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Abstract: In the present study, a mathematical model of non-steady partial differential equation from 
the process of oxygen mass transport in the human pulmonary circulation is proposed. Mathematical 
modelling of this kind of problems lead to a non-steady partial differential equation and for its 
numerical simulation, we have used finite differences. The aim of the process is the exact numerical 
analysis of the study, wherein consistency, stability and convergence is proposed. The necessity of 
doing the process is that, we would like to increase the order of numerical solution to a higher order 
scheme. An increment in the order of numerical solution makes the numerical simulation more 
accurate, also makes the numerical simulation being more complicated. In addition, the process of 
numerical analysis of the study in this order of solution needs more research work.

Keywords: non-steady partial differential equation; higher order finite difference s cheme; axial 
diffusion; convergence; consistency; stability
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1. Introduction13

A brief review literature is given as follows: Wu et al. [1] have presented a numerical simulation of14

blood flow in two anarysmal vessels, using mixture theory, the velocity fields and spatial distribution15

of the red blood cell-induced platelet transport in Saccular Aneurysms and the plasma are predicted.16

Bridges et al. [2] have studied the flow of a shear-thinning, chemically-reacting fluid that could be used17

to model the flow of the synovial fluid. They have solved the balance of linear momentum together with18

a convection-diffusion equation. Hund and Antaki [3] have proposed an extended convection-diffusion19

model based on the diffusive balance of a fictitious field potential, that accounts for the gradients of both20

the dilute phase and the local hematocrit. Wu and Massoudi [4] have studied the effects of dissipation21

in the couette flow and heat transfer in a drilling fluid, and explore the effects of concentration and22

the shear-rate and temperature-dependent viscosity, along with a variable thermal conductivity .23

Massoudi and Antaki [5] have developed a model for blood using the theory of interacting continua,24

that is, the mixture theory. They have discussed, a framework for modelling the rheological behavior of25

blood. Skorczewski et al. [6] have considered computational simulations using a 2D lattice-Boltzmann26

immersed boundary method were conducted to investigate the motion of platelets near a vessel wall27

and close to an intravascular thrombus. Burger’s equation [7] (Johannes Martinus Burger), a Dutch28

scientist, devised a simplified form of Navier–Stokes equation, in the presence of convective term and29

diffusive term wherein uses the study of opposite effects of convection and diffusion at a basic level.30
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This equation is fundamental in modelling shockes and has found immense application in area of31

viscous flow, such as blood flow in a creeping fluid. Zhan and Wang [8] have studied mathematical32

modelling of convection enhanced delivery (CED) of chemo-therapeutic drugs which can successfully33

bypass the blood-brain barrier. The modelling demonstrates the advantages of convection enhanced34

delivery in enhancing the convective flow of intenstitial fluid and reducing the drug concentration35

dilution caused by the fluid loss from blood stream in the tumour region around the infusion site.36

The delivery outcomes of the drug in CED treatments are strongly dependent on its physico-chemical37

properties. Kaesler et al. [9] computed computational modelling of oxygen transfer in artificial lungs.38

Their study introduces an approach to model the oxygen transfer in blood on a fiber level with CFD.39

Plasma and RBCs were implemented as two phases and the reaction of hemoglobin and oxygen to40

oxyhemoglobin was included in the convection-diffision equation in form of a source term. Melnik and41

Jenkins [10] concentrated on computational control of flow in airblast atomisers for pulmonary drug42

delivery. In the paper, PDD systems based on airblast atomisation have been analysed mathematically.43

Mountrakis et al. [11] simulated RBCs and platelets to explore their transport behavior in aneurysmal44

geometries. They considered two aneurysms with different aspect ratios in presence of fast and slow45

blood flows, and examined the distributions of the cells. Whittle et al. [12] suggest that the presence46

of intra-aneurysmal clot in giant intracranial aneurysms has little prognostic significance and does47

not alter the management or outcome after treatment. Hirabayashi et al. [13] considered a lattice48

Boltzmann simulation of blood flow in a vessel deformed by the presence of an aneurysm. They49

propose a stent positioning factor as characterizing tool for stent pore design in order to describe the50

flow reduction effect and reveal the several flow reduction mechanisms using this effect. Weir [14] is51

reviewed the pathological, radiological, and clinical information regarding unruptured intracranial52

aneurysm. The author concluded that the current state of knowledge about unruptured aneurysms53

does not support the use. The largest diameter of the lesion as the sole criterim on which to base54

treatment decisions, although it is undoubted importance.55

Now, apart from the above discussion on convective-diffusion equations and in the remaining56

short span of the time and pages in this study, we try to examine higher order finite difference scheme57

to approximate time-dependent partial differential equation including axial and radial diffusions58

with convective effect of the blood. The standard convection-diffusion model is based on continuum59

approach wherein we are using here. Also, our approach want to examine the effect of axial diffusion60

since normally most of the models consider only radial diffusion as we did in our previous studies.61

Here, it should be mentioned that, to our knowledge this happens for the first time in this order62

of magnitude. Further, this kind of equation has application in bio-engineering problems, e.g.,63

propagation of material [15], boundary layer of fluids, electrical circuits in cables and the mass transfer64

problems with respect to the conditions [16–26]. In addition, our discussion is on the convergence,65

consistency, and stability [27] of finite differences equations which describe the model.66

2. Mathematical Description of the Model as a Whole67

Let us consider at first, the RBC distribution and the blood flow transport. When we have68

succeeded, we can add aneurysms wherein it has been described in the different literature in69

introduction in our future study.70

In the pulmonary capillaries, we have:

∂ci(p, t)
∂t

= −∇.Ji(p, t) + Ri(p, t), (1)

where ci(p, t) is the concentration of the i-th species (i.e., oxygen or carbondioxide) at the position p
and the time t. Position p in Cartesian co-ordinate is (x, y, ζ) or in polar co-ordinate is (r, θ, ζ) with
an origin [22]. The quantity Ji(p, t) is equivalent to the sum of the fluxes of species and Ri(p, t) is the
reaction due to non-linearity of the i-th species in a unit quantity. Flux vector is the sum of two vectors
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of convection and diffusion and is according the Fick’s first law of diffusion. Hence, the mass balance
in the Equation (1) for the i-th species is[24]:

∂ci(p, t)
∂t

= −∇.
[
v(p, t)ci(p, t)− Di(p)∇ci(p, t)

]
+ Ri(p, t), (2)

even due Equation (2) is in capillaries, it can be written more precisely as:

∂ci(x, r, t)
∂t

= −v(r)
∂ci(x, r, t)

∂x
+ Di∇2ci(x, r, t) + Ri(x, r, t), (3)

where ∇2 = ∂2

∂r2 + r−1 ∂
∂r +

∂2

∂x2 .71

Initial condition ci(x, r, 0) can be taken arbitrary, or with the solution of the steady-state72

Equation (3) as a whole. Boundary conditions could be as the following:73

(i) concentration in the beginning is zero or finite and for the flux (radial) ∂ci(x,r,t)
∂x at x = L (at the end74

of capillary) is constant,75

(ii) ∂ci(x,0,t)
∂r = 0 (symmetry at the center of capillary), and76

(iii) another condition is at the capillary wall where the derivative of the equations will be considered,77

wherein depend on the species. For oxygen which is combined with the hemoglobin inside RBCs,78

concentration in Equation (3) is the concentrations of plasma and RBCs. Hence, the diffusion has two79

components, first diffusion in plasma and the second, diffusion of oxygen which is corresponded to80

the diffusion of oxygen in the RBCs.81

2.1. In the Tissues82

We have the following:

∂ci(p, t)
∂t

= ∇.
[
Di(p)∇ci(p, t)

]
+ Ri(p, t), (4)

hence, in tissue and at polar co-ordinate, we have:

∂c(x, r, t)
∂t

= D∇2c(x, r, t) + R(t). (5)

2.2. Transport Inside the Components83

Differential equations is inside the tissues, and if we want the space of the cells, we should add
again boundary conditions. A condition in connection of blood concentration and tissue condition
which is regarding the influence of capillary wall. With continuity assumption of the capillary wall,
we have:

c(x, a, t)|b =
c(x, a, t)

α
|t, (6)

D
∂c(x, a, t)

∂r
|b = D

∂c(x, a, t)
∂r

|t, (7)

where b and t stands for blood and tissue. Equation (6) announce that blood in the capillary wall is
equivalent to that of tissue (with a coefficient of α) and Equation (7) expresses that there is a balance
between capillary and the tissue. If the capillary wall has a permeability, the Equations (6) and (7) will
be:

−
[
D

∂c(x, a, t)
∂r

]
|b = p(x)

[
cb(x, a, t)− ct(x, a, t)

α

]
=

−
[
D

∂c(x, a, t)
∂r

]
|t. (8)
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At the end, mathematical models for the description of transport equations in the pulmonary capillary84

and surrounding tissue is considered in this section. Equations (1)–(7) show the vector flux of the85

convection and diffusion which is based on Fick’s first law of diffusion. These equations are described86

in Cartesian and polar co-ordinates. For solution of equation, arbitrary initial condition and boundary87

conditions of (i) to (iii) is required. If capillary wall has a permeability, Equation (8) can be used [29].88

3. Mathematical Description of the Model in the Present Study89

New, we consider the following time-dependent partial differential equation as a simplification
of section 2. Such an equation occurs in the transport of oxygen in a slab of capillary which depends
on the unsteady transport by convection and the unsteady diffusion (axial as well as radial in the
directions). The capillary is assumed to be a 2D channel of thickness 2a and a = 1, respectively. Hence,
the equation is:

ct + ucy = D(cxx + cyy), (9)

for 0 ≤ x ≤ 1; 0 ≤ y ≤ 1 and t > 0. In the capillary slab, the flow is laminar and is assumed to be90

uniform with an average velocity u = 0.4, and the diffusion coefficient of oxygen is considered as a91

constant quantity, D = 0.24. The first and second terms on the left-side are respectively the rate of92

change of concentration per unit time and the transport due to convection whereas the terms on the93

right-side indicate the free molecular diffusion in the radial as well as axial directions. Equation (9) is94

to be solved under the following boundary, entrance and initial conditions.95

(i) Boundary conditions:96

(a) the flux of flow during the line of symmetry is zero, e.g.,97

cx(0, y, t) = 0; for ∀t and 0 ≤ y ≤ 1, (9a)98

(b) at the wall of horizontal line, we have:99

c(1, y, t) = 1; for ∀t and 0 ≤ y ≤ 1, (9b)100

(ii) Entrance conditions:101

(c) in the start of axial direction, we have:102

c(x, 0, t) = 0; for ∀t and 0 ≤ x ≤ 1, (9c)103

(d) and at the wall of axial direction for the flux, we have:104

cy(x, 1, t) = 1; for ∀t and 0 ≤ x ≤ 1, (9d)105

(iii) Initial condition:106

(e) for the initial condition, we have:107

c(x, y, 0) = 0; for x ≥ 0 and y ≥ 0. (9e)108

3.1. Description of the Domain Using Finite Difference Scheme109

For the finite difference method, we divide the domain of interest into different meshes of net
sizes ∆x, ∆y and ∆t in the x, y, and t directions respectively. Any node of the mesh can be represented
as:

xi = i∆x; i = 0, 1, 2, . . . , (I − 1), . . . , n,

yj = j∆y; j = 1, 2, . . . , (J − 1), . . . , m,

tk = k∆t; k = 1, 2, . . . ,

wherein n∆x = 1 and m∆y = 1. In the finite difference approximation, by applying the central,110

backward and forward finite differences for each partial derivative in Equation (9), we obtain different111

difference equations, which are an approximate solution of Equation (9). In this study, with application112

of some of these difference equations, we consider the consistency and stability of these equations113

because there is an important connection between the consistency of a stable finite difference scheme114

and the convergence of its solution to that of the partial differential equation it approximates. Lax’s115

equivalence theorem [30] states that if a finite difference approximation to a well-posed linear initial116
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value problem is consistent, then stability is a necessary and sufficient condition for convergence.117

The two restrictions which apply to this theorem should be carefully noted. Firstly, the initial value118

problem must be well-posed; that is, the solution of the partial differential equation must depend119

continuously on the initial data. Secondly, the theorem only applies to linear problems. The important120

feature of linear equations is the sum of separate solutions are also a solution of the equation, which121

leads to the fact that the error terms themselves satisfy the homogeneous form of the finite difference122

equation which approximates the given differential equation. This theorem is of considerable practical123

importance. For while, it is relatively easy to show that a finite difference equation is stable and124

that it is consistent with a partial differential equation. It is usually very difficult to show that the125

solution of a finite difference equation converges to the solution of the partial differential equation126

that it approximates. Lax’s equivalence theorem is needed to prove convergence in order to the finite127

difference approximation to the unsteady convective-diffusion Equation of (9), because the given128

differential equation is linear and is well-posed, it is sufficient to prove consistency and stability of the129

finite difference approximations of the Equation (9).130

3.2. Appearance of Difference Equation by Application of Crank–Nicolson Method131

For the partial derivatives in the Equation (9), we use central finite differences at the points
(i∆x, j∆y, (k + 1

2 )∆t) as follows:

ct =
1

∆t
(ck+1

i,j − ck
i,j) + O{(∆t)2},

cy =
1
2
[ ck

i,j+1 − ck
i,j−1

2∆y
+

ck+1
i,j+1 − ck+1

i,j−1

2∆y
]
+ O{(∆y)2},

cxx =
1
2
[ ck

i+1,j − 2ck
i,j + ck

i−1,j

(∆x)2 +
ck+1

i+1,j − 2ck+1
i,j + ck+1

i−1,j

(∆x)2

]
+ O{(∆x)2},

and

cyy =
1
2
[ ck

i,j+1 − 2ck
i,j + ck

i,j−1

(∆y)2 +
ck+1

i,j+1 − 2ck+1
i,j + ck+1

i,j−1

(∆y)2

]
+ O{(∆y)2},

we put these approximations in Equation (9):

ck+1
i,j − ck

i,j

∆t
+

u
2
[ ck

i,j+1 − ck
i,j−1

2∆y
+

ck+1
i,j+1 − ck+1

i,j−1

2∆y
]

=
D
2
[ ck

i+1,j − 2ck
i,j + ck

i−1,j

(∆x)2 +
ck+1

i+1,j − 2ck+1
i,j + ck+1

i−1,j

(∆x)2

]
+

D
2
[ ck

i,j+1 − 2ck
i,j + ck

i,j−1

(∆y)2 +
ck+1

i,j+1 − 2ck+1
i,j + ck+1

i,j−1

(∆y)2

]
.

Hence, we have:

ck+1
i,j − ck

i,j

∆t
+

u
4∆y

[
(ck

i,j+1 − ck
i,j−1) + (ck+1

i,j+1 − ck+1
i,j−1)

]
=

D
2(∆x)2

[
(ck

i+1,j − 2ck
i,j + ck

i−1,j) + (ck+1
i+1,j − 2ck+1

i,j + ck+1
i−1,j)

]
+

D
2(∆y)2

[
(ck

i,j+1 − 2ck
i,j + ck

i,j−1) + (ck+1
i,j+1 − 2ck+1

i,j + ck+1
i,j−1)

]
,
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which is the difference equation of Equation (9). By taking, p = (u∆t)
∆y and q = (D∆t)

(∆x)2 = (D∆t)
(∆y)2 wherein

∆x = ∆y, we have:

ck+1
i,j − ck

i,j +
p
4
[
(ck

i,j+1 − ck
i,j−1) + (ck+1

i,j+1 − ck+1
i,j−1)

]
=

q
2
[
(ck

i+1,j − 2ck
i,j + ck

i−1,j) + (ck+1
i+1,j − 2ck+1

i,j + ck+1
i−1,j)

]
+

q
2
[
(ck

i,j+1 − 2ck
i,j + ck

i,j−1) + (ck+1
i,j+1 − 2ck+1

i,j + ck+1
i,j−1)

]
,

wherein, we have:

4ck+1
i,j − 4ck

i,j + p
[
(ck

i,j+1 − ck
i,j−1) + (ck+1

i,j+1 − ck+1
i,j−1)

]
= 2q

[
(ck

i+1,j − 2ck
i,j + ck

i−1,j) + (ck+1
i+1,j − 2ck+1

i,j + ck+1
i−1,j)

]
+ 2q

[
(ck

i,j+1 − 2ck
i,j + ck

i,j−1) + (ck+1
i,j+1 − 2ck+1

i,j + ck+1
i,j−1)

]
,

and

−2qck+1
i−1,j + (4 + 8q)ck+1

i,j − 2qck+1
i+1,j = 2qck

i−1,j + (4− 8q)ck
i,j + 2qck

i+1,j

+ p(ck
i,j−1 − ck

i,j+1) + 2q(ck
i,j−1 + ck

i,j+1) + p(ck+1
i,j−1 − ck+1

i,j+1)

+ 2q(ck+1
i,j−1 + ck+1

i,j+1), (10)

where, i = 0, 1, . . . , n− 1; j = 1, 2, . . . , m and k = 0, 1, 2, . . .. With application of the boundary and
initial conditions, we have: with respect to Equation (9b) for each j and k, we have:

ck
n,j = 1, (11)

with respect to Equation (9c) for each i and k, we have:

ck
i,0 = 0. (12)

