Preprint
Communication

Role of Nanoparticle-Polymer Interactions on the Development of Double-Network Hydrogel Nanocomposites with High Mechanical Strength

Altmetrics

Downloads

196

Views

211

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

28 January 2020

Posted:

29 January 2020

You are already at the latest version

Alerts
Abstract
Extensive experimental and theoretical research over the past several decades has culminated in the understanding of the mechanisms behind nanoparticle-mediated enhancements on the mechanical properties of hydrogels. This information is not only crucial to realizing applications that directly benefit from developing hydrogels with high mechanical strength, but also to guide the development of strategies to further enhance hydrogel properties by combining different approaches. In our study, we investigated the effect of combining two approaches – addition of nanoparticles and crosslinking two different polymers (to create double-network hydrogels) – on the mechanical properties of hydrogels. Our studies revealed that these approaches may be combined to synthesize hydrogel composites with enhanced properties; however, both polymers in the double-network hydrogel must strongly interact with the nanoparticles to fully benefit from the addition of nanoparticles. Moreover, the concentration of hydrogel monomers used for the preparation of the double-network hydrogels had a significant effect on the extent of nanoparticle-mediated enhancements; double-network hydrogel nanocomposites prepared using lower monomer concentrations showed higher enhancements in elastic moduli compared to those prepared using high monomer concentrations. Collectively, these results demonstrate that the hypotheses previously developed to understand the role of nanoparticles on the mechanical properties of hydrogel nanocomposites may be extended to double-network hydrogel systems and guide the development of next generation hydrogels with extraordinary mechanical properties through a combination of orthogonal approaches.
Keywords: 
Subject: Chemistry and Materials Science  -   Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated