jumps along a smooth stilling basin. The experiments were conducted in a laboratory flume. From
the probability distribution of measured instantaneous pressures, the pressures with different non-
exceedance probabilities (P'w%) could be determined. It was verified that the maximum pressure
fluctuations, as well as the negative pressures, are located at the positions closest to the spillway toe.
The minimum pressure fluctuations are located at the downstream of hydraulic jumps. It was
possible to assess the cumulative curves of P related to the characteristic points along the basin,
and different Froude numbers. To benchmark the results, the dimensionless forms of mean
pressures, standard deviations, and pressures with different non-exceedance probabilities were
assessed. It was found that an existing methodology can be used to interpret the present data, and
pressure distribution in similar conditions, by using a new third-order polynomial relationship for
the standard deviation (¢0"x) with the determination coefficient (R?) equal to 0.717. It was verified
that the new optimized adjustment gives more accurate results for the estimation of the maximum
extreme pressures than the minimum extreme pressures.

Keywords: mathematical modeling; characteristic points; extreme pressure; hydraulic jump;
pressure fluctuations; standard deviation; stilling basin

1. Introduction

Knowledge of pressure fluctuations and extreme pressures allows for a better understanding of
the energy dissipation process along the hydraulic jump. Pressure fluctuation underneath hydraulic
jumps has been the subject of many studies. Notable early studies on pressure fluctuations are such
as those by Bukreyev [1]; Locher [2]; Schiebe [3]; Abdul Khader and Elango [4]; Lopardo et al. [5];
Toso and Bowers [6]; Farhoudi and Narayanan [7]; Fiorotto and Rinaldo [8]; Fiorotto and Rinaldo [9];
Armenio et al. [10].
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According to Yan et al. [11], the pressure fluctuations coefficient (C'r) and peak frequencies of
the spatial hydraulic jumps are higher than the classical jumps. Onitsuka et al. [12] found that roller
oscillations affect the instantaneous flow depth and bed pressure. In addition, the instantaneous bed
pressures are associated with free surface fluctuations. Lian et al. [13] stated that the fluctuating
pressure spectrum in the rolling area follows the gravity similarity law. Lopardo and Romagnoli [14]
used C’r coefficient values to estimate the turbulence intensities in the region close to the stilling basin
bed. Lopardo [15] proposed a relationship between the turbulence intensity and C’r coefficient to
determine the extreme maximum positive velocities close to the stilling basin bed for the low incident
Froude numbers. Wang et al. [16] predicted the total pressure based upon the void fraction and
velocity data, and the results were in good agreement with the experimental data. Firotto et al. [17]
studied the stability of a plunge pool bottom under the fully developed jets and offered a design
method to define the concrete thickness of plunge pool linings. Barjastehmaleki et al. [18] studied the
statistical structure of turbulence pressure fluctuations caused by hydraulic jumps with the stilling
basins. Barjastehmaleki et al. [19] evaluated an approach for the structural design of stilling basins
lining in the sealed and unsealed joints. Lopardo [20] recommends that certain flow conditions are
fulfilled when measuring pressure fluctuations. The supercritical Reynolds number (Re1) should be
more than 100,000. The minimum acquisition time must be 60 seconds. The acquisition frequency can
be considered between 50 and 100 Hz. The maximum length of the plastic tube between the pressure
tap and transducer is equal to 55 cm with a minimum inner diameter of 5 mm.

There are some pressure estimation methodologies associated with the hydraulic jumps in the
literature. Gu et al. [21] evaluated the SPH model to estimate the wave profile, velocity data, and
energy dissipation caused by hydraulic jumps. Giiven et al. [22] used neural networks to predict the
pressure fluctuations on the bed of a sloping stilling basin under B-type hydraulic jump, was
investigated in detail by Hager [23]. Teixeira [24] determined the extreme pressures with different
non-exceedance probabilities P’ from the sample data within a stilling basin. Teixeira et al. [25]
provided the cumulative curves of P’ for characteristic points along the hydraulic jump. Souza et
al. [26] investigated the behavior of the hydraulic jump concerning the longitudinal distribution of
pressures near the bottom of the basin in the low Froude number zone (Fr1 < 4.5). Dai Pra et al. [27]
investigated the influence of the vertical curve between the spillway chute and the stilling basin
bottom. Maximum pressure fluctuations were identified at the center of the vertical curve and assume
values of 1% of the flow kinetic energy at the terminal tangency point of the curve. Novakoski et al.
[28] investigated extreme pressures with different non-exceedance probabilities (P'.1%, P"1%, P'99%, and
P99.9%). This study was carried out on a dissipation basin downstream of a stepped spillway. The
results showed that the values of Po.1% and P'9.9% have lower and higher values than the same values
observed downstream of the smooth chute, in the region near to the spillway toe, respectively.

According to Marques et al. [29], the pressure distributions along the hydraulic jumps are not
described by a normal distribution. The distributions of the skewness (S) and kurtosis (K) coefficients
of the sample pressure data along the hydraulic jump differ significantly from the values 0 and 3,
respectively, attributed to a normal distribution. Such values are observed after the endpoint of the
hydraulic jump at the dimensionless position X* = 8. According to Marques et al. [29], the distances
are made dimensionless concerning the conjugate depths, i.e., X'= X/ (Y2 —Y1). Analysis of skewness
and kurtosis displays that there are several types of distributions along hydraulic jumps. Therefore,
it is difficult to estimate the pressure data with a certain non-exceedance probability (P'%). They
proposed dimensionless relationships linking pressures with a certain non-exceedance probability
(Pa%), to the mean pressure (P'w), and the standard deviation of the sample data (). Such
relationships allow us to organize the results of different flow discharges or Froude numbers and
characterize the interest points in hydraulic jumps. The characteristic points are (i) the maximum
pressure fluctuations point (X'omax); (ii) the point of the flow detachment (X); (iii) the endpoint of the
roller (X™); (iv) the endpoint of the hydraulic jump (X7). These points are located at positions around
1.75, 4.0, 6.0, and 8.0, respectively.

The focus of this study is the statistical analysis of the extreme pressures distribution at the
bottom of a smooth stilling basin for the incident Froude numbers (Fr1) ranging from 6.14 to 8.29. A
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new adjustment will be proposed for the dimensionless standard deviation (o"x) based on Teixeira
[24] to estimate the extreme pressures with different non-exceedance probabilities (Pa%).

2. Materials and Methods
2.1. Experimental setup and procedure

Pressure patterns along free hydraulic jumps acting on the bottom of the USBR Type I stilling
basin (smooth bed) downstream of an Ogee spillway, were investigated using a laboratory model
(Figure 1). The experiments were conducted in a laboratory Plexiglas-walled flume with 50 cm width,
60 cm height, and 10 m length in the hydraulic laboratory at the University of Tabriz, Iran. The flume
bed was horizontal. An Ogee spillway with 70 cm height (P), and 61 cm length (L) was equipped with
a Type I stilling basin according to the USBR recommendations [30].

Ultrasonic sensor * Pressure
(Point gage) . transducers )

Ogee spillway
(P=70cm)

Data aquisition
systems

Figure 1. Laboratory flume and the experimental setup.

The length of the USBR Type I stilling basin (Ls) was considered 200 cm [31]. The basin width
(B) was equal to the flume width (50 cm). The radius of the vertical curve (R) at the spillway toe was
12 cm. There was a head tank with 250 cm height to stabilize the flow upstream of the spillway. A
hinged weir downstream of the flume was used to control the position of the supercritical depth (Y1)
at the spillway toe. The sequent depth (Y2) was measured by an ultrasonic sensor, with an operating
in the range of 10 to 100 cm and an accuracy of 0.1 mm. The supercritical depth (Y1) was calculated
using Bélanger’s equation for the classical hydraulic jump [32-34]:

Y, 1
leg(—l+«/l+8Fr22) 1)

V,=— ()

"
o1, (©)

where V2 is the mean sequent velocity; g is the flow discharge per unit width; Fr2 is the sequent Froude
number; and g is the gravitational acceleration. The flow discharge (Q) was measured with an

Fry, =

ultrasonic flowmeter. Experiments were carried out with different flow discharges in the range of 33
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to 60.4 L/s. Table 1 presents the range of some experimental parameters along the hydraulic jumps.
The parameters in Table 1 are defined as follows [33]:

q
y =4
-y @)
,
Fry =—= 5
o ©)
Re =5 ©)
14

Table 1. Experimental parameters along the hydraulic jumps.

Q Ya Y2 Vi V2 Fri Fr2 Re1
(L/s) (cm) (cm) (m/s) (m/s) ) ) )
33.0 1.84 20.65 3.52 0.313 8.29 0.220 58200
43.0 2.35 23.70 3.59 0.356 7.48 0.233 74400
47.5 2.59 24.87 3.60 0.374 7.14 0.240 81500
52.7 2.89 26.05 3.58 0.397 6.72 0.248 89500
55.0 3.03 26.49 3.56 0.407 6.52 0.253 92900
60.4 3.36 27.55 3.53 0.430 6.14 0.261 100900

where V1 is the mean incident velocity; Fr1 and Re: are the incident Froude and Reynolds numbers,
respectively); Ri is the hydraulic radius of the initial flow; and v is the kinematic viscosity of the fluid.
Figure 2 shows a schematic view of the experimental setup, and the distribution of pressure taps
along the centerline of the stilling basin.
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Figure 2. Schematic view of the experimental setup, and the distribution of pressure taps along the
stilling basin.

To measure the instantaneous pressure data, 25 pressure taps were installed at the bottom, along
the centerline of the stilling basin. Afterward, these data were converted into electrical signals by
pressure transducers via a 6-channel digital board. In this study, the transparent plastic tubes were
used with an inner diameter of 3 mm, and the maximum lengths of 200 cm. The six Atek transducers
(model BCT- 110) had an operating range of —100 to 100 cm of the water column, with an accuracy of
+0.2%. The data acquisition frequency of 20 Hz with a duration of 90 seconds was used to collect 1800
sample data for each test and each pressure tap. After processing the signals using a data acquisition
system, the recorded data were displayed using the 6-CH Pressure DAQ software.
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2.2. Statistical Data Analysis

A series of methodologies to estimate hydraulic pressures under different conditions were used
in the literature. Pressure with a certain non-exceedance probability (P.%) can be estimated using
equation (7):

Py, =F, + Ny, 0x (7)

where Pa is the pressure value with a certain non-exceedance probability at point X; Pw is the mean
pressure at point X (in cm or m of water); N is the dimensionless statistical coefficient of the
probability distribution at point X; ox is the standard deviation at the point X (in cm or m of water);
and X is the longitudinal distance of each pressure tap from the spillway toe. According to Marques
et al. [29], the dimensionless mean pressure (P*»), and the dimensionless pressure with a certain non-
exceedance probability (P»%) can be expressed as a generic function of X", and defined as follows:

+ P, -Y .
P, =" —l-f(x

" Y, oy, S X)) (8)
o P -Y .
Py, =2 —L-f'(X

@ =y Ty S )

Pressure fluctuations within the hydraulic jumps are related to energy dissipation. According to
Marques et al. [29], the dimensionless standard deviation (¢7x) is defined as follows:

* O-X YZ " *
= — = X
X =7 Y, SIX) (10)
VZ V2
AH =Y+ -, +—= (11)
2g 2g

where AH is the energy dissipation along the hydraulic jump (cm or m). This parameter depends on
the incident Froude number (Fr1), and the distance of the point from the jump toe. Based on equation
(7), Teixeira [24] proposed an estimation methodology for the extreme pressures with different non-
exceedance probabilities (P"%) along free hydraulic jumps for smooth stilling basins, downstream of
a smooth chute spillway. The method is applied to stable hydraulic jumps (4.5 < Fr1<9), and includes
the assessment of the dimensionless statistical parameters (mean pressures, standard deviation, and
statistical probability distribution coefficient) as a function of X" along stilling basins with a smooth
bed. These relationships are defined as follows:

Py ==0.015X" +0.237X" +0.07 0<Xx <8 (12)
oy =—0.159X" +0.573X" +0.19 0<X <24 (13)
oy =0.017X" —0.281X" +1.229 24< X" <825 (14)

Ny, =aX" +bX +c 0<X" <8 (15)

The parameters of 4, b, and c vary according to the extreme pressures with different non-exceedance
probabilities, as resumed in Table 2 [24].

