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Abstract: Pressure fluctuations beneath hydraulic jumps downstream of Ogee spillways potentially 
damage stilling basin beds. This paper deals with the extreme pressures underneath free hydraulic 
jumps along a smooth stilling basin. The experiments were conducted in a laboratory flume. From 
the probability distribution of measured instantaneous pressures, the pressures with different non-
exceedance probabilities (P*a%) could be determined. It was verified that the maximum pressure 
fluctuations, as well as the negative pressures, are located at the positions closest to the spillway toe. 
The minimum pressure fluctuations are located at the downstream of hydraulic jumps. It was 
possible to assess the cumulative curves of P*a% related to the characteristic points along the basin, 
and different Froude numbers. To benchmark the results, the dimensionless forms of mean 
pressures, standard deviations, and pressures with different non-exceedance probabilities were 
assessed. It was found that an existing methodology can be used to interpret the present data, and 
pressure distribution in similar conditions, by using a new third-order polynomial relationship for 
the standard deviation (σ*X) with the determination coefficient (R2) equal to 0.717. It was verified 
that the new optimized adjustment gives more accurate results for the estimation of the maximum 
extreme pressures than the minimum extreme pressures. 

Keywords: mathematical modeling; characteristic points; extreme pressure; hydraulic jump; 
pressure fluctuations; standard deviation; stilling basin 

 

1. Introduction 

Knowledge of pressure fluctuations and extreme pressures allows for a better understanding of 
the energy dissipation process along the hydraulic jump. Pressure fluctuation underneath hydraulic 
jumps has been the subject of many studies. Notable early studies on pressure fluctuations are such 
as those by Bukreyev [1]; Locher [2]; Schiebe [3]; Abdul Khader and Elango [4]; Lopardo et al. [5]; 
Toso and Bowers [6]; Farhoudi and Narayanan [7]; Fiorotto and Rinaldo [8]; Fiorotto and Rinaldo [9]; 
Armenio et al. [10].  
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According to Yan et al. [11], the pressure fluctuations coefficient (CʹP) and peak frequencies of 
the spatial hydraulic jumps are higher than the classical jumps. Onitsuka et al. [12] found that roller 
oscillations affect the instantaneous flow depth and bed pressure. In addition, the instantaneous bed 
pressures are associated with free surface fluctuations. Lian et al. [13] stated that the fluctuating 
pressure spectrum in the rolling area follows the gravity similarity law. Lopardo and Romagnoli [14] 
used CʹP coefficient values to estimate the turbulence intensities in the region close to the stilling basin 
bed. Lopardo [15] proposed a relationship between the turbulence intensity and CʹP coefficient to 
determine the extreme maximum positive velocities close to the stilling basin bed for the low incident 
Froude numbers. Wang et al. [16] predicted the total pressure based upon the void fraction and 
velocity data, and the results were in good agreement with the experimental data. Firotto et al. [17] 
studied the stability of a plunge pool bottom under the fully developed jets and offered a design 
method to define the concrete thickness of plunge pool linings. Barjastehmaleki et al. [18] studied the 
statistical structure of turbulence pressure fluctuations caused by hydraulic jumps with the stilling 
basins. Barjastehmaleki et al. [19] evaluated an approach for the structural design of stilling basins 
lining in the sealed and unsealed joints. Lopardo [20] recommends that certain flow conditions are 
fulfilled when measuring pressure fluctuations. The supercritical Reynolds number (Re1) should be 
more than 100,000. The minimum acquisition time must be 60 seconds. The acquisition frequency can 
be considered between 50 and 100 Hz. The maximum length of the plastic tube between the pressure 
tap and transducer is equal to 55 cm with a minimum inner diameter of 5 mm.  

