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Abstract: In the present study, a mathematical model of non-steady partial differential equation from
the process of oxygen mass transport in the human pulmonary circulation is proposed. Mathematical
modelling of this kind of problems lead to a non-steady partial differential equation and for its
numerical simulation, we have used finite differences. The aim of the process is the exact numerical
analysis of the study, wherein consistency, stability and convergence is proposed. The necessity of
doing the process is that, we would like to increase the order of numerical solution to a higher order
scheme. An increment in the order of numerical solution makes the numerical simulation more
accurate, also makes the numerical simulation being more complicated. In addition, the process of
numerical analysis of the study in this order of solution needs more research work.

Keywords: non-steady partial differential equation; higher order finite difference s cheme; axial
diffusion; convergence; consistency; stability
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1. Introduction

A brief review literature is given as follows: Wu et al. [1] have presented a numerical simulation of
blood flow in two anarysmal vessels, using mixture theory, the velocity fields and spatial distribution
of the red blood cell-induced platelet transport in Saccular Aneurysms and the plasma are predicted.
Bridges et al. [2] have studied the flow of a shear-thinning, chemically-reacting fluid that could be used
to model the flow of the synovial fluid. They have solved the balance of linear momentum together with
a convection-diffusion equation. Hund and Antaki [3] have proposed an extended convection-diffusion
model based on the diffusive balance of a fictitious field potential, that accounts for the gradients of both
the dilute phase and the local hematocrit. Wu and Massoudi [4] have studied the effects of dissipation
in the couette flow and heat transfer in a drilling fluid, and explore the effects of concentration and
the shear-rate and temperature-dependent viscosity, along with a variable thermal conductivity .
Massoudi and Antaki [5] have developed a model for blood using the theory of interacting continua,
that is, the mixture theory. They have discussed, a framework for modelling the rheological behavior of
blood. Skorczewski et al. [6] have considered computational simulations using a 2D lattice-Boltzmann
immersed boundary method were conducted to investigate the motion of platelets near a vessel wall
and close to an intravascular thrombus. Burger’s equation [7] (Johannes Martinus Burger), a Dutch
scientist, devised a simplified form of Navier—Stokes equation, in the presence of convective term and
diffusive term wherein uses the study of opposite effects of convection and diffusion at a basic level.
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This equation is fundamental in modelling shockes and has found immense application in area of
viscous flow, such as blood flow in a creeping fluid. Zhan and Wang [8] have studied mathematical
modelling of convection enhanced delivery (CED) of chemo-therapeutic drugs which can successfully
bypass the blood-brain barrier. The modelling demonstrates the advantages of convection enhanced
delivery in enhancing the convective flow of intenstitial fluid and reducing the drug concentration
dilution caused by the fluid loss from blood stream in the tumour region around the infusion site.
The delivery outcomes of the drug in CED treatments are strongly dependent on its physico-chemical
properties. Kaesler et al. [9] computed computational modelling of oxygen transfer in artificial lungs.
Their study introduces an approach to model the oxygen transfer in blood on a fiber level with CFD.
Plasma and RBCs were implemented as two phases and the reaction of hemoglobin and oxygen to
oxyhemoglobin was included in the convection-diffision equation in form of a source term. Melnik and
Jenkins [10] concentrated on computational control of flow in airblast atomisers for pulmonary drug
delivery. In the paper, PDD systems based on airblast atomisation have been analysed mathematically.
Mountrakis et al. [11] simulated RBCs and platelets to explore their transport behavior in aneurysmal
geometries. They considered two aneurysms with different aspect ratios in presence of fast and slow
blood flows, and examined the distributions of the cells. Whittle et al. [12] suggest that the presence
of intra-aneurysmal clot in giant intracranial aneurysms has little prognostic significance and does
not alter the management or outcome after treatment. Hirabayashi et al. [13] considered a lattice
Boltzmann simulation of blood flow in a vessel deformed by the presence of an aneurysm. They
propose a stent positioning factor as characterizing tool for stent pore design in order to describe the
flow reduction effect and reveal the several flow reduction mechanisms using this effect. Weir [14] is
reviewed the pathological, radiological, and clinical information regarding unruptured intracranial
aneurysm. The author concluded that the current state of knowledge about unruptured aneurysms
does not support the use. The largest diameter of the lesion as the sole criterim on which to base
treatment decisions, although it is undoubted importance.