Table 2. Parameters of 4, b and ¢ to estimate Na [24].

a% a b c R2
1% 0.0512 -0.4480 -1.6601 0.92
5% 0.0130 -0.1323 -1.3061 0.73
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10% 0.0032 —-0.0450 -1.0869 0.59
90% 0.0048 -0.0325 1.2695 0.26
95% 0.0171 -0.1393 1.8624 0.81
99% 0.0317 —-0.3598 3.3008 0.86

The spatial patterns of the skewness coefficient (5) may be used to highlight the flow detachment
in different zones. The sample skewness coefficient is defined as follows [29]:

n 2 (B-RY

T -D(n-1) s3

n 2
- ziﬂ(P—“_P'”) (17)
A

where Pi is the instantaneous pressure head at each pressure tap (in cm or m of water); Sx is the

=f !H(X*) (16)

sample standard deviation; and 7 is the number of sample data. The mean pressure (Pn) corresponds
to the arithmetic mean of the sample pressure data collected by each transducer for each test and each
pressure tap. Similarly, the standard deviation of the sample data (Sx) was calculated. This value
represents the pressure fluctuations concerning the mean pressure of the sample data. A value of 5>
0 indicates the presence of the pressure data higher than the mean pressure value, moving the density
probability function (PDF) of the pressure fluctuations towards the right, and vice versa for 5<0.
The patterns of the kurtosis coefficient (K) in the hydraulic jump confirm the results of the
analysis of the pressure fluctuations (0'x). The value of K is a measure of the spread of data around
the mean value, characterizing the flatness of the PDF curve. A value of K< 3 indicates the data
distribution function is more flattened and less concentrated to the mean values compared to a
normal distribution, and vice versa for K> 3. The sample kurtosis coefficient is defined as [29]:

n.(n+1) Z:Zl(Pi —P, )*

= . iy X* (18)
(n—-1).(n-2).(n-3) 54 SO

The statistical analysis of sample pressure data consisted of calculating the values of Pw, 0x, Ps%, and
Nu%. From the analysis of the probability distribution of sample pressure data, the pressure data with
different non-exceedance probabilities (P.%) were determined. Then, the dimensionless form of
pressure data (P'%) was taken to compare the results with different arrangements, obtained from a
series of data with different geometries. These parameters were analyzed longitudinally, along the
stilling basin, and were made dimensionless using equations (8) to (10), respectively.

Based on Teixeira [24], the corresponding estimates of the dimensionless statistical parameters
were determined using equations (12) to (15) and Table (2). Afterward, the dimensional form of the
mean pressure (Pn») and standard deviation (ox) were calculated using equations (8) and (10),
respectively. Finally, the estimated pressure with a certain non-exceedance probability (P.%) was
calculated using equation (7). To optimize the pressure estimation methodology proposed by Teixeira
[24], a new third-order adjustment was developed for the dimensionless standard deviation (07x), as
a function of X" along the stilling basin. The results of P, obtained from the analysis of the
probability distribution of the experimental data were compared with the corresponding estimated
values using the methodology by Teixeira [24], and the new optimized estimation methodology
proposed in this study.

2.3. Statistical performance criteria

To evaluate the performance of the experimental and the estimated standard deviation (o7x),
some statistical performance criteria are defined as follows:
I: Determination coefficient (R?) [35]:
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n Y - xS v ;

Jzﬂ-«z

II: Root Mean Squared Error (RMSE) [35]:

n 2
Zizl(xi i

Vi)
RMSE =
n

III: Mean Absolute Error (MAE) [36]:

n
§ i:1|xi _J’i|

n

MAE =
IV: Willmott's Index of Agreement (WI) [37]:
—Vi )2

Z::l x;

WI=1-

) '\/n'zi=1yi _(z[=1yi )2

Z:,:qui _x_i|+|yi —X; |)2

(19)

(20)

21

(22)

where xi and yi are the it experimental, and the estimated standard deviation (¢7x), respectively; X; is
the mean value of x;; and 7 is the total number of data. For proper performance, RMSE and MAE
should be close to zero; and R? and WI values should be close to the unit.

3. Results and Discussion

3.1. Skewness and Kurtosis Coefficient

According to Figures 3 and 4, from the analysis of the skewness coefficient (S) and kurtosis

coefficient (K), as a function of X" for six Froude numbers, it is found that the pressure distribution

along the stilling basin does not follow a normal distribution.
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Figure 3. Skewness coefficient along the stilling basin.
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Figure 4. Kurtosis coefficient along the stilling basin.