There are some pressure estimation methodologies associated with the hydraulic jumps in the 
literature. Gu et al. [21] evaluated the SPH model to estimate the wave profile, velocity data, and 
energy dissipation caused by hydraulic jumps. Güven et al. [22] used neural networks to predict the 
pressure fluctuations on the bed of a sloping stilling basin under B-type hydraulic jump, was 
investigated in detail by Hager [23]. Teixeira [24] determined the extreme pressures with different 
non-exceedance probabilities P*a% from the sample data within a stilling basin. Teixeira et al. [25] 
provided the cumulative curves of P*a% for characteristic points along the hydraulic jump. Souza et 
al. [26] investigated the behavior of the hydraulic jump concerning the longitudinal distribution of 
pressures near the bottom of the basin in the low Froude number zone (Fr1 ≤ 4.5). Dai Prá et al. [27] 
investigated the influence of the vertical curve between the spillway chute and the stilling basin 
bottom. Maximum pressure fluctuations were identified at the center of the vertical curve and assume 
values of 1% of the flow kinetic energy at the terminal tangency point of the curve. Novakoski et al. 
[28] investigated extreme pressures with different non-exceedance probabilities (P*0.1%, P*1%, P*99%, and 
P*99.9%). This study was carried out on a dissipation basin downstream of a stepped spillway. The 
results showed that the values of P*0.1% and P*99.9% have lower and higher values than the same values 
observed downstream of the smooth chute, in the region near to the spillway toe, respectively. 

According to Marques et al. [29], the pressure distributions along the hydraulic jumps are not 
described by a normal distribution. The distributions of the skewness (S) and kurtosis (K) coefficients 
of the sample pressure data along the hydraulic jump differ significantly from the values 0 and 3, 
respectively, attributed to a normal distribution. Such values are observed after the endpoint of the 
hydraulic jump at the dimensionless position X* ≈ 8. According to Marques et al. [29], the distances 
are made dimensionless concerning the conjugate depths, i.e., X*= X/ (Y2 ‒Y1). Analysis of skewness 
and kurtosis displays that there are several types of distributions along hydraulic jumps. Therefore, 
it is difficult to estimate the pressure data with a certain non-exceedance probability (P*a%). They 
proposed dimensionless relationships linking pressures with a certain non-exceedance probability 
(P*a%), to the mean pressure (P*m), and the standard deviation of the sample data (σ*X). Such 
relationships allow us to organize the results of different flow discharges or Froude numbers and 
characterize the interest points in hydraulic jumps. The characteristic points are (i) the maximum 
pressure fluctuations point (X*σmax); (ii) the point of the flow detachment (X*d); (iii) the endpoint of the 
roller (X*r); (iv) the endpoint of the hydraulic jump (X*j). These points are located at positions around 
1.75, 4.0, 6.0, and 8.0, respectively. 

The focus of this study is the statistical analysis of the extreme pressures distribution at the 
bottom of a smooth stilling basin for the incident Froude numbers (Fr1) ranging from 6.14 to 8.29. A 
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new adjustment will be proposed for the dimensionless standard deviation (σ*X) based on Teixeira 
[24] to estimate the extreme pressures with different non-exceedance probabilities (P*a%). 

2. Materials and Methods  

2.1. Experimental setup and procedure 

Pressure patterns along free hydraulic jumps acting on the bottom of the USBR Type I stilling 
basin (smooth bed) downstream of an Ogee spillway, were investigated using a laboratory model 
(Figure 1). The experiments were conducted in a laboratory Plexiglas-walled flume with 50 cm width, 
60 cm height, and 10 m length in the hydraulic laboratory at the University of Tabriz, Iran. The flume 
bed was horizontal. An Ogee spillway with 70 cm height (P), and 61 cm length (L) was equipped with 
a Type I stilling basin according to the USBR recommendations [30]. 

 

 
Figure 1. Laboratory flume and the experimental setup. 

 The length of the USBR Type I stilling basin (Lb) was considered 200 cm [31]. The basin width 
(B) was equal to the flume width (50 cm). The radius of the vertical curve (R) at the spillway toe was 
12 cm. There was a head tank with 250 cm height to stabilize the flow upstream of the spillway. A 
hinged weir downstream of the flume was used to control the position of the supercritical depth (Y1) 
at the spillway toe. The sequent depth (Y2) was measured by an ultrasonic sensor, with an operating 
in the range of 10 to 100 cm and an accuracy of ±0.1 mm. The supercritical depth (Y1) was calculated 
using Bélanger’s equation for the classical hydraulic jump [32-34]: 
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where V2 is the mean sequent velocity; q is the flow discharge per unit width; Fr2 is the sequent Froude 
number; and g is the gravitational acceleration. The flow discharge (Q) was measured with an 
ultrasonic flowmeter. Experiments were carried out with different flow discharges in the range of 33 
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to 60.4 L/s. Table 1 presents the range of some experimental parameters along the hydraulic jumps. 
The parameters in Table 1 are defined as follows [33]: 
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Table 1. Experimental parameters along the hydraulic jumps. 