Here, for numerical solution, we consider m=10. Therefore, by using central differences and with
respect to Equation (9d), for each i and k, we have:

cy =
1
2
[ ck

i,j+1 − ck
i,j−1

2∆y
+

ck+1
i,j+1 − ck+1

i,j−1

2∆y
]
+ O{(∆y)2},

and j = m = 10.⇒ ∆y = 1
m ,⇒ ∆y = 0.1. Thus,

1 =
1
2
[ ck

i,11 − ck
i,9

0.2
+

ck+1
i,11 − ck+1

i,9

0.2
]
, (13)

and
ck+1

i,11 + ck
i,11 = 0.4 + ck+1

i,9 + ck
i,9; (14)

where we use the terms ck+1
i,11 + ck

i,11 from Equation (14) in the numerical solution of Equation (9). With
respect to Equation (9e) for each i and j, we have:

c0
i,j = 0, (15)
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and with respect to Equation (9a) for each j and k, we have:

cx =
1
2
[ ck

i+1,j − ck
i−1,j

2∆x
+

ck+1
i+1,j − ck+1

i−1,j

2∆x
]
+ O{(∆x)2},

at i = 0, we have:

0 =
1
2
[ ck

1,j − ck
−1,j

2∆x
+

ck+1
1,j − ck+1

−1,j

2∆x
]
,

and therefore,
ck+1
−1,j + ck

−1,j = ck+1
1,j + ck

1,j. (16)

Now in Equation(10), we have:

−2qck+1
−1,j + (4 + 8q)ck+1

0,j − 2qck+1
1,j = 2qck

−1,j + (4− 8q)ck
0,j + 2qck

1,j

+ p(ck
0,j−1 − ck

0,j+1) + 2q(ck
0,j−1 + ck

0,j+1) + p(ck+1
0,j−1 − ck+1

0,j+1) + 2q(ck+1
0,j−1 + ck+1

0,j+1),

with application of Equation (16), we have:

−2q(ck+1
1,j + ck

1,j) + (4 + 8q)ck+1
0,j − 2qck+1

1,j = (4− 8q)ck
0,j + 2qck

1,j + p(ck
0,j−1 − ck

0,j+1)

+ 2q(ck
0,j−1 + ck

0,j+1) + p(ck+1
0,j−1 − ck+1

0,j+1) + 2q(ck+1
0,j−1 + ck+1

0,j+1),

wherein,

(4 + 8q)ck+1
0,j − 4qck+1

1,j = (4− 8q)ck
0,j + 4qck

1,j + p(ck
0,j−1 − ck

0,j+1)

+ 2q(ck
0,j−1 + ck

0,j+1) + p(ck+1
0,j−1 − ck+1

0,j+1) + 2q(ck+1
0,j−1 + ck+1

0,j+1). (17)

Now by putting i = n− 1, in Equation (10), we have:

−2qck+1
n−2,j + (4 + 8q)ck+1

n−1,j − 2qck+1
n,j = 2qck

n−2,j + (4− 8q)ck
n−1,j + 2qck

n,j

+ p(ck
n−1,j−1 − ck

n−1,j+1) + 2q(ck
n−1,j−1 + ck

n−1,j+1)

+ p(ck+1
n−1,j−1 − ck+1

n−1,j+1) + 2q(ck+1
n−1,j−1 + ck+1

n−1,j+1),

and with application of Equation (11), we have:

−2qck+1
n−2,j + (4 + 8q)ck+1

n−1,j − 2q = 2qck
n−2,j + (4− 8q)ck

n−1,j + 2q

+ p(ck
n−1,j−1 − ck

n−1,j+1) + 2q(ck
n−1,j−1 + ck

n−1,j+1)

+ p(ck+1
n−1,j−1 − ck+1

n−1,j+1) + 2q(ck+1
n−1,j−1 + ck+1

n−1,j+1),

hence, we have:

−2qck+1
n−2,j + (4 + 8q)ck+1

n−1,j = 2qck
n−2,j + (4− 8q)ck

n−1,j + p(ck
n−1,j−1 − ck

n−1,j+1)

+ 2q(ck
n−1,j−1 + ck

n−1,j+1) + p(ck+1
n−1,j−1 − ck+1

n−1,j+1)

+ 2q(ck+1
n−1,j−1 + ck+1

n−1,j+1) + 4q. (18)

Now with application of Equations (10), (17) and (18), the matrix form of Equation (9) can be as follows:

Acj,k+1 = Bcj,k + p[cj−1,k − cj+1,k] + 2q[cj−1,k + cj+1,k]

+ p[cj−1,k+1 − cj+1,k+1] + 2q[cj−1,k+1 + cj+1,k+1] + d, (19)
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where, A and B are square matrices of tri-diagonal dimensions of order n as follows:

A =



4 + 8q −4q

−2q 4 + 8q −2q

. . . . . . . . .

−2q 4 + 8q −2q

−2q 4 + 8q


,

and

B =



4− 8q 4q

2q 4− 8q 2q

. . . . . . . . .

2q 4− 8q 2q

2q 4− 8q


,

d and cj,k+1 are column vectors of order n as bellows:

d =

[
0, 0, . . . , 0, 4q

]T

, cj,k+1 =

[
ck+1

0,j , ck+1
1,j , . . . , ck+1

n−1,j

]T

,

wherein with the solution of this system by using Gauss elimination method or Gauss-Seidel method132

or Thomas algorithm, the cj,k+1 can be find.133

3.3. The Truncation Error and Consistency134

Difference equation of Equation (9) is as follows:

Fk
i,j(c) =

1
∆t

(ck+1
i,j − ck

i,j) +
u

4∆y

[
(ck

i,j+1 − ck
i,j−1) + (ck+1

i,j+1 − ck+1
i,j−1)

]
− D

2(∆x)2

[
(ck

i+1,j − 2ck
i,j + ck

i−1,j) + (ck+1
i+1,j − 2ck+1

i,j + ck+1
i−1,j)

]
− D

2(∆y)2

[
(ck

i,j+1 − 2ck
i,j + ck

i,j−1) + (ck+1
i,j+1 − 2ck+1

i,j + ck+1
i,j−1)

]
.
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Since Γk
i,j = Fk

i,j(c); therefore by taking s = ∆t, r = ∆y and h = ∆x and applying Taylor series [30]
about the point (i∆x, j∆y, k∆t), we have:

∗ ck+1
i,j = ck

i,j + s
∂c
∂t
|ki,j +

s2

2!
∂2c
∂t2 |

k
i,j + . . . , (20)