From S and K charts, some characteristic points of the hydraulic jump could be defined. These
are the point with the maximum pressure fluctuations (X'smax), where the skewness coefficient is high,
and Swax is in the range of 0.5 to 1.5. The position of the flow detachment (X"s), where the skewness
coefficient shifts from a positive value to a negative one (S = 0); the endpoint of the roller (X*) indicates
the minimum skewness coefficient (Swir); and endpoint of the hydraulic jump (X7%) is where the
streamlines become parallel to the bottom of the stilling basin, and S values increase to reach values
close to zero. After this position, S = 0 and K = 3. According to Marques et al. [29], the approximate
positions of the characteristic points X oma, X4, X, and Xj along the stilling basin for different Froude
numbers are provided in Table 3.

Table 3. Approximate positions of the characteristic points along the stilling basin.

Fr X omax X4 X X
8.29 1.993 4.120 5.449 6.512
7.48 1.756 3.864 5.737 6.674
7.14 1.683 3.927 5.498 6.396
6.72 1.619 3.994 6.152 7.016
6.52 1.812 4.156 6.075 6.927
6.14 1.757 4.030 5.890 6.717

3.2. Cumulative Pressure Curves

From the pressure data with different non-exceedance probabilities (P%), the cumulative
pressure curves were provided for each pressure tap with different Froude numbers. Figure 5
presents the cumulative pressure curves for P related to the characteristic points of X omax, X's, X",
and X7, respectively. It is evident that pressure values (P*) increase with increasing non-exceedance
probability (4%). Minimum pressure data (P'win) correspond to the lowest non-exceedance
probabilities (P“1%). On the contrary, maximum pressure data (P'm) correspond to the highest non-
exceedance probability (P'e%). Accordingly, the maximum pressure fluctuations, as well as the
negative pressures, are located at the positions closest to the spillway toe. Also, the minimum
pressure fluctuations are located at the positions downstream of the hydraulic jump.
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Figure 5. Cumulative pressure curves for P' related to the characteristic points of the hydraulic

jump: (a) X'omax, (b) X4, (c) X', and (d) Xj.

3.3. Proposition of New Adjustment

Based on the results obtained, it was observed that the methodology proposed by Teixeira [24]
could be optimized to be used for present data, or in similar conditions by using another relationship
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for the dimensionless standard deviation (0x). Thus, a third-order polynomial relationship, as a
function of the dimensionless position along the stilling basin, is introduced.

oy =0.011X" —0.1565X" +0.5379X" +0.3036 0<Xx'<7  (23)

Figure 6 shows the corresponding scatter plot of o'x, and fitting of equation (23), with a
determination coefficient (R?) equal to 0.717.
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0 x
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Figure 6. Distribution of ¢"x as a function of X", including the experimental data and Equation (23).

3.4. Comparison between Sample and Estimated Pressure Data

Figure 7 presents the distributions of P with non-exceedance probabilities of 1%, 5%, 10%,
90%, 95%, and 99%. Experimental data are presented as a function of X', together with the
corresponding estimates using Teixeira [24], also modified using equation (23).
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Figure 7. Distributions of P's with different non-exceedance probabilities: (a) P'1%, (b) P's%,
(c) P"10%, (d) P'oo%, (€) Pose, (f) Poo%.
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Figure 7. Cont.

Accordingly, close to the spillway toe pressures with low and high non-exceedance probability,
especially for P1% and P'e9%, have lower and higher values, with the maximum differences than P’u.
P19 data reach negative values down to 0.2, at the position X* = 2, indicating regions with low
pressures. The goodness of fit statistics for the estimation of o"x is provided in Table 4.

Table 4. Results of the statistical performance criteria for o'x.

Methodology R2  RMSE  MAE WI
Equation(23) 0717 0119 0088 0911
[24] 0609 0224 0192  0.738
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As one can see in Figure7, both methodologies accommodate experimental data (P%%) with
acceptable accuracy. However, the estimates of P1%, P’s%, and P*10% display some differences between
experimental and estimates. The new methodology is given in equation (23) presents somewhat
better results for P'oou, P'os%, and P'oo% along the stilling basin. This adjustment for dimensionless
standard deviation (0'x) provides better estimation performance as compared against Teixeira [24],
as reported in Table 4.