Q 
(L/s) 

Y1  
(cm) 

Y2  
(cm) 

V1  
(m/s) 

V2  
(m/s) 

Fr1 
(‒) 

Fr2 
(‒) 

Re1 
(‒) 

33.0 1.84 20.65 3.52 0.313 8.29 0.220 58200 
43.0 2.35 23.70 3.59 0.356 7.48 0.233 74400 
47.5 2.59 24.87 3.60 0.374 7.14 0.240 81500 
52.7 2.89 26.05 3.58 0.397 6.72 0.248 89500 
55.0 3.03 26.49 3.56 0.407 6.52 0.253 92900 
60.4 3.36 27.55 3.53 0.430 6.14 0.261 100900 

 
where V1 is the mean incident velocity; Fr1 and Re1 are the incident Froude and Reynolds numbers, 
respectively); R1 is the hydraulic radius of the initial flow; and ν is the kinematic viscosity of the fluid. 
Figure 2 shows a schematic view of the experimental setup, and the distribution of pressure taps 
along the centerline of the stilling basin.  

 

 

Figure 2. Schematic view of the experimental setup, and the distribution of pressure taps along the 
stilling basin. 

To measure the instantaneous pressure data, 25 pressure taps were installed at the bottom, along 
the centerline of the stilling basin. Afterward, these data were converted into electrical signals by 
pressure transducers via a 6-channel digital board. In this study, the transparent plastic tubes were 
used with an inner diameter of 3 mm, and the maximum lengths of 200 cm. The six Atek transducers 
(model BCT- 110) had an operating range of ‒100 to 100 cm of the water column, with an accuracy of 
±0.2%. The data acquisition frequency of 20 Hz with a duration of 90 seconds was used to collect 1800 
sample data for each test and each pressure tap. After processing the signals using a data acquisition 
system, the recorded data were displayed using the 6-CH Pressure DAQ software.  
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2.2. Statistical Data Analysis 

A series of methodologies to estimate hydraulic pressures under different conditions were used 
in the literature. Pressure with a certain non-exceedance probability (Pa%) can be estimated using 
equation (7): 

% %.a m a XP P N σ= +  (7) 

where Pa% is the pressure value with a certain non-exceedance probability at point X; Pm is the mean 
pressure at point X (in cm or m of water); Na% is the dimensionless statistical coefficient of the 
probability distribution at point X; σX is the standard deviation at the point X (in cm or m of water); 
and X is the longitudinal distance of each pressure tap from the spillway toe. According to Marques 
et al. [29], the dimensionless mean pressure (P*m), and the dimensionless pressure with a certain non-
exceedance probability (P*a%) can be expressed as a generic function of X*, and defined as follows: 
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Pressure fluctuations within the hydraulic jumps are related to energy dissipation. According to 
Marques et al. [29], the dimensionless standard deviation (σ*X) is defined as follows: 
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where ΔH is the energy dissipation along the hydraulic jump (cm or m). This parameter depends on 
the incident Froude number (Fr1), and the distance of the point from the jump toe. Based on equation 
(7), Teixeira [24] proposed an estimation methodology for the extreme pressures with different non-
exceedance probabilities (P*a%) along free hydraulic jumps for smooth stilling basins, downstream of 
a smooth chute spillway. The method is applied to stable hydraulic jumps (4.5 < Fr1 < 9), and includes 
the assessment of the dimensionless statistical parameters (mean pressures, standard deviation, and 
statistical probability distribution coefficient) as a function of X* along stilling basins with a smooth 
bed. These relationships are defined as follows: 

2* * *0.015 0.237 0.07XP X X= − + +  
*0 8X≤ ≤  (12) 

2* * *0.159 0.573 0.19X X Xσ = − + +  
*0 2.4X≤ ≤  (13) 

2* * *0.017 0.281 1.229X X Xσ = − +  
*2.4 8.25X≤ ≤  (14) 

2* *
% . .aN a X b X c= + +  

*0 8X≤ ≤  (15) 

The parameters of a, b, and c vary according to the extreme pressures with different non-exceedance 
probabilities, as resumed in Table 2 [24].  