∗ ck
i,j+1 = ck

i,j + r
∂c
∂y
|ki,j +

r2

2!
∂2c
∂y2 |

k
i,j +

r3

3!
∂3c
∂y3 |

k
i,j + . . . ,

∗ ck
i,j−1 = ck

i,j − r
∂c
∂y
|ki,j +

r2

2!
∂2c
∂y2 |

k
i,j −

r3

3!
∂3c
∂y3 |

k
i,j + . . . ,

∗ ck
i+1,j = ck

i,j + h
∂c
∂x
|ki,j +

h2

2!
∂2c
∂x2 |

k
i,j +

h3

3!
∂3c
∂x3 |

k
i,j + . . . ,

∗ ck
i−1,j = ck

i,j − h
∂c
∂x
|ki,j +

h2

2!
∂2c
∂x2 |

k
i,j −

h3

3!
∂3c
∂x3 |

k
i,j + . . . ,

∗ck+1
i,j+1 = ck

i,j + s
∂c
∂t
|ki,j + r

∂c
∂y
|ki,j +

s2

2!
∂2c
∂t2 |

k
i,j +

2sr
2!

∂2c
∂t∂y
|ki,j

+
r2

2!
∂2c
∂y2 |

k
i,j +

s3

3!
∂3c
∂t3 |

k
i,j +

3s2r
3!

∂3c
∂t2∂y

|ki,j +
3sr2

3!
∂3c

∂t∂y2 |
k
i,j

+
r3

3!
∂3c
∂y3 |

k
i,j +

s4

4!
∂4c
∂t4 |

k
i,j +

r4

4!
∂4c
∂y4 |

k
i,j + . . . ,

∗ck+1
i,j−1 = ck

i,j + s
∂c
∂t
|ki,j − r

∂c
∂y
|ki,j +

s2

2!
∂2c
∂t2 |

k
i,j −

2sr
2!

∂2c
∂t∂y
|ki,j

+
r2

2!
∂2c
∂y2 |

k
i,j +

s3

3!
∂3c
∂t3 |

k
i,j −

3s2r
3!

∂3c
∂t2∂y

|ki,j +
3sr2

3!
∂3c

∂t∂y2 |
k
i,j

− r3

3!
∂3c
∂y3 |

k
i,j + . . . ,

∗ck+1
i+1,j = ck

i,j + s
∂c
∂t
|ki,j + h

∂c
∂x
|ki,j +

s2

2!
∂2c
∂t2 |

k
i,j +

2sh
2!

∂2c
∂t∂x
|ki,j

+
h2

2!
∂2c
∂x2 |

k
i,j +

s3

3!
∂3c
∂t3 |

k
i,j +

3s2h
3!

∂3c
∂t2∂x

|ki,j +
3sh2

3!
∂3c

∂t∂x2 |
k
i,j

+
h3

3!
∂3c
∂x3 |

k
i,j + . . . ,

∗ck+1
i−1,j = ck

i,j + s
∂c
∂t
|ki,j − h

∂c
∂x
|ki,j +

s2

2!
∂2c
∂t2 |

k
i,j −

2sh
2!

∂2c
∂t∂x
|ki,j

+
h2

2!
∂2c
∂x2 |

k
i,j +

s3

3!
∂3c
∂t3 |

k
i,j −

3s2h
3!

∂3c
∂t2∂x

|ki,j +
3sh2

3!
∂3c

∂t∂x2 |
k
i,j

− h3

3!
∂3c
∂x3 |

k
i,j + . . . .
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In the following expressions, we can find Γk
i,j.

Fk
i,j(c) =

1
s
[
ck+1

i,j − ck
i,j
]
+

u
4r

[
(ck

i,j+1 − ck
i,j−1) + (ck+1

i,j+1 − ck+1
i,j−1)

]
− D

2h2

[
(ck

i+1,j − ck
i,j) + (ck

i−1,j − ck
i,j) + (ck+1

i+1,j − ck+1
i,j ) + (ck+1

i−1,j − ck+1
i,j )

]
− D

2r2

[
(ck

i,j+1 − ck
i,j) + (ck

i,j−1 − ck
i,j) + (ck+1

i,j+1 − ck+1
i,j ) + (ck+1

i,j−1 − ck+1
i,j )

]
,

⇒ Fk
i,j(c) =

1
s
(
ck

i,j + s
∂c
∂t
∣∣k
i,j +

s2

2!
∂2c
∂t2

∣∣k
i,j +

s3

3!
∂3c
∂t3

∣∣k
i,j + . . .− ck

i,j
)

+
u
4r

[(
ck

i,j + r
∂c
∂y
∣∣k
i,j +

r2

2!
∂2c
∂y2

∣∣k
i,j +

r3

3!
∂3c
∂y3

∣∣k
i,j + . . .− ck

i,j
)

−
(
ck

i,j − r
∂c
∂y
∣∣k
i,j +

r2

2!
∂2c
∂y2

∣∣k
i,j −

r3

3!
∂3c
∂y3

∣∣k
i,j + . . .− ck

i,j
)

+
(
ck+1

i,j + r
∂c
∂y
∣∣k+1
i,j +

r2

2!
∂2c
∂y2

∣∣k+1
i,j +

r3

3!
∂3c
∂y3

∣∣k+1
i,j + . . .− ck+1

i,j
)

−
(
ck+1

i,j − r
∂c
∂y
∣∣k+1
i,j +

r2

2!
∂2c
∂y2

∣∣k+1
i,j −

r3

3!
∂3c
∂y3

∣∣k+1
i,j + . . .− ck+1

i,j
)]

− D
2h2

[(
ck

i,j + h
∂c
∂x
∣∣k
i,j +

h2

2!
∂2c
∂x2

∣∣k
i,j +

h3

3!
∂3c
∂x3

∣∣k
i,j + . . .− ck

i,j
)

+
(
ck

i,j − h
∂c
∂x
∣∣k
i,j +

h2

2!
∂2c
∂x2

∣∣k
i,j −

h3

3!
∂3c
∂x3

∣∣k
i,j + . . .− ck

i,j
)