Now, apart from the above discussion on convective-diffusion equations and in the remaining
short span of the time and pages in this study, we try to examine higher order finite difference scheme
to approximate time-dependent partial differential equation including axial and radial diffusions
with convective effect of the blood. The standard convection-diffusion model is based on continuum
approach wherein we are using here. Also, our approach want to examine the effect of axial diffusion
since normally most of the models consider only radial diffusion as we did in our previous studies.
Here, it should be mentioned that, to our knowledge this happens for the first time in this order
of magnitude. Further, this kind of equation has application in bio-engineering problems, e.g.,
propagation of material [15], boundary layer of fluids, electrical circuits in cables and the mass transfer
problems with respect to the conditions [16-26]. In addition, our discussion is on the convergence,
consistency, and stability [27] of finite differences equations which describe the model.

2. Mathematical Description of the Model as a Whole

Let us consider at first, the RBC distribution and the blood flow transport. When we have
succeeded, we can add aneurysms wherein it has been described in the different literature in
introduction in our future study.

In the pulmonary capillaries, we have:

dci(p, t

%P0 _ )+ Rilp,t) )
where ¢;(p, t) is the concentration of the i-th species (i.e., oxygen or carbondioxide) at the position p
and the time t. Position p in Cartesian co-ordinate is (x,y, {) or in polar co-ordinate is (7,6, ) with
an origin [22]. The quantity J;(p, t) is equivalent to the sum of the fluxes of species and R;(p, t) is the

reaction due to non-linearity of the i-th species in a unit quantity. Flux vector is the sum of two vectors
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of convection and diffusion and is according the Fick’s first law of diffusion. Hence, the mass balance
in the Equation (1) for the i-th species is[24]:

aci(aiz,f) = —V.[o(p, t)ci(p,t) — Di(p)Vei(p, t)] + Ri(p,t), @)

even due Equation (2) is in capillaries, it can be written more precisely as:

aci(x,r,t) aci(x,r,t)

o = —o(r) gy + Divzci(x, r,t) + Ri(x,7,1), (3)

2 _ -10 , &
where V= = &5 + 17 5 + 5.
Initial condition ¢;(x,7,0) can be taken arbitrary, or with the solution of the steady-state
Equation (3) as a whole. Boundary conditions could be as the following:

(i) concentration in the beginning is zero or finite and for the flux (radial) W atx = L (at theend
of capillary) is constant,

(if) W = 0 (symmetry at the center of capillary), and

(iii) another condition is at the capillary wall where the derivative of the equations will be considered,
wherein depend on the species. For oxygen which is combined with the hemoglobin inside RBCs,
concentration in Equation (3) is the concentrations of plasma and RBCs. Hence, the diffusion has two
components, first diffusion in plasma and the second, diffusion of oxygen which is corresponded to
the diffusion of oxygen in the RBCs.

2.1. In the Tissues

We have the following:

aci(p,t)
ot

= V.[Di(p)Vei(p,H)] + Ri(p, 1), @)
hence, in tissue and at polar co-ordinate, we have:

oc(x,r,t)

FYa DV2¢(x,r,t) + R(t). (5)

2.2. Transport Inside the Components

Differential equations is inside the tissues, and if we want the space of the cells, we should add
again boundary conditions. A condition in connection of blood concentration and tissue condition
which is regarding the influence of capillary wall. With continuity assumption of the capillary wall,
we have:

c(x,a,t
0,0y = 20, ©
dc(x,a,t),  _dc(x,a,t)
D—="—=lp=D—5 "l @)

where b and t stands for blood and tissue. Equation (6) announce that blood in the capillary wall is
equivalent to that of tissue (with a coefficient of &) and Equation (7) expresses that there is a balance
between capillary and the tissue. If the capillary wall has a permeability, the Equations (6) and (7) will
be:
dc(x,a,t
—[D¥] b = p(x)[cp(x,a,t

- (p2ady, ®)

- ct(x,a,t)]
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At the end, mathematical models for the description of transport equations in the pulmonary capillary
and surrounding tissue is considered in this section. Equations (1)—(7) show the vector flux of the
convection and diffusion which is based on Fick’s first law of diffusion. These equations are described
in Cartesian and polar co-ordinates. For solution of equation, arbitrary initial condition and boundary
conditions of (i) to (iii) is required. If capillary wall has a permeability, Equation (8) can be used [29].