Table 2. Parameters of a, b and c to estimate Na% [24]. 

α% α b c R2 
1% 0.0512 ‒0.4480 ‒1.6601 0.92 
5% 0.0130 ‒0.1323 ‒1.3061 0.73 
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10% 0.0032 ‒0.0450 ‒1.0869 0.59 
90% 0.0048 ‒0.0325 1.2695 0.26 
95% 0.0171 ‒0.1393 1.8624 0.81 
99% 0.0317 ‒0.3598 3.3008 0.86 

 
The spatial patterns of the skewness coefficient (S) may be used to highlight the flow detachment 

in different zones. The sample skewness coefficient is defined as follows [29]: 
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where Pi is the instantaneous pressure head at each pressure tap (in cm or m of water); SX is the 
sample standard deviation; and n is the number of sample data. The mean pressure (Pm) corresponds 
to the arithmetic mean of the sample pressure data collected by each transducer for each test and each 
pressure tap. Similarly, the standard deviation of the sample data (SX) was calculated. This value 
represents the pressure fluctuations concerning the mean pressure of the sample data. A value of S> 
0 indicates the presence of the pressure data higher than the mean pressure value, moving the density 
probability function (PDF) of the pressure fluctuations towards the right, and vice versa for S< 0. 

The patterns of the kurtosis coefficient (K) in the hydraulic jump confirm the results of the 
analysis of the pressure fluctuations (σ*X). The value of K is a measure of the spread of data around 
the mean value, characterizing the flatness of the PDF curve. A value of K< 3 indicates the data 
distribution function is more flattened and less concentrated to the mean values compared to a 
normal distribution, and vice versa for K> 3. The sample kurtosis coefficient is defined as [29]: 
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The statistical analysis of sample pressure data consisted of calculating the values of Pm, σX, Pa%, and 
Na%. From the analysis of the probability distribution of sample pressure data, the pressure data with 
different non-exceedance probabilities (Pa%) were determined. Then, the dimensionless form of 
pressure data (P*a%) was taken to compare the results with different arrangements, obtained from a 
series of data with different geometries. These parameters were analyzed longitudinally, along the 
stilling basin, and were made dimensionless using equations (8) to (10), respectively.  

Based on Teixeira [24], the corresponding estimates of the dimensionless statistical parameters 
were determined using equations (12) to (15) and Table (2). Afterward, the dimensional form of the 
mean pressure (Pm) and standard deviation (σX) were calculated using equations (8) and (10), 
respectively. Finally, the estimated pressure with a certain non-exceedance probability (Pa%) was 
calculated using equation (7). To optimize the pressure estimation methodology proposed by Teixeira 
[24], a new third-order adjustment was developed for the dimensionless standard deviation (σ*X), as 
a function of X* along the stilling basin. The results of P*a%, obtained from the analysis of the 
probability distribution of the experimental data were compared with the corresponding estimated 
values using the methodology by Teixeira [24], and the new optimized estimation methodology 
proposed in this study.  

2.3. Statistical performance criteria  

To evaluate the performance of the experimental and the estimated standard deviation (σ*X), 
some statistical performance criteria are defined as follows: 
I: Determination coefficient (R2) [35]: 
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II: Root Mean Squared Error (RMSE) [35]: 
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III: Mean Absolute Error (MAE) [36]: 
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IV: Willmott’s Index of Agreement (WI) [37]: 
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where xi and yi are the ith experimental, and the estimated standard deviation (σ*X), respectively; 𝑥̅𝑥𝑖𝑖 is 
the mean value of xi; and n is the total number of data. For proper performance, RMSE and MAE 
should be close to zero; and R2 and WI values should be close to the unit. 

3. Results and Discussion 

3.1. Skewness and Kurtosis Coefficient 

According to Figures 3 and 4, from the analysis of the skewness coefficient (S) and kurtosis 
coefficient (K), as a function of X* for six Froude numbers, it is found that the pressure distribution 
along the stilling basin does not follow a normal distribution.  

 
Figure 3. Skewness coefficient along the stilling basin. 

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

S

X*

Fr1=6.14
Fr1=6.52
Fr1=6.72
Fr1=7.14
Fr1=7.48
Fr1=8.29
[25]

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 January 2020                   doi:10.20944/preprints202001.0310.v1

Peer-reviewed version available at Mathematics 2020, 8, 323; doi:10.3390/math8030323

https://doi.org/10.20944/preprints202001.0310.v1
https://doi.org/10.3390/math8030323


 8 of 15 

 
Figure 4. Kurtosis coefficient along the stilling basin. 

 From S and K charts, some characteristic points of the hydraulic jump could be defined. These 
are the point with the maximum pressure fluctuations (X*σmax), where the skewness coefficient is high, 
and Smax is in the range of 0.5 to 1.5. The position of the flow detachment (X*d), where the skewness 
coefficient shifts from a positive value to a negative one (S ≈ 0); the endpoint of the roller (X*r) indicates 
the minimum skewness coefficient (Smin); and endpoint of the hydraulic jump (X*j) is where the 
streamlines become parallel to the bottom of the stilling basin, and S values increase to reach values 
close to zero. After this position, S ≈ 0 and K ≈ 3. According to Marques et al. [29], the approximate 
positions of the characteristic points X*σmax, X*d, X*r, and X*j along the stilling basin for different Froude 
numbers are provided in Table 3.  

Table 3. Approximate positions of the characteristic points along the stilling basin. 

Fr1 X*σmax X*d X*r X*j 
8.29 1.993 4.120 5.449 6.512 
7.48 1.756 3.864 5.737 6.674 
7.14 1.683 3.927 5.498 6.396 
6.72 1.619 3.994 6.152 7.016 
6.52 1.812 4.156 6.075 6.927 
6.14 1.757 4.030 5.890 6.717 

3.2. Cumulative Pressure Curves 

From the pressure data with different non-exceedance probabilities (P*a%), the cumulative 
pressure curves were provided for each pressure tap with different Froude numbers. Figure 5 
presents the cumulative pressure curves for P*a% related to the characteristic points of X*σmax, X*d, X*r, 
and X*j, respectively. It is evident that pressure values (P*a%) increase with increasing non-exceedance 
probability (a%). Minimum pressure data (P*min) correspond to the lowest non-exceedance 
probabilities (P*1%). On the contrary, maximum pressure data (P*max) correspond to the highest non-
exceedance probability (P*99%). Accordingly, the maximum pressure fluctuations, as well as the 
negative pressures, are located at the positions closest to the spillway toe. Also, the minimum 
pressure fluctuations are located at the positions downstream of the hydraulic jump.  
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Figure 5. Cumulative pressure curves for P*a% related to the characteristic points of the hydraulic 
jump: (a) X*σmax, (b) X*d, (c) X*r, and (d) X*j. 

3.3. Proposition of New Adjustment  

Based on the results obtained, it was observed that the methodology proposed by Teixeira [24] 
could be optimized to be used for present data, or in similar conditions by using another relationship 
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for the dimensionless standard deviation (σ*X). Thus, a third-order polynomial relationship, as a 
function of the dimensionless position along the stilling basin, is introduced. 

3 2* * * *0.011 0.1565 0.5379 0.3036X X X Xσ = − + +  *0 7X≤ ≤  (23) 

Figure 6 shows the corresponding scatter plot of σ*X, and fitting of equation (23), with a 
determination coefficient (R2) equal to 0.717.   

 

Figure 6. Distribution of σ*X as a function of X*, including the experimental data and Equation (23). 
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As one can see in Figure7, both methodologies accommodate experimental data (P*a%) with 
acceptable accuracy. However, the estimates of P*1%, P*5%, and P*10% display some differences between 
experimental and estimates. The new methodology is given in equation (23) presents somewhat 
better results for P*90%, P*95%, and P*99% along the stilling basin. This adjustment for dimensionless 
standard deviation (σ*X) provides better estimation performance as compared against Teixeira [24], 
as reported in Table 4. 