+
(
ck+1

i,j + h
∂c
∂x
∣∣k+1
i,j +

h2

2!
∂2c
∂x2

∣∣k+1
i,j +

h3

3!
∂3c
∂x3

∣∣k+1
i,j + . . .− ck+1

i,j
)

+
(
ck+1

i,j − h
∂c
∂x
∣∣k+1
i,j +

h2

2!
∂2c
∂x2

∣∣k+1
i,j −

h3

3!
∂3c
∂x3

∣∣k+1
i,j + . . .− ck+1

i,j
)]

− D
2r2

[(
ck

i,j + r
∂c
∂y
∣∣k
i,j +

r2

2!
∂2c
∂y2

∣∣k
i,j +

r3

3!
∂3c
∂y3

∣∣k
i,j + . . .− ck

i,j
)

+
(
ck

i,j − r
∂c
∂y
∣∣k
i,j +

r2

2!
∂2c
∂y2

∣∣k
i,j −

r3

3!
∂3c
∂y3

∣∣k
i,j + . . .− ck

i,j
)

+
(
ck+1

i,j + r
∂c
∂y
∣∣k+1
i,j +

r2

2!
∂2c
∂y2

∣∣k+1
i,j +

r3

3!
∂3c
∂y3

∣∣k+1
i,j + . . .− ck+1

i,j
)

+
(
ck+1

i,j − r
∂c
∂y
∣∣k+1
i,j +

r2

2!
∂2c
∂y2

∣∣k+1
i,j −

r3

3!
∂3c
∂y3

∣∣k+1
i,j + . . .− ck+1

i,j
)]

,

⇒ Fk
i,j(c) =

∂c
∂t
∣∣k
i,j +

s
2!

∂2c
∂t2

∣∣k
i,j +

s2

3!
∂3c
∂t3

∣∣k
i,j + . . . +

u
4

[
∂c
∂y
∣∣k
i,j +

r2

3!
∂3c
∂y3

∣∣k
i,j + . . . +

∂c
∂y
∣∣k
i,j +

r2

3!
∂3c
∂y3 |

k
i,j + . . .

+
∂c
∂y
∣∣k+1
i,j +

r2

3!
∂3c
∂y3 |

k+1
i,j + . . . +

∂c
∂y
∣∣k+1
i,j +

r2

3!
∂3c
∂y3 |

k+1
i,j + . . .

]
− D

2

[
1
2

∂2c
∂x2 |

k
i,j +

h2

4!
∂4c
∂x4 |

k
i,j + . . .

+
1
2

∂2c
∂x2 |

k
i,j +

h2

4!
∂4c
∂x4 |

k
i,j + . . . +

1
2

∂2c
∂x2 |

k+1
i,j +

h2

4!
∂4c
∂x4 |

k+1
i,j + . . .

+
1
2

∂2c
∂x2 |

k+1
i,j +

h2

4!
∂4c
∂x4 |

k+1
i,j + . . .

]
− D

2

[
1
2

∂2c
∂y2 |

k
i,j +

r2

4!
∂4c
∂y4 |

k
i,j + . . . +

1
2

∂2c
∂y2 |

k
i,j +

r2

4!
∂4c
∂y4 |

k
i,j + . . .

+
1
2

∂2c
∂y2 |

k+1
i,j +

r2

4!
∂4c
∂y4 |

k+1
i,j + . . . +

1
2

∂2c
∂y2 |

k+1
i,j +

r2

4!
∂4c
∂y4 |

k+1
i,j + . . .

]
,
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⇒ Fk
i,j(c) =

∂c
∂t
∣∣k
i,j +

s
2!

∂2c
∂t2

∣∣k
i,j +

s2

3!
∂3c
∂t3

∣∣k
i,j + . . . +

u
4

[
∂c
∂y
∣∣k
i,j +

r2

3!
∂3c
∂y3 |

k
i,j + . . . +

∂c
∂y
∣∣k
i,j +

r2

3!
∂3c
∂y3 |

k
i,j + . . .

+
( ∂c

∂y
∣∣k
i,j + s

∂2c
∂t∂y

∣∣k
i,j + . . .

)
+

r2

3!
( ∂3c

∂y3 |
k
i,j + s

∂4c
∂t∂y3

∣∣k
i,j + . . .

)
+
( ∂c

∂y
∣∣k
i,j + s

∂2c
∂t∂y
|ki,j + . . .

)
+

r2

3!
( ∂3c

∂y3 |
k
i,j + s

∂4c
∂t∂y3 |

k
i,j + . . .

)]
− D

2

[
1
2

∂2c
∂x2 |

k
i,j +

h2

4!
∂4c
∂x4 |

k
i,j + . . .

+
1
2

∂2c
∂x2 |

k
i,j +

h2

4!
∂4c
∂x4 |

k
i,j + . . . +

1
2
( ∂2c

∂x2 |
k
i,j + s

∂3c
∂t∂x2 |

k
i,j + . . .

)
+

h2

4!
( ∂4c

∂x4 |
k
i,j + s

∂5c
∂t∂x4 |

k
i,j + . . .

)
+

1
2
( ∂2c

∂x2 |
k
i,j + s

∂3c
∂t∂x2 |

k
i,j + . . .

)
+

h2

4!
( ∂4c

∂x4 |
k
i,j + s

∂5c
∂t∂x4 |

k
i,j + . . .

)]
− D

2

[
1
2

∂2c
∂y2 |

k
i,j +

r2

4!
∂4c
∂y4 |

k
i,j + . . .

+
1
2

∂2c
∂y2 |

k
i,j +

r2

4!
∂4c
∂y4 |

k
i,j + . . .

+
1
2
( ∂2c

∂y2 |
k
i,j + s

∂3c
∂t∂y2 |

k
i,j + . . .

)
+

r2

4!
( ∂4c

∂y4 |
k
i,j + s

∂5c
∂t∂y4 |

k
i,j + . . .

