doi:10.20944/preprints202001.0329.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 January 2020

The presentation of an exploratory algorithm for the rectangle
packing problem on the basis of the best fit algorithm and the

lowest front-line strategy

Mohamad Bozorgi Perija (). Morteza Mohammadi Zanjireh @

() MSc from Imam Khomeini International University, Ghazvin, M.bozorgi@edu.ikiu.ac.ir

@ Assistant professor of computer engineering group, Imam Khomeini International University, Ghazvin,
Zanjireh@eng.ikiu.ac.ir

ABSTRACT Nowadays, the wasting of resources is one of the fundamental challenges of the industrial sector. The
rectangle packing problem can be very effective in this context. Practical applications of this issue in the timing and
designing of the industries and businesses are very remarkable. The purpose of this issue is to arrange a set of rectangles with
specific dimensions in a rectangular page with a specific width and unlimited height without overlapping. The fundamental
challenge in this issue is that this is an NP-complete issue. Therefore, it is difficult to achieve the best arrangement, which
has the maximum rate of resource utilization and also has a linear running time. Many algorithms have been presented to
estimate a practical solution for this issue. In the past decades, the best fit method has been one of the most useful methods
for this purpose. This study presents a combinatorial algorithm based on two algorithms, including the lowest front-line
strategy and the best-fit algorithm. The running results indicate that the suggested algorithm performs well, despite its
simplicity. The time complexity of the suggested algorithm is O(nm), in which n is the number of input rectangles and m is

the number of the created front lines.

INDEX TERMS Rectangle packing problem, Best-fit algorithm, lowest front-line strategy

I. INTRODUCTION

Decreasing the wasting of resources in industry and
business can be very advantageous. The rectangle packing
problem is one of the most practical issues in the industrial
sector. The rectangle packing problem has many uses in the
industry, including cutting leather, wood, metals, paper,
glass, cloth, and paperboard [7-9, 32] for designing and
manufacturing cars [1], fighters [12], and ships [11], and
for designing VLSI [31, 14, 13, 32] and in similar issues
like timing and replacement [15, 16]. It also has uses in the
assignment and timing of the radio frequencies spectrum
[15].

In the rectangle packing problem, we have a set of
rectangles with specific dimensions and the target is to
arrange these rectangles in a rectangular page with a
constant width and unlimited height without overlapping,
provided that the packing is orthogonal [33]; it means that
the sides of the rectangles that are inserted into the
rectangular page are parallel to the sides of the main page
rectangle [14, 17]. Also, the problem may not be guillotine
cut; it means that we cannot place the replaced rectangles in
several groups that each group is separated from the others
by vertical or horizontal lines [7, 31]. Rotation of the

rectangles is acceptable, but the rotation angle could be
only 90 degrees [18, 19].
As stated, one of the fundamental challenges in the industry
is waste reduction and in other words, increasing the
utilization rate. Utilization rate equals to the sum of the area
of the input rectangles divided by the area of the main page
used and is represented by U [3, 18, 20]. Utilization can be
calculated by equation (1):
m o wih;
gy
2ight
In this equation, width represents the main page width, and
height represents the main page height and w; and h; are
width and height of the replaced rectangles, respectively,
and m is the number of these rectangles [18].
Despite the full application of this issue, its practical
implementation is a little difficult, because the most
fundamental challenge of this issue is that this belongs to
the NP-complete set [2-6, 33]. Therefore, with an increase
in the problem scale, achieving a practical solution for the
problem in a suitable time could be difficult or even
impossible. However, various estimated algorithms have
been presented due to the full application of the rectangle

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202001.0329.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 January 2020

packing problem and the conditions prevailing over it in the
past four decades. In [35], comprehensive research has been
done in this context. The best-fit algorithm is one of the
most useful algorithms. The purpose of this study is to
represent an algorithm for the rectangle packing problem
with an optimal utilization rate and linear running time
using the best-fit algorithm.

This article will be structured as follows: in the second
section, we will introduce the works done on the rectangle
packing context and also the best-fit decreasing height and
the lowest front line algorithms. In the third section, we will
present our algorithm. In the fourth section, we will
represent the results of algorithm implementation, and in

the fifth section, we will conclude.

Il. Background of the research

One of the algorithms that have attracted many researchers
during the past four decades is the best-fit algorithm. It’s a
layered algorithm in which the layers are created gradually,
as the rectangles are inserted. The rectangle places into the
higher level if it can’t be placed in a layer. The rectangle
will always be located in a layer that has less waste after
insertion [7].

Wei et al. [37] have presented an algorithm based on the
best-fit algorithm with a branch & bound approach for the
rectangle packing problem with constant dimensions. This
algorithm has a reasonable utilization rate and also a linear
running time. Despite a desirable utilization rate for more
massive data, the running time of the algorithm increases.
Huang et al. [27] have presented an algorithm based on two
algorithms, including the best-fit algorithm and particle
swarm optimization algorithm. They compared their
method with the presented classical methods and got more
efficient results. But the fundamental challenge of their
approach is the long-running time of the algorithm.