3. Mathematical Description of the Model in the Present Study

New, we consider the following time-dependent partial differential equation as a simplification
of section 2. Such an equation occurs in the transport of oxygen in a slab of capillary which depends
on the unsteady transport by convection and the unsteady diffusion (axial as well as radial in the
directions). The capillary is assumed to be a 2D channel of thickness 2a and a = 1, respectively. Hence,
the equation is:

¢t + ucy = D(cxx + Cyy), 9)

for0 <x <1;0 <y <landt > 0. In the capillary slab, the flow is laminar and is assumed to be
uniform with an average velocity u = 0.4, and the diffusion coefficient of oxygen is considered as a
constant quantity, D = 0.24. The first and second terms on the left-side are respectively the rate of
change of concentration per unit time and the transport due to convection whereas the terms on the
right-side indicate the free molecular diffusion in the radial as well as axial directions. Equation (9) is
to be solved under the following boundary, entrance and initial conditions.

(i) Boundary conditions:
(a) the flux of flow during the line of symmetry is zero, e.g.,

cx(0,y,t) =0;forVtand0 <y <1, (9a)
(b) at the wall of horizontal line, we have:
c(Lyt)=1forVtand0 <y <1, (9b)

(ii) Entrance conditions:
(c) in the start of axial direction, we have:

c(x,0,t) =0;forViand 0 < x <1, (9¢)
(d) and at the wall of axial direction for the flux, we have:
cy(x,1,t) = L;forVtand 0 < x <1, (9d)

(iii) Initial condition:
(e) for the initial condition, we have:
c(x,y,0) = 0;forx > 0andy > 0. (%e)

3.1. Description of the Domain Using Finite Difference Scheme

For the finite difference method, we divide the domain of interest into different meshes of net
sizes Ax, Ay and At in the x, y, and t directions respectively. Any node of the mesh can be represented
as:

x; =iAx;i=0,1,2,...,(I-1),...,n,
yi=jAy;j=12,...,(J=1),...,m,
b =kAbk=1,2,...,

wherein nAx = 1 and mAy = 1. In the finite difference approximation, by applying the central,
backward and forward finite differences for each partial derivative in Equation (9), we obtain different
difference equations, which are an approximate solution of Equation (9). In this study, with application
of some of these difference equations, we consider the consistency and stability of these equations
because there is an important connection between the consistency of a stable finite difference scheme
and the convergence of its solution to that of the partial differential equation it approximates. Lax’s
equivalence theorem [30] states that if a finite difference approximation to a well-posed linear initial
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value problem is consistent, then stability is a necessary and sufficient condition for convergence.
The two restrictions which apply to this theorem should be carefully noted. Firstly, the initial value
problem must be well-posed; that is, the solution of the partial differential equation must depend
continuously on the initial data. Secondly, the theorem only applies to linear problems. The important
feature of linear equations is the sum of separate solutions are also a solution of the equation, which
leads to the fact that the error terms themselves satisfy the homogeneous form of the finite difference
equation which approximates the given differential equation. This theorem is of considerable practical
importance. For while, it is relatively easy to show that a finite difference equation is stable and
that it is consistent with a partial differential equation. It is usually very difficult to show that the
solution of a finite difference equation converges to the solution of the partial differential equation
that it approximates. Lax’s equivalence theorem is needed to prove convergence in order to the finite
difference approximation to the unsteady convective-diffusion Equation of (9), because the given
differential equation is linear and is well-posed, it is sufficient to prove consistency and stability of the
finite difference approximations of the Equation (9).

3.2. Appearance of Difference Equation by Application of Crank—Nicolson Method

For the partial derivatives in the Equation (9), we use central finite differences at the points
(iAx, jAy, (k + $)At) as follows:

Lot

et = 5 (cf; cf ;) +0{(ar)?},
T S
L L= L L= 2
=3 o{(A ,
Cy 2[ ZAy + ZA]/ }dl_ {( ]/) }
k k+1 k+1 k+1
S S 1 b OV 2 B i TP TR
=72 (AP (AP '
and
k k+1 k+1 k+1
= L[ T2 e G T2 e o
P2 I (Ay)?
we put these approximations in Equation (9):
k+1 k ck k k+1 k+1
Cij i LU [ Cijr1 ~Cij1  Cijr1 ~Cij 1]
At 2 2Ay 2Ay
k k+1 k+1 k+1
:B[Ciﬂf 2c —l—cl 1 CH_L]-— +c 1]]
2 (Ax) (Ax)
k k+1 k+1 k+1
I B [Ci,j—‘rl 2C + C1] 1, CSijr— + Cij— 1]
2 (Ay) (Ay)
Hence, we have:
ck'ﬁ'l — c],(, u
L) L] k k k+1 k+1
Af + m [(Ci,j-i-l - Ci,j—l) + (Ci,j+1 - Ci,]‘fl)]
D k k+1 k+1 k+1
- 2(Ax)2 [(Ci+1] 2’: it Cz 1]) + (Ci+1,j =26+l 1,]>]
D 1k G ookt 4 e
+ Z(Ay)z [(Ci/f*l ZC + Cl] 1) + (Ci,j-i-l -2 + Cl] 1)]
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At DAt DAt
which is the difference equation of Equation (9). By taking, p = (”Ay) and g = (( Ax)Z) = (( Ay)z) wherein
Ax = Ay, we have:
k+1 Pk k k+1 k+1
CZT - C it 4 [(Ci,j+1 - Cij—l) + (CJH - Ci;il)]
q K+l k 1 k+1
:E[(1+1] 26 +Cz 1])+(1I1] 2 + +Cl+1])]
1 k+1 k 1, .+l
+§[( Fit1 —2ck. +cl] D)+ (e — 2 * +c1]+ Dl
wherein, we have:
k+1 k41 k41
4l - +P[( Cij+1 — 1]‘ D)+ (e — )]
k+1 K+ k1
_Zq[( i1, 2c +cZ 1])—1-(0111].—2 * +c1+1])]
k k k
+2Q[(Ci,j+1 2c it cZ] 1)+ (ciﬁ1 —2¢f “ + cjll)]
and
—2qc ]+ (44 8q)ck T — 2 = 2qf ;+ (4 8q)c; + 24cf
k+1 k+1
+p(c Cij—1— zj+l) +2‘7(Ci,]>1 + Ci,j+1) + P(Cif_l - Ci,}:—l)
+2g(MHL 4 KLY, (10)

i,j—1 i,j+1/7

where,i =0,1,...,n—-1;j =1,2,...,mand k = 0,1,2,.... With application of the boundary and
initial conditions, we have: with respect to Equation (9b) for each j and k, we have:

k.o=1, (11)
with respect to Equation (9¢c) for each i and k, we have:
cfy=0. (12)

Here, for numerical solution, we consider m=10. Therefore, by using central differences and with
respect to Equation (9d), for each i and k, we have:

k k k+1 k1
R e e 2
Cy—g[ ZAy + ZAy ] +O{(Ay) }/
andj:m:10.:>Ay—— = Ay = 0.1. Thus,
k k k1 k+l
1— }[Ci,n —Cfo | Cid1 —Cig ] (13)
2 0.2 0.2 ’
and
Cii +cin = 04+ gt +cly; (14)

where we use the terms cﬁrll + cfll from Equation (14) in the numerical solution of Equation (9). With

respect to Equation (9e) for each i and j, we have:
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and with respect to Equation (9a) for each j and k, we have:
k k k+1 k+1
1. Cit1j—C-1j  Cip1j— G ’
== : - - - O{(Ax)"},
R 7 v TN R
ati = 0, we have:
k+1 k+1
0= E[C'if — ¢y n 4y Cfu]
2t 2Ax 2Ax Y
and therefore,
k+1 k+1 k
c J{]-I—c 1= clJ]r i (16)
Now in Equation(10), we have:
2qckJrl +(4+ 8q)c’5J]rl ZquJrl = chk_llj +(4- 8q)c76]- + chll‘]-
k k k k+1 k+1 k+1 k+1
+ plegj1 — Co,j+1) +2q(co i1 + o jy1) + Iﬁ’(CoJJr 1= CoJ]rH) + 2‘1(60321 + CO}H),
with application of Equation (16), we have:
k k k
ZQ(CIIJ;l +o1,) +(4+ SW)COJJA 2q¢y = (4- 8’1)%] + 2‘101] + p(CO] 1 Clé,j+1)
k k+1 k+1 k+1 k+1
+2q(cp -1+ CO,j+1) + P(COJ]r 17 CoJ]FH) + Zq(coj_l + Cojﬂ)f
wherein,
k k
(4+8q)ch ! —4qef !t = (4 —8q)ch; +4qc} ; + p(ch ;1 — cb41)
k k k+1
+ 2‘7<C0] 17T CO]+1) + p(coyll - C()J]ril) + Zq(cojﬁl + Coj+1)- (17)
Now by putting i = n — 1, in Equation (10), we have:
k
—2qcy (44 8q)ch T — 2q0k it = 20 i+ (4= 8q)ch_y ; + 2qc),
k k k
+p(ch_ 1,j-1 — Cn—1,j+1) +2q(cu_1,j-1 + _1j41)
k+1 k+1 k+1 k+1
+ple o — el j) 20065 6 )
and with application of Equation (11), we have:
~2qck )+ (44 89)ck T — 29 = 2q¢) o + (4= 84)ch_y; +29
k k k
+p(ch o1 — 1) +2(ch 11+ 1)
Jj= ] ] ]
k+1 k+1 k+1 !
P11 — i) F24(6 0+ 60 )
hence, we have:
k k k k k
—chntlzlj + (4 + Sq)cntll] = zqcn 2,j (4 - Sq)cn 1, + P(Cn 1,j-1 Cnfl,j+1)
k+1
+2q(ch 1j-1 7T i 1j+1) pley” 1] 1 Cntl,j-i-l)
+2q(ch g o) +4g. (18)