4. Conclusions

In this study, extreme pressures beneath hydraulic jumps inside the USBR Type I stilling basin
(smooth bed) downstream of an Ogee spillway, are investigated for different incident Froude
numbers ranging from 6.14 to 8.29. In summary, several conclusions are provided as follows:

Sample skewness (S) and kurtosis (K) coefficients indicated that the pressure distribution along
the hydraulic jumps does not follow a normal distribution. Some characteristic points of the
hydraulic jump are the maximum pressure fluctuations point (X'oma) with Swa; the flow
detachment point (X's) with S = 0; the roller endpoint (X*) with Swis; and the hydraulic jump
endpoint (X)) with S= 0.

From the pressure data with different non-exceedance probabilities (P“%), the cumulative pressure
curves are presented for P related to the characteristic points of X'oms, X4, X% and X7,
respectively. For the positions close to the spillway toe, pressures with low and high non-
exceedance probability (P1% and P'o9%), have lower and higher values, with the maximum
differences than P*». P"1% data reach negative values down to —0.2, at the position X*= 2, indicating
regions with low pressures.

From the analysis of the probability distribution of the sample data as collected by pressure
transducers, pressures with certain non-exceedance probabilities (Pa%) can be determined.

Based on the results obtained, it was observed that the methodology proposed by Teixeira [24]
could be optimized to be used for present data, or in similar conditions by using another
relationship for the dimensionless standard deviation (0"x). Thus, a third-order polynomial
relationship, as a function of the dimensionless position along the stilling basin (X"), is introduced.
This adjustment is valid for the dimensionless positions (X") in the range of 0 to 7.

To assess the accuracy of this adjustment, some performance criteria are used, including
determination coefficient (R2), root mean square error (RMSE), mean absolute error (MAE), and
Willmott's index of agreement (WI). For the new proposed adjustment in this study, the values of
R?, RMSE, MAE, and WI were achieved 0.717, 0.119, 0.088, and 0.911, respectively. This modified
methodology has better results for maximum extreme pressure data, i.e., those with non-
exceedance probabilities of 90%, 95%, and 99%. The new adjustment for ¢"x should be validated
against sample data taken in similar conditions to our case study here.

Conflicts of Interest: The authors declare no conflict of interest.

Notation

The following symbols are used in this paper:

a,b,c Parameters of the second-order polynomial relationship for Nass
B Basin width (L)

Fr1 Incident Froude number

Fr: Sequent Froude number

g Gravitational acceleration (LT-2)

K Kurtosis coefficient

L Spillway length (L)

Ly Length of the USBR Type I stilling basin (L)

MAE Mean Absolute Error
n Total number of data
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Na2s Statistical coefficient of probability distribution at point X

p Spillway height (L)

Pas Pressure with a certain non-exceedance probability (L)

Pras Dimensionless pressure with a certain non-exceedance probability

bi Instantaneous pressure of each pressure tap (L)

P Mean pressure of each pressure tap (L)

Pm Dimensionless mean pressure of each pressure tap

Q Flow discharge (L*T)

q Flow discharge per unit width (L?T")

R Hydraulic radius of the incoming flow (L)

R? Determination coefficient

Re1 Incident Reynolds number

RMSE  Root Mean Squared Error

S Skewness coefficient

Sx Sample standard deviation

Vi Mean incident velocity (LT-)

V2 Mean sequent velocities (LT-?)

WI Willmott’s index of agreement

Xi it" measured value of P*a%

X Average value of xi

X Distance of each pressure tap from the spillway toe (L)

X Dimensionless distance of each pressure tap from the spillway toe, i.e., X/ (Y2 - Y1)

X' Point of the flow detachment, i.e., Xo/ (Y2-Y1)

X' Endpoint of the hydraulic jump, i.e., Xi/ (Y2—11)

X Endpoint of the roller, i.e., Xo/ (Y2-Y1)

Xomax Point of the maximum pressure fluctuations, i.e., Xomav/ (Y2—Y1)

Y1 Supercritical depth (L)

Y2 Sequent depth (L)

i ith estimation value of P'a%

AH Energy dissipation along the hydraulic jump (L)

v Kinetic viscosity of the fluid (L2T-")

ox Standard deviation of the experimental data (or pressure fluctuations) at point x (L)
Subscripts

1 supercritical flow

2 subcritical sequent flow

m mean value

max ~maximum value
min  minimum value
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