4. Conclusions 

In this study, extreme pressures beneath hydraulic jumps inside the USBR Type I stilling basin 
(smooth bed) downstream of an Ogee spillway, are investigated for different incident Froude 
numbers ranging from 6.14 to 8.29. In summary, several conclusions are provided as follows: 

i. Sample skewness (S) and kurtosis (K) coefficients indicated that the pressure distribution along 
the hydraulic jumps does not follow a normal distribution. Some characteristic points of the 
hydraulic jump are the maximum pressure fluctuations point (X*σmax) with Smax; the flow 
detachment point (X*d) with S ≈ 0; the roller endpoint (X*r) with Smin; and the hydraulic jump 
endpoint (X*j) with S ≈ 0.   

ii. From the pressure data with different non-exceedance probabilities (P*a%), the cumulative pressure 
curves are presented for P*a% related to the characteristic points of X*σmax, X*d, X*r, and X*j, 
respectively. For the positions close to the spillway toe, pressures with low and high non-
exceedance probability (P*1% and P*99%), have lower and higher values, with the maximum 
differences than P*m. P*1% data reach negative values down to ‒0.2, at the position X* ≈ 2, indicating 
regions with low pressures. 

iii. From the analysis of the probability distribution of the sample data as collected by pressure 
transducers, pressures with certain non-exceedance probabilities (P*a%) can be determined.  

iv. Based on the results obtained, it was observed that the methodology proposed by Teixeira [24] 
could be optimized to be used for present data, or in similar conditions by using another 
relationship for the dimensionless standard deviation (σ*X). Thus, a third-order polynomial 
relationship, as a function of the dimensionless position along the stilling basin (X*), is introduced. 
This adjustment is valid for the dimensionless positions (X*) in the range of 0 to 7. 

v. To assess the accuracy of this adjustment, some performance criteria are used, including 
determination coefficient (R2), root mean square error (RMSE), mean absolute error (MAE), and 
Willmott’s index of agreement (WI). For the new proposed adjustment in this study, the values of 
R2, RMSE, MAE, and WI were achieved 0.717, 0.119, 0.088, and 0.911, respectively. This modified 
methodology has better results for maximum extreme pressure data, i.e., those with non-
exceedance probabilities of 90%, 95%, and 99%. The new adjustment for σ*X should be validated 
against sample data taken in similar conditions to our case study here. 

Conflicts of Interest: The authors declare no conflict of interest. 

Notation 

The following symbols are used in this paper: 
a, b, c Parameters of the second-order polynomial relationship for Na% 
B Basin width (L) 
Fr1 Incident Froude number 
Fr2 Sequent Froude number 
g Gravitational acceleration (LT‒2) 

K Kurtosis coefficient 

L Spillway length (L) 
Lb Length of the USBR Type I stilling basin (L) 
MAE Mean Absolute Error 
n Total number of data 
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Na% Statistical coefficient of probability distribution at point X 
P Spillway height (L) 
Pa% Pressure with a certain non-exceedance probability (L) 
P*a% Dimensionless pressure with a certain non-exceedance probability 
Pi Instantaneous pressure of each pressure tap (L) 
Pm Mean pressure of each pressure tap (L) 
P*m Dimensionless mean pressure of each pressure tap 
Q Flow discharge (L3T‒1) 
q Flow discharge per unit width (L2T-1) 
R1 Hydraulic radius of the incoming flow (L) 
R2 Determination coefficient 
Re1 Incident Reynolds number 
RMSE Root Mean Squared Error 
S Skewness coefficient 
SX Sample standard deviation 
V1 Mean incident velocity (LT‒1) 
V2 Mean sequent velocities (LT‒1) 
WI Willmott’s index of agreement 
xi ith measured value of P*a% 
𝑥𝑥𝑖̅𝑖 Average value of xi 
X Distance of each pressure tap from the spillway toe (L) 
X* Dimensionless distance of each pressure tap from the spillway toe, i.e., X/ (Y2 ‒ Y1) 
X*d Point of the flow detachment, i.e., Xd/ (Y2 ‒Y1) 

X*j Endpoint of the hydraulic jump, i.e., Xj/ (Y2 ‒Y1) 

X*r Endpoint of the roller, i.e., Xr/ (Y2 ‒Y1) 

X*σmax Point of the maximum pressure fluctuations, i.e., Xσmax/ (Y2 ‒Y1) 
Y1 Supercritical depth (L) 
Y2 Sequent depth (L) 
yi ith estimation value of P*a% 
ΔH Energy dissipation along the hydraulic jump (L) 
ν Kinetic viscosity of the fluid (L2T‒1) 
σX Standard deviation of the experimental data (or pressure fluctuations) at point x (L) 

Subscripts 

1 supercritical flow 
2 subcritical sequent flow 
m mean value 
max maximum value 
min minimum value 
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