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1 INTRODUCTION

Consider a Shanon-Bernoulli process P defined as a sequence of independent binary random variables X1, X2, X3 ...
Xn. For each element the value can be 0 or 1. All values have a given probability p. Thus the process is a sequence of
independent and identically distributed Bernoulli trials. Let H(P) be the binary entropy function defined as the entropy
of a Bernoulli process with probability p of one of two outcomes. A state is the representation (i.e. encoding) of a choice
of the possible values for p. For any given trial there is no information about previous executions and future outcomes.
Each execution of the process is stateless [19] [2]. Let a function g(X) be an indexing function. This function is a utility
function used to represent a preference of ordering and is used to compare if alternative state A is preferable against
alternative state B. If the probability density function for g(X) is an instance of a normal density function than the
average of a given set of observations of a random variable - with finite mean and variance - is also a random variable
that has a distribution that converges to a normal distribution as the number of samples increases. The entropy H(g(X))
for the function g(x) from a random variable X can not be greater than the entropy of the random variable X. Let Y=g(x).
If the covariance of X and Y is not equal to zero than X and Y are correlated.

A Bernoulli scheme is a special case of a Markov chain and it’s a generalization of the Bernoulli process to more

than two possible outcomes from an independent random variable. A Markov source is defined as a information source
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created by a stationary finite Markov chain. The Kolmogorov complexity of a string is the length of the shortest
computer program executed by a Turing Machine that produces the sequence as output and halts. It’s the measurement
of the computational resources required to define this string. It can be proved that the Kolmogorov complexity of
any string can not be larger than the expected length of the Bernoulli sequence itself. The entropy of the Markov
information source is related to the Kolmogorov complexity. From "Kolmogorov complexity” in Wikipedia [24] [12]:
"the Kolmogorov complexity of the output of a Markov information source, normalized by the length of the output,
converges almost surely (as the length of the output goes to infinity) to the entropy of the source.”

Let E(Y) be the expectation of the H(Y). A bit of information is the amount of entropy encoded in an event with
two possible outcomes and even odds. The mutual information between two random variables X and Y can be used
to optimize the growth of the utility function g(X) over many trials/executions. This is the "information gain" of a
probability distribution for X given the value of Y relative to a given predefined a priori distribution (like the normal
distribution) - or stated probabilities - on random variable X. Let K(E(Y), H(Y)) be the maximization of the expected
value of the logarithm of the entropy of the utility function Y, which is equivalent to maximize the expected geometric
growth [23]. This fraction is the level of uncertainty between current and future states of X relative to E(Y). In other
words this value represents the intensity of the “side information” measured from each element of the Bernoulli sequence.
A program executing in any Universal Turing Machine can use this information to reduce entropy by adjusting the
error rate in the long run. At each iteration the program must evaluate the level of uncertainty and decide if to halt or
not. This implications contradicts the standard definition of the halting problem in which it proves that there is no
general algorithm to solve the halting problem for all possible program-input pairs. The problem is in determining from
an arbitrary description of an arbitrary program and an input whether the program will halt or run forever.

By analyzing the entropy of the logarithm of the utility function g(X) relative to the probability density function
of a random variable X we can extract useful information about the overall distribution of possible output values in
a given sample. Any program p, can use this knowledge to determine whatever programs halt for a given subset of

program-input pairs symbols.

2 THESIS STATEMENT

The statistical analysis of the entropy function of H(Y=g(X)) and its correlation with random variable X can be used by
any program py, to decide the limits in which cases the near-optimal values satisfy the halting condition. This decision
must have statistical significance (under a given degree of freedom) and reduce the uncertainty about the possible states
of values from random variable Y. In section 3.1 we describe the normal distribution function and the Shapiro-Wilk test
of normality. In section 3.2 we describe the Shannon entropy function for Bernoulli sequences. In section 3.3 we discuss
the optimization of the logarithm of the utility function of a random independent variable using the Kelly criterion
and the Chi-square distribution. In section 3.4 we present the Indexing binary function for classification of states in
decision problems. In section 3.5 we present an information theory interpretation applied to non polynomial problems
such as the Traveling Salesman Problem. In section 4 we discuss previous works and background information on the
TSP problem. In section 4.1 we present the TSP modeling using Information Theory and the stochastic algorithm. The
conclusion summarizes the discussion and the implications for the computational limits of Turing Machines for a finite

alphabet with a given mean and variance.
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3 METHODS AND BACKGROUND
3.1 Sufficient Statistic