Bruke et al. [36] have presented an algorithm based on the
best-fit algorithm, and this is a linear order algorithm. This
algorithm has a reasonable utilization rate compared to the
optimizing algorithms. The use of very similar data is one
of the challenges of this algorithm.

BL (bottom left) algorithm is one of the first algorithms
presented for the packing problem, and Brenda [36]
presented it. The purpose Of the BL algorithm is to place
the rectangles at the lowest and leftmost points possible.
This algorithm is suitable for little input, and its Running
order is O (n4).

Chazelle [30] have presented an algorithm called BLF
(Bottom Left Fill). The number of possible modes for
inserting a rectangle is decreased in the BLF algorithm.
While in the BL algorithm, it is not possible to use the
leftover spaces from placing the rectangles, in the BLF
algorithm, the rectangle is placed at the lowest point
possible. The BLF algorithm uses unused spaces. The time
complexity of this algorithm is 0(71.2).

Liu and Teng [29] have presented an algorithm for the
rectangle packing problem based on two algorithms,

including the BL algorithm and the genetic algorithm. They
improved the initial BL algorithm because it does not
identify some of the modes. As the mode in which the
rectangles are alternately big and small; the big rectangles
have ascending sizes, and the small ones have descending
scales. The positive point of this algorithm is the use of an
intelligent crowd function for the genetic algorithm. The

running order of this algorithm is O(Ilz).

Hu et al. [33] have presented an algorithm based on two
algorithms, including best-fit and BL algorithms. This
algorithm has all of the properties of the two mentioned
algorithms. This algorithm categorizes the rectangles first
and then places the created categories one by one. This
method is suitable for rectangles with different sizes. The
time complexity of this algorithm is O(mMlogM), in which
m and M could be equal to the number of input rectangles.
Liu et al. [18] have presented a solution for rectangle
packing problem by combining the lowest front-line
algorithm with the genetic optimization algorithm.
Arrangement of the rectangles from the lowest point
possible to the highest point is a prominent feature of this
algorithm that reduces the space waste. It also utilizes a
smart function to cross local optimum modes. The long
running time of this algorithm for identifying and
improving various modes is its fundamental challenge. In
the following, two algorithms are introduced, including
best-fit decreasing height algorithm and the lowest front-
line strategy.

A. The lowest froni-line strategy

The lowest front-line strategy is designed based on the BL
algorithm and is defined as follows [18]:

First step: the algorithm starts with the initial quantification
of the front line. In the beginning, the front lines set
contained only one line, and that is the horizontal line at the
bottom of the page.

Second step: locating the rectangle in a place using the
lowest front-line strategy. p; is the position where the i-th
rectangle is placed. First, we select and check one line of
the front line set to see whether the width of the rectangle
that is going to place is equal to or smaller than the width of
the selected line. If the conditions are right, that rectangle
will be placed at the top left of the page. If the conditions
are not right, we increase the height of the lowest line until
it reaches the second lowest front line, and the conditions
will be rechecked. This process repeats until one line of the
front lines set gets selected. In this step, if several lines
exist with the lowest heights, the selection will be based on
the X-axis. If we increase height from a lower line to a
higher line, these two lines will be merged.

Third step: in this step, the front line will be updated. Some
of the old lines will be converted to the new lines, and new
lines will be added to the front-line set. As the points
mentioned in the second step, the adjacent lines with equal
height must be merged to form a single line.

Fourth step: if all of the rectangles are placed, the algorithm
ends, and otherwise, a new rectangle will be selected, and

d0i:10.20944/preprints202001.0329.v1

https://doi.org/10.20944/preprints202001.0329.v1

we will go to the second step.

Figure 1 presents an example of the lowest front-line
strategy. p; will be selected for {4 Az}, and after that, the
front line will be {E; E,, A5 As}. In the same way, p, will
be selected for {A,As}, and after the placement, the front
line will be {E{E, B;B3; A3zAs}. Similarly, after placing
the p3 rectangle in {A3A5}, the front line will be {E E.
B{B;.C,C;5. A4Az}. In this point, the lowest line is
{A4A:z}, and it does not have enough space to place py. So
we increase the height of {A4Az} until it reaches {B; B3},
the second lowest front line. Finally, the {B1 B3} line will
be selected to place the p, rectangle, and the front line is

{EIEZ' D1D2. BzB3. C1C2. B4Bs} at the end [25-33]

D, £,

Figure 1: the lowest front-line strategy

The lowest front-line strategy does not sort the input
rectangles before placing it, and this is a challenge for this
algorithm. It increases page height and decreases the
utilization rate. Also, this algorithm always tries to find the
lowest and the leftmost point possible to place the
rectangles. The way the height increases in this algorithm is
its positive point.