Now with application of Equations (10), (17) and (18), the matrix form of Equation (9) can be as follows:

Acji1 = Bejr +plej—1x — ¢jrix] +29[ci-1x + cjy1k]
+plej—rhr1 = Gkl + 29011 + Gl + 4, (19)
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where, A and B are square matrices of tri-diagonal dimensions of order n as follows:

[ 4+87 —4q

—2q 4+87 —2q

—2q 4+8;5 -—2g

—2q 4+38g |

and

2g 4-85 2q

2g 4—-83 2q

d and c; 1 are column vectors of order n as bellows:

T

T
_ _ | k41 k+1 k+1
d= [0,0,...,O,4q] , Cik+1 = [Co,j L e Gyl

132 wherein with the solution of this system by using Gauss elimination method or Gauss-Seidel method
133 or Thomas algorithm, the ¢; ;1 can be find.

13a 3.3. The Truncation Error and Consistency

Difference equation of Equation (9) is as follows:

1 u 7
k k+1 _ k k k k+1 k+1

D k koL ok K+ k41, k41 ]

- 2(Ax)2 |:(Ci+1,j - 201‘,]‘ + Ci—l,j) + (CiH,j - 26,-,]- + Ci—l,j)

D -

ij+1 ij—1

k k k k+1 k+1 k+1
Z(Ay)z |:(Ci,j+l — 2Ci,j + Ci,j—l) + (C o 2Ci,7_ + C‘-"_ ) .
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Since l"i-" i = Fl-’f]-(c) ; therefore by taking s = At, r = Ay and h = Ax and applying Taylor series [30]
about the point (iAx, jAy, kAt), we have:

ac . s2d%

k+1 _ k k
¥Cj TGty i,j+iﬁ|i,j+~-r (20)
dc 2 9%¢ r 93¢
koo k k k k
*Ci,j-i-lici,]'—'—ray if]‘+iaiyzifj+§@ir]'+'”’
ac 2 9%¢ 3 d%¢
R Sl | TR | S |
W R T L R T el
Jdc h? 9%c 13 93¢
k _ k k k k
*Ci+1,j_ci,j+h£ l’]+jﬁ i,j yﬁ i,j ey
d h? 92 n3 93
*C;(,ljzc;(j—h—c;‘.—F——Ck‘———ck.—k...,
z . ox 't 20 9x2' 31 gx3 '
ac oc s2 9%¢ 2sr d%¢c
k+1 __ k k k k k
e TG S g oy i e i aray

r2% . 23 3% Pc . 3sr? B

T oray2ii T 3195 T 3 aray W T AT aray? i
P, statc, ot

4 — e |
31oy3 W T 4l grd i T 4r gyl ’

ac,  dcy  s2d%c,  2sr dc

k+1 _ k |, Sl | S |,
R T A M R T T R TR T
2% 9%, 3% c ;. 3sr? B
T21ay2 T 3 T 3T aray T A atay?
3 3¢ k
- Gl
ac dc s2 9%¢ 2sh 9%c
k+1 _ k k k k k
i) = g Tl T g T ar raxl
W2 9%, 2%,  3s?h c ;,  3sh? PBc
a2l T aas i T R arzax T 31 arax? i
h3 a3C k
Tarae it
k1 _ k aC k haC k 52 820 k 25]1 aZC k
B R T A M AT oA R TR T

W2 0%, s2d%, 3sh 93¢ ,  3sh® PBc
2ox2 v T 3195 1 T 31 affox ' T 31 otax?
h3 830 k
- ﬁ@ i,j DI

+
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In the following expressions, we can find I'f i
1 U
k k+1 _ k k k k+1 k41
Fi(c) = g[cif —cij] + o [(Ci,j-'rl — 1)+ (ci,jtrl _Cifl)]
D |k k K k K K Kk Kk
o2 {(Ciqtl,j — i)+ (6 —cj) + (Cz'j-rll,j -¢ ,]H) + (Cijll,j - Ci,jH)
D « k k k k1 kil SR St
_21,2{(Ci,j-l-l_Ci,j)+(ci,j—1_Ci,j)_’_(ci,}':l_cij )+ (G =i
1 dc ks 0% s3 3¢
k k
= Fjlo) = ( j+s ghﬁgﬁh 3!ﬁ\i,]’ )
u dc k1% 3 3¢ & K
+4r[( i+ raghit aragh syt <)
dc k  r* % r 3¢ k
k k
- (Ci,j—T@ i T 2oy i,j_ 3195 it cig)
e k+1+ 9C k+1 f& k+1+faic k+1 —c’.‘.“)
ay i 21 9y2 i 31 ay3 i ]
— (k1 _r@|k+1 r2 % ke1 1 9% ke — k)
b dy ' 21 9y2 i 3! 9y3 i ]
D k aC h 82 I’l3 aBC k k
— o |+ g+ e+ 3l o = <)
oc |k h 0%c W3 3¢k k
(e =l sl am e e — )
8ck1 h8ck1 h383k1
k+1 + + + okl
e gl T gl arasly e al)
+ ( k+1 h% k+1 h a c ’kJrl . @& k+1 k+1)
L ox ' 2' ox2li 3! 0x3 i B
D[, i 0ok r*d%cx 1 dcpk P
27 |+ oyl t gl syl T )
P} 282 383
+(c£‘<j—r—c|]‘<‘+r——c k _DJCk —ck)
J T oyl T 8y2 ij 310y i ij
ac ki1 1?93 k1 3 93¢ k+1
k+1 k+1
+( +r @’ +EW| 3!87y3i'j +"'7ci,j )
oc k41 2% k41 12 93¢ k41
k+1 _ . 9¢ r-oc k+1
+(Ci,j ray|i,j 22l Blagdlii — G )|
oc ks 9%k 23k ek r?d%c ok 1?2
k _ oc sSoc S .
= Fijle) = 8t|iff 2! atz‘iff 3! 8t3|11Jr 3 ByllljL 319y3 ’J+ - E)]/‘ZJJr 3! 9y3 b o
ac k+1 1?33 g ac k+1 1?33 g D[1d% ,  h* 3%,
Tayli Taraals t +ay|1] +§$1] +oo | =S galit el
182 hzack 1aCk+l hack+1
+ el gl +§ﬁ i T alaxds T
19% yq  H? 9% jq D[1d% ,  r*d* 19% ,  r?d%c
2ax2il T ataxilis T T2 |2ag2 W T aaa i T T ag2lii T gyl
+1£|k+1 rac‘kﬂ 186 rac|k+1 -
2 9y? 4! gy 20y2" 4' oy
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dc ik s ok s ¢ u do k12 836 ack  r*dc
k(c) = — 2z = — — |k
= Fijle) = at|i/f 219e i T 31 at3| T ay}i,ﬁs! oy3 bt +ay|l] 3oy '
ac k o%c |k 2, 3% d*c
+(@’i,j Satay’ij+-")+§(@ i,j+5‘atay3’i,j
ac 0%c r? ¢ i o*c D[1d% ,  h* d*
GGy lij T samy i+ o) + 3 (Gyalh + sggyalhy + -’)]‘z{zawfﬂuaxuﬁ-“
1% Maley +1(36 LT )+hj(&k s 0 )
20x2' " 41 x4 ox2'W T Totox2 M T T 41\ gxd W T T orgx T T
1,0% c W2 9tc °c 19%,  r* o
+*(ﬁ bt sameli o)+ Glh o aﬁm)] [zayz 0t 3 gyl
1 9%¢ 2 94c
28]/ el R
+1(ac +Sac N )+ﬁ(&k+585c )
A T N A A TR N B Y N A
1,9% ?3c r? 9% dc i
5 Gyalti sagalii )+ g (Gl o5yl + - )},
dcxk sk | s a3c k
k _* - -
= Fjle) = at’w‘ 21912 lij
u [ ock d%c 2r2 d*c k
+{4ay‘i1+2 atay ']+ 3! (ay3|l] D ( Satay3 i/f)}
_Z az| | }LE| +2’12 Pk
2ol atax2 3 o i 2T gt i
Pe  rPake r2
N ay2|1] aro2 v T 31 8y4|11 4'Satay4|w' ’
oc (k oc |k 0c 0%c s 9%c
k() — %€ gk _pZok _
= Fj(0) = gl T gy lii ~ Dozl ay i+ aaeh
3 $2 93¢
LSy 02 c| d°c k_Sp } §°d°c 3
2" otdy i 2 otox2ij 2 atay2 Lj = 31 ot3 i
u 4r* 93¢ 4r2  d*c k
*(?ﬁw PRy
D W2 9%k  2n* dc & D r? 9%
2 Gy T li) ~ 2 G 8y4|/1
+ sl
otoy* 't
with respect to Equation (9),we have:
B e P P
oty dx? awyr
And by obtaining derivative with respect to time t, we have:
9%c 9%c 3¢ ¢
32 "3y~ Pame " Pame =Y