3.1.1  Normal distribution. The normal distribution (or the normal density function) is a continuous probability
distribution for a random variable. The parameter value are the mean (or expected value) of a given real number and

the standard deviation. The domain is (-00,+00). Its defined by the formula show in figure 1:

_ b =y
f(z) wﬁe

Fig. 1. Formula for the normal distribution

From "Calculus Applied to Probability and Statistics" [17] the properties of the Gaussian-normal curve are defined in
figure 2:

Properties of a Normal Density Curve

(a) It is “bell-shaped” with the peak occurring at x = .
(b) It is symmetric about the vertical line x = .
(c) Itis concave downintherangeu —o <x <u+o.

(d) It is concave up outside that range, with inflection points at x = & — o and
xX=u-+o.

Fig. 2. Properties of the normal distribution

Consider the function g(Xy) = c,,. The output for this function are the cost values c calculated from the input random
sequences in {X, }, with n finite and positive. The sequences are the semantic valid programs encoded by Bernoulli
strings using a Shannon-Fano code. A Turing Machine executing these programs must decide if to halt by interpreting
the random signals read from the tape. If the signal is statistically significant and the entropy is reduced then the
program can stop and return the decision in binary representation. The computational complexity to decide the problem
is additive to the machine implementing the program up to a limiting point.

As an example let {p1, p2, p3} be a given set of programs and let the costs for g(X = 001 = p1) = c1,g(X = 111 =
p2) = ¢2,g(X = 101 = p3) = c3. Let the acceptance threshold T for the machine M returns False when g(X) is off
by more than 1%. Assuming that the cost values {c1, ¢2, c3} is a normal random variable with mean 50 and standard
deviation 0.5. The range for the programs in this domain are 49.5 <= g(X) <= 50.5. The probability that a program
will be accepted is P(49.5 <= X <= 50.5). Let f=g(X) be a normal random variable with median m= 50 and standard
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deviation SD =0.5. Therefore from [17] we can see that 68.27% of the programs will be accepted and the remaining

31.73% will be rejected. The calculations are shown in figure 3:

50.5
P(495 = X =505) = f(x)dx,
49.5
e
(x) = =
f cw’—
1 _ x=sop?
= — 03 ;
0.54/2m
50.5
P(49.5 < X < 50.5) = f(x)dx ~ .6827.
495

Fig. 3. Probability for P(49.5 <= X <= 50.5)

The normal distribution for Y=g(X) with mean = 50 and SD = 0.5 is shown in figure 4:

48.5 49 49.5 50 505 51 515

Fig. 4. The normal distribution of P(49.5 <= X <= 50.5) for g(X) with mean = 0.5 and SD = 0.5
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3.1.2  Normality test. To determine if a data-set can be modeled as a normal distribution we can use the Shapiro-Wilk
method to test the null hypothesis that the sample means came from a normal distributed population. In figure 5 its
defined as:

2

(X, aieg)

1‘1=1 (z; — x)* ?

W =

Fig. 5. Shapiro-Wilk formula

As an example, consider the cost samples from g(X) = {50, 51, 49, 49.3,50.5, 50.3, 49.1, 48} and a significance level of

$alpha=0.05. The sample size, average and standard deviation are show in the figure 6:

Sample size (n): 8

Average (x): 49650000

Median: 49.65

Sample Standard Deviation (S): 0.975412

Sum of Squares: 6.660000

b: 2538630

Skewness: -0.32511

Skewness Shape: _L Potentially Symmetrical (pval=1.334)
Excess kurtosis: -0.455645

Tails Shape: APotentiaIIy Mesokurtic, normal like tailes (pval=1.242)
P-value: 0.950758

Outliers:

Fig. 6. The data distribution and p-value from the Shapiro-Wilk test for the function g(X).

Since the p-value> $alpha we accepted the HO and we can assume the data is normally distributed. The distribution

and the histogram are reproduced in figure 7 and 8:
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Normal Distribution

04

0.3

0.2

0.1
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Fig. 7. The normal distribution for function g(X).

Histogram

47 48 49 50 51 52
I Fopulation (count)

Fig. 8. The probability density function for function g(X).