B. the best-fit decreasing height method

In the best-fit decreasing height algorithm, first, the
rectangles are sorted in decreasing order. Then the biggest
rectangle will be placed at the bottom-left corner, and the
first layer will be created. In order to place the next
rectangles, if the rectangles could not be placed in the
created spaces of the created layer, we create a layer above
the highest layer and place the rectangle in it. If there are
several layers with enough space to place the rectangles, a

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 January 2020

layer will be selected that has less waste after the rectangle
placement [23, 24]. The time complexity of this algorithm
is O(nlogn) [25].

The best-fit decreasing height algorithm is layered and is
suitable for non-guillotine cut issues. Finding the best
position with the lowest waste is a benefit of this algorithm.
Also, due to sorting the inputs, this algorithm has a better
utilization rate compared to the best-fit algorithm without
sorting. In this algorithm, we cannot place a rectangle
between two layers, and this causes wasting. Therefore, we
can place the rectangle between the layers in the proposed
algorithm.

This study presents an algorithm that has the properties of
both best-fit decreasing height algorithm and the lowest
front-line strategy. This algorithm, similar to the best-fit
method, always tries to find the best position for the
rectangle. However, this algorithm tries to decrease the
total height by increasing the height of the layers, inspired
by the lowest front-line strategy.

lll. The proposed algorithm

The steps of our algorithm are as follows:

First step: at first, the algorithm starts with initial
quantification. The height of this page is zero at the
beginning, and its final value is specified at the end of the
algorithm. In this algorithm, we have a set of lines called
the front line for saving empty spaces. In the beginning, the
front line is the bottom borderline of the page. The
information of the input rectangles such as width, height,
and the number of each one will be received at this stage of
the algorithm.

In this algorithm, we use an array to save empty spaces.
The first row of this frontline array is the starting point of
the line, and the second row of the frontline shows the
endpoint of the line. The third row of the frontline array
represents the distance of this line from the lowest front
line, which is the bottom borderline of the page. The fourth
row of the frontline array shows the height of the next
frontline after this line. With these four points, we can
imagine a rectangle. If the value of the fifth row of the
frontline array is 1, it means that this line is not occupied
and when a rectangle is placed, this value will become -1.
The fifth row of the array is added to adhere to the not-
overlapping assumption. When placing rectangles into a
line using the fifth row of the frontline array, it will be
checked whether this place is full or empty.

Second step: in this step of the algorithm, the rectangles
that have more height than width will be rotated 90 degrees.
It means that the height and the width will be replaced.
Third step: in this step, the rectangles will be sorted in
decreasing height size order.

Fourth step: a rectangle will be selected from the beginning
of the inputs list, and then, we search among the frontlines
set for a place that has enough space for the rectangle. Then

doi:10.20944/preprints202001.0329.v1

https://doi.org/10.20944/preprints202001.0329.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 January 2020

d0i:10.20944/preprints202001.0329.v1

among the selected lines, we choose a line that has less
wasting. At this point, there are three modes:

If a line is found among the frontlines set that have
sufficient width and height for placing the
rectangle, we select it; and if there are several lines
for placing, we choose the one that wastes less
space.

If we cannot find a line with required height and
width, we start searching among the longest
frontlines for a line that has required width for
placing the rectangle. Also, if there are several
lines, we choose the one that has less width and
increases the height of the page lesser.

If we cannot find a position to place the rectangle
in the two predicted modes mentioned above — if
we did not find any line that has enough space for
placing the rectangle — then we create a new layer
above the longest frontline and place the rectangle
in the bottom-left of the created layer and increase
the height of the page.

Fifth step: in this step, we update the frontline and empty
spaces, and convert some of the old lines into new lines and
also add new lines. Then in this step, we must identify all of
the empty spaces. Then we must identify all of the empty
houses that have common borders. In order for the
algorithm to make the most of the wasted space available, if
one or more than two houses have common borders, it must
be merged with the house that creates larger free space after
merging compared to other houses. This step plays an
essential role in reducing waste.

Sixth step: in this step, we check the ending of the
algorithm. If there is not a rectangle in the input list to
place, the algorithm ends. Otherwise, we go to the
beginning of the fifth step and continue the algorithm again.
In the end, we calculate the utilization rate of the

Table 1: data presented in

algorithm. Figure 2 shows the flowchart of the algorithm
process.