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 January 2020

136

137

138

12 0f 18

therefore, we have:

() = s 83c’ (r 93¢ k1 1,2 | )

i€ T 3l 319y3ij ' 3l 8t8y3 i
h? o*c 2n2 Pc r?o*ck  2r2 dc &
(3| ax4|z] TR i) (5374 FREPTRPTEN i)

Hence, the introduced difference equation is consistent with the unsteady convective-diffusion (in both
directions) partial differential Equation (9) and has the error of order of O((At)? + (Ax)? + (Ay)?)
wherein we want to achieve.

3.4. Stability of the Mathematical Model

With respect to the matrix form of Equation (19) and the boundary conditions on y, we have:

—(=p+29)cf + AT = (p+29)d = (—p+29)cky + Bk + (p+29)cf +d, (21)
forj=2,3,...,m—2;and in j = 1, we have:
—(—p+29)c5 + AKT = (—p +29)ck + Bk + 4, (22)
and in j = m — 1, we have:
Ly L ey s
2 2Ay 2 2Ay
Hence,
Acy ™y — 4gc "y = Be g +4qc, 5 +d -+ (—p +29)40y. (23)
The relations (21), (22) and (23) in matrix form can be written as follows:
M = Nk 4 Q,
where,
A (p—29)1 ]
—(p+29)1 A (p—29)1
M = ,
—(p+29)L A (p—29)1
L —4q1 A 12 sm?
1 [c’ﬁl,cﬁl, O A S s SO s SO ’,;*,}1} ;Xl,

T
k k k k k k k k
c = |:C1’1, Cz,l’ e /Cm,l' C1,2/ C2,2, e ,lez, e ,Cm,m:| ’
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[ B (—p+29)I 1
(p+2q)1 B (=p+29)1
N = ;
(p+2g)1 B (=p+29)1
I (p+29)1 B |
Under matrix Q:
d
d
Q= : ,
df |

and f = 4(—p + 29)Ayl. With respect to the stability concept by [32], here we pursue the suitable
stability condition for the above difference equation. Suppose at first, for a small perturbation, we put

c**1 instead of c**1 and ¢k instead of c¥. Then, we consider:
M — Yy = N(F =K+ 0 - @;
For, et1 = &1 — k41 we have: Mef™! = Nek; therefore, ¥t = M~INek; hence, ||fT||; =

IM~'Nek|ly < [ M~ 1N||1||€k||1 = [MTIN|[[|e%]1; also, we have: [[M~INI|y < [M~![l1[|N]1 (we
take ||. ||1 [33]). Since matrix M is strictly diagonally dominant, it is invertible and ||[M~!||; # 0. Define

T = HM+I|| ,IT|[1 < 1. Obviously, we have: | M + I||; # 0 (wherein |[M + I||; = p+2q +3),

I—(T-DT Y[I+T-1]=1,
1T =11 = (T = DT < 1+ IT = 1R T,

_ _ 1
(A= IT = HIT < 10T = Tl 1) — Ty < 5
1] 1
Now, by substitution of V=TT HH , we have:
M 1
Syvesmel U= M+ Il lIM < M ;
1
= [[M7Mh <
M+ 10— [M = [M+ T
- N2
= [M7H1[INJl <
M+ T[[y = [M = [[M + [ 1]|;
cAtl4g+2p
~4+18g+2p
130 Hence, for real and positive values of p and g, the difference scheme is unconditionally stable.

140 This means that for each At, Ax and Ay, the difference scheme is unconditionally stable.
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The numerical simulation of the proposed approximation method for
A x=0.01,A t=0.01,A y=0.01,p=0.02,q=0.12,u=0.4,D=0.24

The numerical si ion of the prop d approximation method for
A x=0.01,A t=0.01,A y=0.01,p=0.02,q=0.12,u=0.4,D=0.24

Clxy.t)

Figure 1. The numerical simulation of the proposed approximation method for equation (9) with
Ax =0.01,At =0.01,Ay = 0.01,p = 0.02,g = 0.12,u = 04,D = 0.24

The numerical simulation of the proposed approximation method for
A x=0.05,A t=0.05,A y=0.05,p=0.02,=0.12,u=0.4,D=0.3

The numerical si ion of the proposed approximation method for
A x=0.05,A t=0.05,A y=0.05,p=0.02,q=0.12,u=0.4,D=0.3

Cxy.t)

Figure 2. The numerical simulation of the proposed approximation method for equation (9) with
Ax = 0.05,At = 0.05,Ay = 0.05,p = 0.02,4 =0.12,u = 04,D = 0.3

The numerical simulation of the proposed approximation method for The numerical simulation of the proposed approximation method for
A x=0.01,A t=0.01,A y=0.01,p=0.02,q=0.12,u=0.4,D=0.7 A x=0.01,A t=0.01,A y=0.01,p=0.02,q=0.12,u=0.4,D=0.7

Cxyt)

Figure 3. The numerical simulation of the proposed approximation method for equation (9) with
Ax = 0.01, At = 0.01, Ay = 0.01,p = 0.02,g = 0.12,u = 0.4,D = 0.7
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>, o ——D=0.24 ~
X ——D=0.4
© —D=0.7
ir D=0.9 )
- - -Exact
0.5 3
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X

Figure 4. The comparison of the obtained solutions of the proposed approximation method and exat

solution for equation (9) with various values of D.

Comparison between exact and approximate solution when

Comparison between exact and approximate solution when
A x=0.01,A t=0.01,A y=0.01,p=0.02,q=0.12,u=0.4,D=0.6

A x=0.01,A t=0.01,A y=0.01,p=0.02,q=0.12,u=0.4,D=0.6

Cxyt)

Figure 5. Comparison between exact and approximate solution for equation (9) with various values of
D.

Stability
Stability

-1.2 3

Figure 6. Stability of the approximate solution for equation (9) with various values of D.
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4. Numerical Investigation of the Present Study

In the present study, the unsteady convective-diffusion (in the both directions) partial differential
equation (9) together with the boundary (9a, b), entrance (9¢, d) and initial (9e) conditions is solved
numerically by the finite difference scheme. For this, the first order derivative in time is approximated
by the second order difference formula and the diffusion terms in axial and radial directions is
expressed by the second order Crank-Nicolson difference operator. On one hand, the approximation of
convective term in the governing equation by central differences provides the non-physical oscillation
in the solution. On the other hand, upwind finite difference scheme gives the solution free from
the oscillation but it reduces the accuracy of the solution. Thus, for retaining the second order
accuracy of the solution for convective term, the Crank-Nicolson second order accuracy of the finite
difference scheme is used to approximate the convective term which provides the solution free from
the oscillations. The finite difference formulation leads to a system of linear algebraic equations which
needs a technique for computing the solution. It may be noted that the system has the tri-diagonal
character [34]. Such a system can be solved by the point iterative methods. However, the convergence
of the point iterative methods is very slow. In order to achieve faster convergence, we can use the line
iterative method. This method uses the tri-diagonal character of the coefficient matrix of equation, and
is easy to solve by the Thomas algorithm. Further, it may be noted that, by using this technique, the
equation involves an unknown c at every row for a fixed time level which saves the storage on the
computer. According to the Lax’s equivalence theorem, mathematical proofs of the numerical solution
technique were obtained. Hence, the consistency and stability of the equations were investigated which
assure the convergences. Computations have been done for ten intervals with x=0.1 in the positive
x direction, the step size y=0.1 in the positive y direction and the time step t=0.05 in the positive t
direction. The programs were tested even for the smaller step sizes. The technique described here can
be used to solve any linear system of unsteady convective-diffusion partial differential equation where
the axial diffusion term is ignored. Further, we may point out that the technique works in the equations
including axial diffusion term as well wherein we have done here in the form of the equation(9).

5. Numerical results

In this section, we show the numerical simulation of the proposed approximation method for
various values of D, u, Ax, Ay, At, p, q to verify the efficiency of the proposed numerical method. The
numerical simulation of the proposed approximation method in Figures 1 to 4 are shown. The
behaviour of the obtained error for different values of D are presented in Figure 5. In Figure 6 stability
of the approximate solution for equation (9) with various values of D are presented.

6. Conclusions

In the present study, we have considered a mathematical model for studying the non-steady
transport of oxygen in a slab of capillary. The capillary is assumed to be a two-dimensional channel
in dimensionless form. We have found that the difference equation which is described here, has the
same higher order of accuracy, wherein we want to achieve. We have increased the order of accuracy
from our previous study O[(At) + (Ay) + (Ax)?] [35], to the present higher order scheme using the
Crank-Nicolson method, i.e., O[(At)? + (Ax)? + (Ay)?]. For stability condition, we have seen that, the
equations presented in the previous sections, are all stable and the results converges well. Further,
numerical results show that the axial diffusion does not effect the process of the oxygenation in a slab
of the capillary.
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