3.1.3  Chi-square test. The Chi-square test can be used to determine whether there is a significant difference between
expected and observed frequencies in one or more categories. The observations are classified into mutually exclusive

classes according to a hypothesis described by the probability of observation of a value in each corresponding class.
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The 2x2 contingency table for the chi-square can be used to compare two groups of dichotomous dependent variables.

The formula for the Chi-Square test is defined in figure 9:

Fig. 9. Chi-square test formula

As an example consider two programs pA and pB that encodes 600 Bernoulli strings. Each program has a set of
Bernoulli sequences that were classified between two groups: 0 and 1. Group 0 is the set with sequences with better
costs than a given threshold (i.e. improves expected quality) and the group 1 is the sample-set with sequences with
worse or equal quality (i.e. reduces or does not change the expected quality of g(X)). A chi-square test can be used to
determine whether there is a significant difference between the proportion of sequences in programs pA and pB. The

Contingency Table is show in figure 10.

0 (Quality Improvement) 1 (Quality Reduction) Marginal Row Totals
Process A - pA 139 (155) [1.65] 161 (145) [1.77] 300
Process B - pB 171 (155) [1.65] 129 (145) [1.77] 300
Marginal Column Totals 310 290 600 (Grand Total)

Fig. 10. Contingency Table for the expected value of g(X) relative to random variable X.

The chi-square statistics is 6.8343. The p-value is .008943. There is enough evidence to reject the null hypothesis as
p-value is less than $alpha = 0.05.

3.2 Information Theory

3.2.1 Entropy of a random sequence. Entropy is a measure of uncertainty of a random variable. In other words it’s the
average rate at which information is produced by a stochastic process. Shannon defined the entropy H as a discrete
random variable X with possible values as outcomes draw from a probability density function P(X) [19]. In figure 11 the

entropy function is defined as:
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n

H(X) = - P(x;)log, P(x;)
i—1

Fig. 11. Shannon Entropy formula

The conditional entropy of two events X = x and Y = y with X = x; and Y = y; for (i,j) and p(x;, y;) is the amount

of randomness in the random variable X given Y. In figure 12 this relationship is defined as:

p(xi, yj)

H(X[Y) = Zp i, ;) log ———— o)

Fig. 12. Conditional entropy

Let consider for example a binary program p1 with probability p=0.7 for halting and returning True (state A) and 1-q
for returning False (state B). At every trial one state is more likely to come up than the other. The reduction in entropy

is expressed in a lower entropy value. The entropy for p!=q with p=0.7 is demonstrated in figure 13:

H(X) = —plog,(p) — qlogy(q)
= —0.710g,(0.7) — 0.310g,(0.3)
~ —0.7 - (—0.515) — 0.3 - (—1.737)

0.8816 < 1

Fig. 13. Entropy for p=0.7

3.2.2  Bernoulli distribution and the probability of success. If a random process can only have one of two possible
outcomes (Success (True) and Failure (False)) with probabilities p and 1-q respectively than we have a Bernoulli trial. Let
X be a random variable with X=1 for the "success" state outcome and X=0 for the "failure" state. The indexing function
for event {X = 1} is defined as I{X} = 1} = 1if X=1 and I{X} = 1} = 0 if X=0 than X is a random Bernoulli variable
with probability distribution defined as: px(Xg) = p X I{X = 1} + ¢ X [1 = I{X = 1}] and px(Xj) = 0 otherwise. The
Manuscript submitted to ACM
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median (expected value) and the variance Var[X] of the Bernoulli variable are defined by E(X) = p and the Var[X] = pq
= p(1-p).

Consider for example a Bernoulli trial with size n for random variable X. Let g(x) be the utility function for
X and p be the probability of a program p, producing as output a string which optimizes g(X). Let K¢(X) be the
length of the shortest program that outputs X and halts. Let H(X) and H(g(X)) be the entropy function for variable
X and the function g(X) respectively. The only possible results are the event of interest F (i.e. finding the optimal
solution to a given decision problem and thus maximizing the utility function) and event !F (i.e. not finding the
optimal solution) with probabilities p=0.003 and q = 1-p = 0.997. The probability function for this Bernoulli trial is
Px(Xg) = (0.003) X I{X = 1} + 0.997 X [1 — I{X = 1}] and 0 otherwise. For event F (Success state) let I[X=1] be the
indexing function for value 1 and 0 when the outcome is event !F(Failure state). The median m and variance are m=0.003
and Var[X] = (0.003)(0.997) = 0.003.