1- Read(n);

2- Read(width):

3- Read(rectangle(3.n)),

4- Heght=0:

5- Sum=0;

6- Create(frontLine(5,1));

7- frontLineCounter=1;

8- rotation{rectangle(3.n)):

9- Sort(rectangle(3.n)):

10-fori1=1:1:n

11- FindFrontLine frontLine(5 frontLineCounter)):
12- Insert(rectangle(3.1)):

13- Update(frontLine(S. frontLinecounter). frontLineCounter);
14- sum=sum-*rectangle(1,1)*rectangle(2,1);
15-end

Figure 2: Semi-code of the proposed algorithm

IV. The evaluation results

In this study, in addition to the proposed algorithm, we used
the best-fit decreasing height algorithm [33] and the lowest
frontline strategy [34] in the MATLAB programming
language v.2014 and also a hardware with Intel(R) Core
(TM) 17-4710HQ CPU @ 2.50GHz processor and 12 Gb
internal storage.

We used the data in the Liu algorithm [18] for the

evaluation of the algorithms. Then we compared
the results of the three algorithms with the results in the Liu
study [35-44]. Table 1 shows these data, and also the width
of the rectangle page is 400 units.

number | 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20
width 25 18 79 121 29 64 48 11 46 4 5 6 7 8 9 10 11 10 50
height 36 24 84 30 48 98 59 17 121 22 41 72 25 65 24 11 36 30 61
quality | 4 5 3 4 11 2 3 2 2 1 2 2 2 2 3 2 2 3 2

Table 2 shows the results of these algorithms. The
proposed algorithm in this study has the best performance
among these algorithms. Our method reached the
utilization rate of 94.37% in 0.023 seconds. Whereas the
method presented in [45-53] reached the utilization rate

average of 85.51% after 300 times repeating the
algorithm and 26.3 seconds, and at best, it has reached the
rate of 87.75%.

Table 2: comparison of the proposed algorithm implementation
results, with the best-fit, frontline, and Liu algorithms

https://doi.org/10.20944/preprints202001.0329.v1

algorithm Proposal Liu Front line Best-fit
utilization %94.37 %87.75 %50.54 %87.17
Run 0.023 26.3 0.042 0.031
time(s)

Figure 3 shows the utilization rate diagram of the three
best-fit decreasing height, the lowest frontline strategy,
and the proposed algorithms. In this diagram, the
utilization rate percentage of every algorithm has been
drawn after placing each rectangle. The horizontal axis
represents the number of placed rectangles, and the

vertical axis represents the utilization rate percentage.
Figure 3: the utilization rate diagram of the three best-fit decreasing
height, the lowest frontline strategy, and the proposed algorithms

Figure 4 shows the diagram of the running time of the
three algorithms, including best-fit decreasing height, the
lowest frontline strategy, and the proposed algorithm. In
this figure, the best running time belongs to the proposed
algorithm.

Utilization rate
1 -
09} 4
08t
07t
=3 3 1
3 06
s o5} 4
2 0
=
5 04} 1
03t 1
02t Proposal algorithm
Best fit decreasing height
0af Lowest front line
0 N " " N "
0 10 20 30 40 50 60
Number of rectangles

Figure 4: the running time diagram of the best-fit decreasing height
algorithm, the lowest frontline strategy, and the proposed algorithm

A- the effects of the sorting and 90-degree
rotation on the utilization rate

In this section, we analyze the effects of the
sorting and rotation on the utilization rate.
Sorting the input rectangles has a major impact
on the utilization rate. We sorted the input
rectangles in descending order of height, width,
and area of the rectangles, and then we ran the
algorithm. The results of running the algorithm

show that sorting in descending order of height has
better results. Table 3 shows the results of this

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 January 2020

Seconds

comparison, and figure 5 shows the utilization rate
diagram for various sorting modes.

Table 3: The results of running the proposed algorithm with different
sorting

Sort type none width area height
Utilization 69.25% 72.22% 87.89% 94.37%
rate
Runtime(s) 0.30 0.036 0.036 0.023
Time
1200 T T T T T T T T T
Proposal algorithm
Best fit decreasing height
1000} Lowest front line T
800 - 1
600 4
400 4
200+ 4
]
0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of rectangles

Number of rectangles

Figure 5: The proposed algorithm implementation diagram with
different sorting

We removed the rotation step and ran the algorithm and
then compared the results with the algorithm with
rotation. The results show that rotation has a positive
effect on the utilization rate. Table 4 shows the results of
this experiment. Figure 6 shows the diagram of the
comparison between running the algorithm with and
without the rotation.

d0i:10.20944/preprints202001.0329.v1

https://doi.org/10.20944/preprints202001.0329.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 January 2020

Table 4: the results of the proposed algorithm implementation with
removing the rotation step and sorting

Impact of step Runtime(s) Utilization rate Deleted step
14.75% 0.032 82.24% rotation
36.27% 0.030 69.25% sort

Utilization rate

Utilization rate

= Proposal algorithm

03} Proposal algorithm without rotation 90 | |
0.2 L L " L L
0 10 20 30 40 50 60
Number of rectangles

Figure 6: the diagram of the algorithm with and without the rotation
step

B-comparing the algorithm with random data
Comparing the algorithm with low volume data and also,

Utilization rate
1 v v v
0951 4
s 09}
B Proposal algorithm
s Best fit decreasing height
®
N Lowest front line
5 085 1
08} 4
0.75

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of rectangles

in some cases, comparing the algorithm with high
similarity data, is one of the challenges of the presented
algorithms. Practically, we are facing various data with
different sizes in the industry. Therefore, in this section,
we analyzed the proposed algorithm, the lowest frontline
strategy, and the best-fit algorithm, by producing random
data. The results of the running show the utilization rate
of the proposed algorithm is better than the other two
algorithms, and also it has a shorter running time. Table 5
shows the utilization rate and the running time of these
algorithms. Also, figure 8 shows the running time
diagram of these three algorithms.

Time
1200 T T T T T T T T T
Proposal algorithm
Best fit decreasing height
To00- Lowest front line T
800 1
8
g 600 |
7]
400+ 1
200+ 8
o X ' n
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number of rectangles
Figure 7: the utilization rate diagram of the best-fit, frontline, and
proposed algorithms with random data
Complexity
Number of rectangles
10000+ Number of frontLines]
>
=
€ .
o
3
o

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Number

Figure 8: the running time diagram of the best-fit, the frontline, and
the proposed algorithms with random data

d0i:10.20944/preprints202001.032

https://doi.org/10.20944/preprints202001.0329.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 January 2020

Table 5: the results of the utilization rate of the proposed algorithm by producing random data

Runtime(s) Utilization rate Amount Amount of

of front | rectangles | N

line in

proposal
Proposal Best fit Front line Proposal Best fit | Front algorithm
algorithm algorithm line
0.061439 0.113711 0.135782 0.9680 0.9044 | 0.8213 | 142 283 50
0.179677 0.268977 0.365532 0.9759 0.9261 | 0.8076 | 294 560 100
0.268492 0.679887 0.940690 0.9722 0.9212 | 0.8018 | 379 808 150
0.561501 1.371588 1.670308 0.9720 0.9088 | 0.7620 | 498 1102 200
0.784825 1.683756 3.098013 0.9720 0.7979 | 616 1444 250

0.9355

1.136259 2.152571 3.692223 0.9735 0.9459 | 0.7850 | 672 1684 300
1.687331 3.185944 5.856734 0.9718 0.9281 | 0.8020 | 747 1972 350
1.792151 4.626413 6.491700 0.9737 0.9384 | 0.7742 | 836 2117 400
2.338938 6.179962 8.555913 0.9682 0.9335 | 0.7860 | 924 2380 450
2.532763 7.593715 12.461293 0.9705 0.9581 | 0.7893 | 1026 2738 500
2.609368 8.936252 16.055307 0.9695 0.9454 | 0.7790 | 1100 3012 550
3.789860 7.678264 17.209783 0.9737 0.9408 | 0.7863 | 1126 3260 600
3.503998 12.119956 21.050525 0.9750 0.9314 | 0.8077 | 1235 3497 650
5.143389 14.592887 27.870559 0.9710 0.9426 | 0.8253 | 1328 3955 700
5.692376 16.248161 30.576511 0.9693 0.9485 | 0.7703 | 1348 4110 750
6.548756 20.146549 38.626904 0.9768 0.9537 | 0.7935 | 1448 4534 800
5.552323 20.865130 41.414833 0.9673 0.9508 | 0.7987 | 1464 4592 850
7.132780 22.115729 48.515116 0.9740 0.9447 | 0.7807 | 1503 4819 900
8.174483 26.831960 57.326876 0.9691 0.9548 | 0.7943 | 1501 5244 950
9.152594 23.973368 65.242514 0.9678 0.9425 | 0.7896 | 1744 5763 1000
10.860228 34.939327 78.368714 0.9655 0.9531 | 0.7831 1644 6055 1100
9.508915 40.207071 99.702676 0.9675 0.9550 | 0.7966 | 1730 6615 1200
14.972989 46.728704 113.762547 0.9657 0.9625 | 0.7896 | 1909 7044 1300
16.997029 26.938338 411.017108 0.9708 0.9479 | 0.7981 1984 7671 1400
18.103096 28.565729 478.56225 0.9695 0.9673 | 0.8027 | 2008 8164 1500
21.743997 33.262568 598.293248 0.9681 0.9603 | 0.7964 | 2194 8796 1600
24.726140 38.004280 723.358521 0.9715 0.9596 | 0.7852 | 2232 9415 1700
25.643730 42.053160 786.529926 0.9706 0.9625 | 0.8030 | 2383 9853 1800
24.416149 45.981673 971.096964 0.9749 0.9517 | 0.7884 | 2750 10555 1900
31.034617 50.574680 1128.696616 0.9659 0.9603 | 0.7944 | 2623 11030 2000