)
+

1
2
( ∂2c

∂y2 |
k
i,j + s

∂3c
∂t∂y2 |

k
i,j + . . .

)
+

r2

4!
( ∂4c

∂y4 |
k
i,j + s

∂5c
∂t∂y4 |

k
i,j + . . .

)]
,

⇒ Fk
i,j(c) =

∂c
∂t
∣∣k
i,j +

s
2!

∂2c
∂t2

∣∣k
i,j +

s2

3!
∂3c
∂t3

∣∣k
i,j

+
u
4

{
4

∂c
∂y
∣∣k
i,j + 2s

∂2c
∂t∂y
|ki,j +

4r2

3!
( ∂3c

∂y3

∣∣k
i,j +

2r2

3!
(
2s

∂4c
∂t∂y3

∣∣k
i,j

)}
− D

2

{
2

∂2c
∂x2

∣∣k
i,j + s

∂3c
∂t∂x2 |

k
i,j +

h2

3!
∂4c
∂x4

∣∣k
i,j + 2

h2

4!
s

∂5c
∂t∂x4

∣∣k
i,j

}
− D

2

{
2

∂2c
∂y2

∣∣k
i,j + s

∂3c
∂t∂y2 |

k
i,j +

r2

3!
∂4c
∂y4

∣∣k
i,j + 2

r2

4!
s

∂5c
∂t∂y4

∣∣k
i,j

}
,

⇒ Fk
i,j(c) =

∂c
∂t
∣∣k
i,j + u

∂c
∂y
∣∣k
i,j − D

∂2c
∂x2

∣∣k
i,j − D

∂2c
∂y2

∣∣k
i,j +

s
2

∂2c
∂t2

∣∣k
i,j

+
s
2

u
∂2c

∂t∂y
∣∣k
i,j −

s
2

D
∂3c

∂t∂x2

∣∣k
i,j −

s
2

D
∂3c

∂t∂y2

∣∣k
i,j +

s2

3!
∂3c
∂t3

∣∣k
i,j

+
u
4
(4r2

3!
∂3c
∂y3

∣∣k
i,j +

4r2

4!
s

∂4c
∂t∂y3

∣∣k
i,j

)
− D

2
(h2

3!
∂4c
∂x4

∣∣k
i,j +

2h2

4!
s

∂5c
∂t∂x4

∣∣k
i,j

)
− D

2
( r2

3!
∂4c
∂y4

∣∣k
i,j

+
2r2

4!
s

∂5c
∂t∂y4

∣∣k
i,j

)
,

with respect to Equation (9),we have:

∂c
∂t

+ u
∂c
∂y
− D

∂2c
∂x2 − D

∂2c
∂y2 = 0.

And by obtaining derivative with respect to time t, we have:

∂2c
∂t2 + u

∂2c
∂t∂y

− D
∂3c

∂t∂x2 − D
∂3c

∂t∂y2 = 0,
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therefore, we have:

Fk
i,j(c) =

s2

3!
∂3c
∂t3

∣∣k
i,j + u

( r2

3!
∂3c
∂y3

∣∣k
i,j +

r2

3!
s

∂4c
∂t∂y3

∣∣k
i,j

)
− D

(h2

3!
∂4c
∂x4

∣∣k
i,j +

2h2

4!
s

∂5c
∂t∂x4

∣∣k
i,j

)
− D

( r2

3!
∂4c
∂y4

∣∣k
i,j +

2r2

4!
s

∂5c
∂t∂y4

∣∣k
i,j

)
.

Hence, the introduced difference equation is consistent with the unsteady convective-diffusion (in both135

directions) partial differential Equation (9) and has the error of order of O
(
(∆t)2 + (∆x)2 + (∆y)2)

136

wherein we want to achieve.137

3.4. Stability of the Mathematical Model138

With respect to the matrix form of Equation (19) and the boundary conditions on y, we have:

−(−p + 2q)ck+1
j+1 + Ack+1

j − (p + 2q)ck+1
j−1 = (−p + 2q)ck

j+1 + Bck
j + (p + 2q)ck

j−1 + d, (21)

for j = 2, 3, . . . , m− 2; and in j = 1, we have:

−(−p + 2q)ck+1
2 + Ack+1

1 = (−p + 2q)ck
2 + Bck

1 + d, (22)

and in j = m− 1, we have:

1
2
( ck+1

m − ck+1
m−2

2∆y
)
+

1
2
( ck

m − ck
m−2

2∆y
)
= 1.

Hence,

Ack+1
m−1 − 4qck+1

m−2 = Bck
m−1 + 4qck

m−2 + d + (−p + 2q)4∆y. (23)

The relations (21), (22) and (23) in matrix form can be written as follows:

Mck+1 = Nck + Q,

where,

M =



A (p− 2q)I

−(p + 2q)I A (p− 2q)I

. . . . . . . . .

−(p + 2q)I A (p− 2q)I

−4qI A


m2×m2

,

ck+1 =

[
ck+1

1,1 , ck+1
2,1 , . . . , ck+1

m,1 , ck+1
1,2 , ck+1

2,2 , . . . , ck+1
m,2 , . . . , ck+1

m,m

]T

m2×1
,

ck =

[
ck

1,1, ck
2,1, . . . , ck

m,1, ck
1,2, ck

2,2, . . . , ck
m,2, . . . , ck

m,m

]T

m2×1
,
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N =



B (−p + 2q)I

(p + 2q)I B (−p + 2q)I

. . . . . . . . .