3.2.3  Random variables and utility function. Let X be an independent random variable with alphabet L : {001, 010, 100... }.
The utility function Y=g(X) of a random variable X express the preference of a given order of possible values of X. This
order can be a logical evaluation of the value against a given threshold or constant. As an example if g(X1 = 001) = c1
and g(X2 = 010) = c2 are the costs of two routes between a set of nodes - in a super-graph G* - we can use this function
to determine the arithmetical relationship between them and decide if c1 is less, greater or equal to c2. The probability

density function pdf(Y) can be used to calculate the entropy of the distribution of the cost values.

3.24 Entropy of the utility function. Let g(X) be a utility function of a random independent variable X with entropy
H(g(X)). We need to determine the condition in which the entropy of function g(X) is not greater or equal than the
entropy of X. This relationship is defined by H(g(X)) <= H(X). From Wiegand and Schwarz [22] we have the proof of

this condition:

Using the chain rule, H(X,Y) = H(X) + H(Y|X), we can write
H(X,9(X)) = H(g(X),X)

H(X) + H(g(X)|X) = H(g(X))+ H(X|g(X))
H(g(X)) = H(X)+ H(g(X)|X) - H(X|g(X)).

Since the random variable g(X) is a function of the random variable
X, the value of g(X) is known if the value of X is known. Hence,
the conditional probability mass function p, x) x(y|z) is given by

Pg(x;|x(y|$) = { é 5;?&%
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Let Ax denote the alphabet of the random wvariables X with Vz €
Ax,px(xz) > 0. Similarly, let Ay denote the alphabet of the ran-
dom variable Y = g(X) with Yy € Ay, py(y) > 0. The conditional
entropy H(g(X)|X) is given by

H(gX)|X) = =Y > pxex)(®,y) logs perx) x (ylx)

e Ay yedy

= — pr(m) Z Pyx)x (ylz) 1ogs pgx) x (ylz)

reAx yeAdy

The terms with p,(x) x(y/z) = 0 do not contribute to the sum in
parenthesis and can be ignored. We obtain,

H(g(X)|X) = — Z Px () pg(x)|x (9(z)|x) log, pyxy x (9(z)|2)
redx
= -(1 -log, 1) . pr(r) = —log, 1
W
- 0.

Hence, the conditional entropy H(g(X)|X) is always equal to 0, and
we obtain for H(g(X)),

H(g(X)) = H(X) — H(X][g(X)).

Manuscript submitted to ACM


https://doi.org/10.20944/preprints202001.0360.v2

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 March 2020 d0i:10.20944/preprints202001.0360.v2

The entropy function for non polynomial problems and its applications for turing machines 11

Since the entropy is always greater than or equal to 0, we have proved
that
H(g(X)) < H(X).

If and only if g(X) is an injective function for all letters of the alpha-
bet Ax, i.e., if Ya,b € Ax, a # b implies g(a) # g(b), we can define
an inverse function h(y), so that h(g(z)) = =, Vz € Ax. In this case,
we obtain

H(X|g(X)) = H(h(g(X))|g(X)) =0,

Consequently, if g(X) is an injective function for all letters of the
alphabet Ay, the entropy H(g(X)) is equal to the entropy H(X),

H(g(X)) = H(X).

If g(X) is not an injective function for all letters of the alphabet Ay,
i.e., if there are two alphabet letters a and b # a, with g(a) = g(b),
the entropy H(g(X)) is less than the entropy H(X),

H(g(X)) < H(X).

3.25 Kolmogorov Complexity. The Kolmogorov complexity of a string w from language L denoted by K (w) is the
shortest program from alphabet L which produces w as output and halts. [12] The conditional Kolmogorov complexity
of string x relative to word w is defined by Ky (w|x) and is the length of the shortest program that receives x as input

and produces w as output.

3.2.6 Complexity of a string and shortest description length. Let U be a Universal computer. The Kolmogorov complexity
Kc(x) of a string x of a computer U is
Kc(x) = minlength(p)
when
p:Up)=x
It is the minimum length program p that output variable x and halts. Its the small possible program. Let C be another
computer. If this complexity is general there is a universal computer U that simulates C for any string x by a constant
¢ on computer C. Thus K¢(x)y <= K¢(x)c + c¢. This constant does not depend on string x. The upper bound on the
Kolmogorov complexity is
Kc(x) <= Kc(x|length(x)) + 2log, length(x) + ¢
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Therefore there are few sequences with low complexity in the set. The lower bound states that are not many short
programs in the set. If X is a Bernoulli sequence with probability p(x) = 1/2, this means there are no more than 2k
strings with complexity K¢(x) < k.

Consider each program can produce only one possible output, the number of sequence with complexity K¢(x) < k is
less than 2% Thus the complexity will depend on the computer up to an additive constant. Lets consider fractals for
example. They can produce complex 2d images with self-replicating patterns with many different scales. However the
complexity to describe its rules have a Kolmogorov Complexity close to zero. [2]

The expected value of the Kolmogorov complexity of a random sequence is close to the Shannon entropy. This
relationship between complexity and entropy can be described as a stochastic process drawn to a i.i.d on variable X
following a probability mass function p(x). The symbol x in variable X is defined by an finite alphabet. This expectation
is

E(1/n)Kc(X"|n) => H(X)
Therefore most of the sequences in the set do not have simple description. However there are some simple sequences.

The probability that a random sequence can be compressed by more than k bits is no greater than 2-%)_ Thus most
Bernoulli sequences have a complexity close to their length.

Let a binary sequence S from alphabet L : {a, b} with four characters (length n=4). Let the program p be any sort
algorithm using as primary keys k1. This key is the number of occurrence of the symbol a in string S. Let E(S) be the
expected value of the distribution of S. The function g(S, E(S)) is the utility function which evaluate the relationship
between the elements of a random string and a given cost function. The probability density function pdf of the utility
function and the distribution of symbols in the sequence are defined by pdf(g(S,E(S))=Y and pdf(S)=Z respectively. The

entropy function are defined for Y and Z. The search space for the program p is show in figure 14:

bbbb abbb aabb aaab aaaa
babb abab aaba
bbab abba abaa
bbba baba baaa
bbaa
baab

#1sequence  #4 sequences # 6 sequences # 4 sequences # 1 sequence
L:{a,b}

Fig. 14. Search Space distribution

Let P(A) = P(sequence with a pair of a) with P(A) = {bbbb, aabb, abab, abba, baba, bbaa, baab, aaaa}. Let P(B) =
P(sequence with 3 a). Let M = 4 be the favorable states to event B and N=16 are the total of possible outcomes. Than
P(B) = M/N =4/16 = 1/4.

The Kolmogorov complexity of a independent and identically distributed random binary variable created by a
Bernoulli process is close to the entropy binary function. The expected value of the complexity of the Bernoulli sequence
Manuscript submitted to ACM
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converges to the entropy. Therefore we can bound the number of sequences with complexity that are significantly

lower than entropy and classify each element between two sets(the typical sets and a non-typical set).

3.2.7 Kelly criterion and the uncertainty in random outcomes. Let K(E(Y),H(Y)) = f be the maximization of the
expected value of the logarithm of the entropy of the utility function Y=g(X) [11]. This fraction is known as the Kelly
criterion and can be understood as the level of uncertainty about a given data distribution of the random variable X
relative to a probability density function pdf(Y) of a measured respective cost distribution found at the sample. The value
of f is a fraction of the cost-value of g(X) on an outcome that occurs with probability p and odds b. Let the probability
of finding a value which improves g(X) be p and in this case the resulting improvement is equal to 1 cost-unit plus the
fraction f. The probability of decreasing quality for Y is 1-p. Therefore the expected value for log cost (E) is differed in
figure 15 as:

E = plog(1 + fb) + (1 — p)log(1 — f)

Fig. 15. Expected value of the utility function

From "Kelly criterion” in Wikipedia [23], "To find the value of f for which the expectation value is maximized, denoted
as f*, we differentiate the above expression and set this equal to zero”. In figure 16 we have the maximization of the

expected value.

dE  pb 1—p
df* 1+ /b 1-f
Rearranging this equation to solve for the value of f* gives the Kelly criterion:

. pb+p-—1
I = b

=0

Fig. 16. Maximization of E(X)

Where f* is the optimal fraction, b is the net odds, p is the probability of improving quality in Y=g(X) and the q is the
probability of decreasing quality (1-q).

For example consider a program with a 60% chance of improving the utility function g(X) thus p=0.6 and q=0.4. The
program has a 1-to-1 odds of finding a sequence which improves g(X) and thus b=1. For this parameters the program
has a 20%(f*=0.20) of confidence that the outcomes produce values that improve the expected value of g(X) over many

trials.

3.3 General Decision Machine

From Hopcroft & Ullman [9] a single-tape Turing Machine can be defined as a 7-Tuple TM =< Q,T, b, 3,8, qo, F >
where Q is a finite set of states, I is a finite tape with symbols from a given alphabet L0, b is the blank symbol and
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b eT, 3 CT —{b}is the set of input symbols, gy € Q is the initial state, F € Q is the set of final accepted states,
§:Q—-FXTI — Q—FxT XL,Ris a partial function called the transition function where L and R are the Left and
Right shift respectively.

Let X be a random symbol from the alphabet L0. We can expand the standard Turing Machine model to a general
computation under a given know distribution with probability p. Consider the utility function g(X) related to the
machine TM. The output of g(X) is dependent on the changes in the value of x in X. Assume that the values of g(x)
follow a normal distribution. Let the probability density function of g(X) be pdf(g(X)). The entropy H from g(X) relative
to X can be calculated. Let K(E(Y), H(Y)) = f* be the maximization of the expected value of the logarithm of the
entropy of the utility function Y=g(X).

3.4 Indexing binary function

Let the Cp(X, g(X)) be the p-value from the Chi-Square Test for random samples. Assume the samples are normally
distributed. These functions evaluate whether the sample means are generated from the same distribution. Each element
of the sample is a random independent variable X that is compared to the output of the utility function Y=g(X). This
utility function is a conditional statement that returns(i.e. produces as a output) True or False by evaluating if a given
x in g(X) is greater, small or equal to a given threshold defined as a real value T. Let E(Y) be the expected value of Y
with entropy H(Y). The function K(E(Y), H(Y)) is the uncertainty level about the state distribution between the random
samples. In other words, this value represents the error rate in the representation of information in a give population
under some degrees of freedom. The function K is the maximization of the expected value of the logarithm of the utility
function g(X) of a random variable X.

The domain for function Cp(X, g(X)) is the range from 0 (no change) to 1 (high confidence). The value outputted by
this function is the significance level. For example a value of 0.05 represents a 5% chance. The domain for function K is
(—00, +00). The K value represents the intensity about the uncertainty of randomly finding state outcomes that improves
(or reduces) the utility function Y=g(X). If the K value is positive then it shows the amount of useful information encoded
in the sample. For example if the value is 0.05 (5%) then the uncertainty is reduced (i.e decrease in entropy) and there is
additional side information transmitted by the information source. If the edge is negative the K value is also negative
indicating that the chance of finding useful information from the elements in the random sample is unlikely.

Let M be an index function that classifies a sample according to the distribution of elements in probability distribution
of a function g(X). The classification labels each element in the sample between Accept/True or Reject/False. After the
categorization of all input values the list of executions can be sorted by this label. In other words M is the sort key in a
rank of sequences. The function M is defined by M = Cp (X, g(X))/K(E(Y), H(Y))

where X is a Bernoulli sequence, Y=g(X) is the utility function, H(Y) is the entropy for Y, K is the uncertainty level,
E(Y) the expected value of Y. The domain is (—o0, +c0).

Let’s consider for example two groups (alpha and beta) of random Bernoulli sequences for a trial of size 100. Both
samples are assumed to be normal distributions. Let pA be a program that needs to decide to halt based on the expectation
of the output values for the utility function g(X). The fixed alpha sample is the known model-reference set and the beta
sample is the alternative sample hypothesis. Both samples have 300 candidate solution sequences each(N=600). The
computed executions with chi-square p-value less than 0.05 and Kelly fraction greater than 0 are the solutions of interest
and they produce greater quality by reducing entropy at each interaction. Let’s consider the subset s* of sequences
produced at interaction s* = {35, 69,4, 83,41,40}. We want to classify each element of s* between two categorical