C- The time complexity

The time complexity of the proposed method is the
polynomial order. It means that in the worst case, it needs
O(m) time for searching between m frontlines and finding
the proper line to place the rectangle. Since this searching
must be done for all of the rectangles, and the total
number of rectangles is n. Therefore, the time complexity

of this algorithm is generally linear in time order and
equals to O(nm). The results of the implementation
indicate that the value of m is always less than n. It means
that at the end of the algorithm implementation, the total
number of the frontlines is always less than the total
number of the rectangles. In table 5, the total number of
rectangles column is n, and the total number of frontlines
column is m, and m is always less than n. The diagram in
figure 7 demonstrates how the number of frontlines
increases per number of input data.

d0i:10.20944/preprints202001.0329.v1

https://doi.org/10.20944/preprints202001.0329.v1

V. The evaluation results

In this study, we presented an algorithm for the rectangle
packing problem. Also, we implemented the proposed
algorithm along with the best-fit decreasing height and
the lowest frontline strategy. Also, we compared the
proposed algorithm with the algorithm presented in [18].
The results of the evaluation show the better utilization
rate of the proposed algorithm in comparison with other
mentioned algorithms. The proposed algorithm has
improved the utilization rate by 86.72% in comparison
with the lowest frontline strategy, 8.26% in comparison
with the best-fit decreasing height algorithm, and 7.43%
in comparison with the algorithm presented by Liu. The
time complexity of the proposed algorithm is O(nm), in
which n is the number of the input rectangles and m is the
number of created front lines.

Since this problem is NP-complete, there are modes that
the presented algorithm cannot find them. Therefore, for
future studies, we can use this algorithm along with
optimizing algorithms like genetic algorithms. In the
algorithm that we will present, we first consider a
solution to the problem with the best-fit algorithm
presented in this study. Then we improve the presented
solution every time we repeat the genetic algorithm.

REFERENCES

1. Agawal, P.K. and shing, M.T. (1992) ‘Oriented
aligned rectangle-packing problem’, European
Jjournal of operational research, 62:2,210-220.

2. Wu, Y.L. and Huang, W. and Lau, S.C. and
Wong, CXK. and Young, G.H. (2002) ‘An
effective quasi-human based heuristic for
solving the rectangle packing problem’,
European Journal of Operational Research,
141:2, 341-358.

3. Maberg, J. and Schneider, J. (2011) ‘Rectangle
packing with additional restrictions’, Theoretical
Computer science, 412:50, 9648-9658.

4. Korf, R.E. (2003) ‘Optimal Rectangle Packing:
Initial Results’, ICAPS’2003-13" International
Conference on Automated Planning and
Scheduling, 09 - 13 June, Italy, Trento, 287-295.

5. Li, Q. and Yang, S.Y. and Zhu, S. (2012)
‘Solving 2D Rectangle packing problem Based
on Layer Heuristic and Genetic Algorithm’,
IHMSC’2012 - 4th International Conference on
Intelligent Human-Machine Systems and
Cybernetics, 26-27 Aug, Nanchang, China, 192-
195.

6. Zandiyan S, Fotohi R, Koravand M. P-method:
Improving AODV routing protocol for against
network layer attacks in mobile Ad-Hoc
networks. International Journal of Computer
Science and Information Security. 2016 Jun
1;14(6):95.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 January 2020

10.

11.

12.

13.

14.

15.

16.

17.

18.

d0i:10.20944/preprints202001.0329.v1

Jamali, S., & Fotohi, R. (2017). DAWA:
Defending against wormhole attack in MANETSs
by using fuzzy logic and artificial immune
system. the Journal of Supercomputing, 73(12),
5173-5196.

Lodeiro-Santiago, M., Caballero-Gil, P.,
Aguasca-Colomo, R., & Caballero-Gil, C.
(2019). Secure UAV-Based System to Detect
Small Boats Using Neural Networks.
Complexity, 2019.

Fotohi, R., Heydari, R., & Jamali, S. (2016). A
Hybrid routing method for mobile ad-hoc
networks. Journal of Advances in Computer
Research, 7(3), 93-103.

Fotohi, R., & Bari, S. F. (2020). A novel
countermeasure technique to protect WSN
against denial-of sleep attacks using firefly and
Hopfield neural network (HNN) algorithms. The
Journal of Supercomputing, 1-27.

Huang, W. and Chen, D. and Xu, R. (2007), ‘A
new heuristic algorithm for rectangle packing’,
Computers & Operations Research, 34:11,
3270-3280.

Virk, A.K. and Singh, K. (2017) ‘Solving Multi-
objective Two Dimensional Rectangle Packing
Problem’, Advances in Intelligent Systems and
Computing, 547,188-196.

Hu, Y. and Hashimoto, H. and Imahori, S. and
Uno, T. and Yagiura, M. (2016) ‘a partition
based heuristic algorithm for the rectilinear
block packing problem, journal of the
Operations Research Society of Japan, 59:1,
110-129.