(p + 2q)I B (−p + 2q)I

(p + 2q)I B


m2×m2

;

Under matrix Q:

Q =


d
d
...

d + f


m2×1

,

and f = 4(−p + 2q)∆yI. With respect to the stability concept by [32], here we pursue the suitable
stability condition for the above difference equation. Suppose at first, for a small perturbation, we put
ck+1
∗ instead of ck+1 and ck

∗ instead of ck. Then, we consider:

M(ck+1 − ck+1
∗ ) = N(ck − ck

∗) + Q−Q;

For, ek+1 = ck+1 − ck+1
∗ , we have: Mek+1 = Nek; therefore, ek+1 = M−1Nek; hence, ‖ek+1‖1 =

‖M−1Nek‖1 ≤ ‖M−1N‖1‖ek‖1 = ‖M−1N‖k+1
1 ‖e0‖1; also, we have: ‖M−1N‖1 ≤ ‖M−1‖1‖N‖1 (we

take ‖.‖1 [33]). Since matrix M is strictly diagonally dominant, it is invertible and ‖M−1‖1 6= 0. Define
T = M

‖M+I‖1
, ‖T‖1 ≤ 1. Obviously, we have: ‖M + I‖1 6= 0 (wherein ‖M + I‖1 = p + 2q + 3),

[
I − (T − I)T−1][I + T − I

]
= I,

‖T−1‖1 = ‖I − (T − I)T−1‖1 ≤ ‖I‖1 + ‖T − I‖1‖T−1‖1,

(1− ‖T − I‖1)‖T−1‖1 ≤ 1; (‖T − I‖1 ≤ 1) −→ ‖T−1‖1 ≤
1

1− ‖T − I‖1
.

Now, by substitution of M
‖M+I‖1

, we have:

‖( M
‖M + I‖1

)−1‖1 = ‖M + I‖1‖M−1‖1 ≤
1

1− ‖ M
‖M+I‖ − I‖1

;

⇒ ‖M−1‖1 ≤
1

‖M + I‖1 − ‖M− ‖M + I‖1 I‖1
;

⇒ ‖M−1‖1‖N‖1 ≤
‖N‖1

‖M + I‖1 − ‖M− ‖M + I‖1 I‖ 1

≤ 4 + 14q + 2p
4 + 18q + 2p

< 1.

Hence, for real and positive values of p and q, the difference scheme is unconditionally stable.139

This means that for each ∆t, ∆x and ∆y, the difference scheme is unconditionally stable.140

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 January 2020                   



14 of 18

Figure 1. The numerical simulation of the proposed approximation method for equation (9) with
∆x = 0.01, ∆t = 0.01, ∆y = 0.01, p = 0.02, q = 0.12, u = 0.4, D = 0.24

Figure 2. The numerical simulation of the proposed approximation method for equation (9) with
∆x = 0.05, ∆t = 0.05, ∆y = 0.05, p = 0.02, q = 0.12, u = 0.4, D = 0.3

Figure 3. The numerical simulation of the proposed approximation method for equation (9) with
∆x = 0.01, ∆t = 0.01, ∆y = 0.01, p = 0.02, q = 0.12, u = 0.4, D = 0.7
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Figure 4. The comparison of the obtained solutions of the proposed approximation method and exat
solution for equation (9) with various values of D.

Figure 5. Comparison between exact and approximate solution for equation (9) with various values of
D.
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Figure 6. Stability of the approximate solution for equation (9) with various values of D.
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4. Numerical Investigation of the Present Study141

In the present study, the unsteady convective-diffusion (in the both directions) partial differential142

equation (9) together with the boundary (9a, b), entrance (9c, d) and initial (9e) conditions is solved143

numerically by the finite difference scheme. For this, the first order derivative in time is approximated144

by the second order difference formula and the diffusion terms in axial and radial directions is145

expressed by the second order Crank-Nicolson difference operator. On one hand, the approximation of146

convective term in the governing equation by central differences provides the non-physical oscillation147

in the solution. On the other hand, upwind finite difference scheme gives the solution free from148

the oscillation but it reduces the accuracy of the solution. Thus, for retaining the second order149

accuracy of the solution for convective term, the Crank-Nicolson second order accuracy of the finite150

difference scheme is used to approximate the convective term which provides the solution free from151

the oscillations. The finite difference formulation leads to a system of linear algebraic equations which152

needs a technique for computing the solution. It may be noted that the system has the tri-diagonal153

character [34]. Such a system can be solved by the point iterative methods. However, the convergence154

of the point iterative methods is very slow. In order to achieve faster convergence, we can use the line155

iterative method. This method uses the tri-diagonal character of the coefficient matrix of equation, and156

is easy to solve by the Thomas algorithm. Further, it may be noted that, by using this technique, the157

equation involves an unknown c at every row for a fixed time level which saves the storage on the158

computer. According to the Lax’s equivalence theorem, mathematical proofs of the numerical solution159

technique were obtained. Hence, the consistency and stability of the equations were investigated which160

assure the convergences. Computations have been done for ten intervals with x=0.1 in the positive161

x direction, the step size y=0.1 in the positive y direction and the time step t=0.05 in the positive t162

direction. The programs were tested even for the smaller step sizes. The technique described here can163

be used to solve any linear system of unsteady convective-diffusion partial differential equation where164

the axial diffusion term is ignored. Further, we may point out that the technique works in the equations165

including axial diffusion term as well wherein we have done here in the form of the equation(9).166

5. Numerical results167

In this section, we show the numerical simulation of the proposed approximation method for168

various values of D, u, ∆x, ∆y, ∆t, p, q to verify the efficiency of the proposed numerical method. The169

numerical simulation of the proposed approximation method in Figures 1 to 4 are shown. The170

behaviour of the obtained error for different values of D are presented in Figure 5. In Figure 6 stability171

of the approximate solution for equation (9) with various values of D are presented.172

6. Conclusions173

In the present study, we have considered a mathematical model for studying the non-steady174

transport of oxygen in a slab of capillary. The capillary is assumed to be a two-dimensional channel175

in dimensionless form. We have found that the difference equation which is described here, has the176

same higher order of accuracy, wherein we want to achieve. We have increased the order of accuracy177

from our previous study O[(∆t) + (∆y) + (∆x)2] [35], to the present higher order scheme using the178

Crank–Nicolson method, i.e., O[(∆t)2 + (∆x)2 + (∆y)2]. For stability condition, we have seen that, the179

equations presented in the previous sections, are all stable and the results converges well. Further,180

numerical results show that the axial diffusion does not effect the process of the oxygenation in a slab181

of the capillary.182
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