Zhang, D. and Che, Y. and Ye, F. and Si, Y.W.
and Stephen C. H. and Leung (2016) ‘A hybrid
algorithm based on variable neighborhood for
the strip packing problem’, Journal of
Combinatorial Optimization, 32:2, 513-530.

Wu, Y.L. and Huang, W. and Lau, S.C. and
Wong, CK. and Young, G.H. (2002) ‘An
effective quasi-human based heuristic for
solving the rectangle packing problem’,
European Journal of Operational Research,
141:2, 341-358.

Sarkohaki, F., Fotohi, R., & Ashrafian, V.
(2017). An efficient routing protocol in mobile
ad-hoc networks by using artificial immune
system. International Journal of Advanced
Computer Science and Applications (IJACSA),
8 (4).

Fotohi, R., Ebazadeh, Y., & Geshlag, M. S.
(2016). A new approach for improvement
security against DoS attacks in vehicular ad-hoc
network. International Journal of Advanced
Computer Science and Applications, 7(7), 10-16.
Behzad, S., Fotohi, R., Balov, J. H., & Rabipour,
M. J. (2018). An Artificial Immune Based

https://doi.org/10.20944/preprints202001.0329.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 January 2020

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Approach for Detection and Isolation
Misbehavior Attacks in Wireless Networks. JCP,
13(6), 705-720.

Mabodi, K., Yusefi, M., Zandiyan, S., Irankhah,
L., & Fotohi, R. Multi-level trust-based
intelligence schema for securing of internet of
things (IoT) against security threats using
cryptographic authentication. The Journal of
Supercomputing, 1-25.

Fotohi, R., Jamali, S., Sarkohaki, F., & Behzad,
S. (2013). An Improvement over AODV routing
protocol by limiting visited hop count.
International Journal of Information Technology
and Computer Science (IJITCS), 5(9), 87-93.
Virk, AK. and Singh, K. (2016) ‘Solving Bi-
objective Two-Dimensional Rectangle Packing
Problem wusing Binary Cuckoo Search’,
International Journal of Computer Science and
Information Security, 14:7, 165-169.

Zhu, Y.H. (2016) ‘Parameter Analysis of
Placement Function for the Rectangular Packing
Problem Based on GA’, Materials Science
Forum, 836-837, 381-386.

Wang, S. (2017) ‘Solving Rectangle Packing
Problem Based on Heuristic Dynamic
Decomposition ~ Algorithm’. EETA’2017-2
International Conference on Electrical and
Electronics: Techniques and Applications, 15-16
January, China, Beijing, 187-196.

Jansen, Y. and Oba, R.S.(2009) ‘Rectangle
packing with one-dimensional resource
augmentation’, Discrete Optimization, 6:3, 310-
323.

Huang, E. and Korf, R.E. (2013) ‘Optimal
Rectangle Packing an Absolute Placement
Approach’, Journal of Artificial Intelligence
research, 46, 47-87.

Bortfeldt, A. (2013) ‘A reduction approach for
solving the rectangle packing area minimization
problem’, European Journal of Operational
Research, 224:3, 486-496.

Chlebik, M. and J Chlebikova, J. (2009)
‘Hardness of approximation for orthogonal
rectangle packing and covering
Problems’, Journal of Discrete Algorithms, 7:3,
291-305.

Liu, H. and Zhou, J. and Wu, X.S. and Yuan, p.
(2014) ‘Optimization Algorithm for Rectangle
packing problem Based on Varied-factor Genetic
Algorithm and Lowest Front-Line Strategy’,
CEC’2014 - Congress on Evolutionary
Computation July 6-11, Beijing, China, 1084-
1091.

Bansal, N. and khan, A. (2014) ‘Improved
Approximation Algorithm for Two-Dimensional
Bin packing on discrete algorithm’, Society for
Industrial and Applied Mathematics, 25, 13-25

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Liu, Z. (2017) ‘On Continuity Properties for
Infinite Rectangle Packing’, Cornell University
Library.

Wei, L. and Zhang, D. and Chena, Q. (2009) ‘A
least wasted first heuristic algorithm for the
rectangular packing problem’, Computers &
Operations Research, 36:5, 1608-1614.

Behzad, S., Fotohi, R., & Jamali, S. (2013).
Improvement over the OLSR routing protocol in
mobile Ad Hoc networks by eliminating the
unnecessary loops. International Journal of
Information Technology and Computer Science
(IJITCS), 5(6), 2013.

Behzad, S., Fotohi, R., & Dadgar, F. (2015).
Defense against the attacks of the black hole,
gray hole and wormhole in MANETSs based on
RTT and PFT. International Journal of Computer
Science and Network Solutions (IJCSNS), 3, 89-
103.

Seyedi, B., & Fotohi, R. NIASHPT: a novel
intelligent agent-based strategy using hello
packet table (HPT) function for trust Internet of
Things. The Journal of Supercomputing, 1-24.
Fotohi, R., Bari, S. F., & Yusefi, M. (2019).
Securing Wireless Sensor Networks Against
Denial-of-Sleep Attacks Using RSA
Cryptography Algorithm and Interlock Protocol.
International ~ Journal of Communication
Systems.

Zhang, D. and Che, Y. and Ye, F. and Si, Y.W.
and Stephen C. H. and Leung (2016) ‘A hybrid
algorithm based on variable neighborhood for
the strip packing problem’, Journal of
Combinatorial Optimization, 32:2, 513-530.
Ntene, N. and Van, J.H. and Vuuren, (2009) ‘A
survey and comparison of guillotine heuristics
for the 2D oriented offline strip packing
problem’, Discrete Optimization, 6:2, 174-188.
Anika, D. and Garg, D. (2014) ‘Parallelizing
Generalized One-Dimensional Bin Packing
Problem using MapReduce’, TACC’2014 -
International Advanced Computing Conference,
21-22 Feb, Gurgaon, India, 628-635.

Mhaiskar, N.D. and Rahman, M. (2014) ‘two-
dimensional rectangle packing problems: a
survey’, International Journal of Computer,
Information Technology & Bioinformatics, 2:1,
10-15.

Wei, L. and Limb, A. (2017) ‘An adaptive
selection approach for the 2D rectangle packing
area minimization problem’, Omega, 66, 1-26.
Fotohi, R., & Jamali, S. (2014). A
comprehensive study on defence against
wormhole attack methods in mobile Ad hoc
networks. International journal of Computer
Science & Network Solutions, 2, 37-56.

d0i:10.20944/preprints202001.0329.v1

https://doi.org/10.20944/preprints202001.0329.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 January 2020

42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.

52.

Jamali, S., & Fotohi, R. (2016). Defending
against wormhole attack in MANET using an
artificial immune system. New Review of
Information Networking, 21(2), 79-100.

Jamali, S., Fotohi, R., Analoui, M. (2018). An
Artificial Immune System based Method for
Defense against Wormhole Attack in Mobile
Adhoc Networks. TABRIZ JOURNAL OF
ELECTRICAL ENGINEERING, 47(4), 1407-
1419

Fotohi, R. (2020). Securing of Unmanned Aerial
Systems (UAS) against security threats using
human immune system. Reliability Engineering
& System Safety, 193, 106675.

Fotohi, R.; Nazemi, E. An Agent-Based Self-
Protective Method to Secure Communication
between UAVs in Unmanned Aerial Vehicle
Networks. Preprints 2020, 2020010229 (doi:
10.20944/preprints202001.0229.v1).

Huang, L. and Liul, Z. and Liu, Z. (2014) ‘An
Improved Lowest-level Best-Fit Algorithm with
Memory for the 2D Rectangular Packing
Problem’, ISEEE’2014 International Conference
on Information Science Electronics and
Electrical Engineering, 26-28 April, Japan,
Sapporo, 1279-1282.

Daoden, K. and Thaiupathump, T. (2017),
‘Applying Shuffled Frog Leaping Algorithm and
Bottom Left Fill Algorithm in Rectangular
Packing Problem’, ICEIEC’2017-7% IEEE
International Conference on Electronics
Information and Emergency Communication,
21-23 July, Macau, China, 136-139.

Liu, D. and Teng, H. (1999) ‘An improved BL-
algorithm for genetic algorithm of the
orthogonal packing of rectangles’, European
Journal of Operational Research, 112:2, 413-
420.

Chazelle, B. (1983) ‘the bottom-left Bin-packing
heuristic: an efficient implementation’, [EEE
transaction on computers, 32:8, 697-707.

Wei, L. and Zhu, W. and Lim, A. and Liu, Q.
and Chen, X. (2018) ‘An adaptive selection
approach for the 2D rectangle packing area
minimization problem’, Omega, 80, 22-30.

Hu, Y. and Fukatsu, S. and Hashimoto, m H. and
Imahori, S. and Yagiura, M. (2018) ‘Efficient
overlap detection and construction algorithms
for the bitmap shape packing problem’, Journal
of the Operations Research Society of Japan, 61:
1,132-150.

Mohanty, R. and Kiran, P. (2017) ‘New Results
on Next Fit and First Fit On-line Algorithms for
Square and Rectangle Packing’, ICACCI’2017 -
International Conference on Advances in
Computing, Communications and Informatics,
13-16 Sept, Udupi, India, 2201-2207.

53. Imahori, S., Yagiura, M., & Nagamochi, H.

(2018). Practical — Algorithms for Two-
Dimensional Packing of Rectangles. In
Handbook of Approximation Algorithms and
Metaheuristics, 589-602.

doi:10.20944/preprints202001.0329.v1

https://doi.org/10.20944/preprints202001.0329.v1