classes: the near optimal sequence pools (interaction 35, 69 and 4) and another random sample with discarded sequence
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samples (83, 41, 40). In the figure below, we can see the p-values and Kelly fractions for instance 4, 35, 69 (good near
optimal solutions) and 41, 40 and 83 (random bad solutions). We want to filter solution sequences with candidate
solutions that produce significant results and have a maximum rate of decrease in entropy. In other words, there is less
uncertainty about the possible favorable state outcomes - relative to g(X) and E(Y)- with the new alternative sample
against the previous known best solution hypothesis set. In the figure 17 we have the representation of the probability

density function, the p-value for the Chi-square test and the Kelly fraction relative to the measured level of uncertainty.
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Fig. 17. Data distribution for the alpha and beta groups.
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By comparing the p-value and the Kelly fraction any program p, can decide whatever to halt based on “side
information” on which symbols can lead - in the long run - to the best possible rate of quality improvement for the
utility function g(X), over finite many interactions. Therefore the halting problem is reduced to a sort problem using
the p-value and the Kelly fraction as the primary and secondary keys for an unsorted computation list. To find the best
near optimal sequence any program can sort the keys by decreasing order. Additionally it can sort the sub-list by the

number of bits required to encode the binary - near optimal - string in a Shannon-Fano code following the probability

density function pdf{(g(X)). The relationship between the p-value and the kelly fraction is show in figure 18:

B a2 b chiz_pval W a_b kelly k
0.4

0.3

0.2

0.1

Fig. 18. Bar chart for the p-value from the Chi-square test and the Kelly fraction

In the figure 19 we can see the maximum and minimum cost distance from A and B at interaction 35.
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inter: 35 - Route - min sol alpha - cost:199.567 inter: 35 - Route - max sol beta - cost:461.098
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155 155

150 150
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140 140
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130 130

220 230 240 250 260 270 280 290 220 230 240 250 260 270 280 290
inter: 35 - Route - max sol alpha - cost:477,138 inter: 35 - Route - min sol beta - cost:203.844
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160 4 160 1
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150 150

145 145

140 140

135 4 135 4
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220 230 240 250 260 270 280 290 220 230 240 250 260 270 280 290

Fig. 19. Minimal and maximal path cost

In the figure below we can see the histogram for the cost distance from both samples grouped by a bin of size 5 for
inter 35. We can see there are a larger concentration in group A (alpha) of solutions with cost between 350 and 450 than
in group B(beta). From the boxplot 20 shown we know that although it’s an outlier there are candidate solutions in
group A with cost distance at around 200 units. On the other hand in the group B the average distance is smaller 348.738
units and more spread than in group A 354.08 units. It’s important to note that the information about the local minimal
distance close to 200 was already in A. However, there are more elements with cost close to the minimum distance of
200 in B than in A.
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Fig. 20. Histogram and Boxplot for Alpha and Beta sets

3.5 Applications

The indexing binary function M can be used as a key to decide if a given decision problem should halt or not. For
example the Traveling Salesman Problem (TSP) wants to find the shortest route in a graph of connected nodes. Another
example is the game of Sudoku where the candidate solution that has a better partial solution has a better score than
other alternatives. The Sudoku puzzles is a grid of partially completed rows and cells partitioned in regions. A solution
using distinct symbols from alphabet L such that row, column and region have exactly one of each element of the set.
The general problem of Sudoku is NP-complete.

The function M can label each output and decide whether to halt if the intensity of M is above a given threshold T.
In other words the state of any Bernoulli sequence has a proportional real value that ranges according to the variation
in entropy of the utility function of the candidate strings. Both Sudoku and the TSP are in the class of non-polynomial
(NP) class of problems [25].

In this paper we have proposed a new approach for uncertainty modeling based on the Kelly-Shannon-Thorp [20] [19]
[11] criterion to measure the optimal channel allocation that a program should place at each interaction of an algorithm
(implemented in a Turing Machine) for solving any non polynomial decision problem such as the Traveling Salesman
Problem. This new interpretation of the NP problems by means of Information Theory and Kolmogorov-Chaitin
Complexity can be used to define the limits of computation and answer the question of which cases P=NP. It works by
setting the boundaries of the problem as a probability density function draw according to a sample of random solution
samples defined as semantic valid Bernoulli binary strings. Each candidate solution cost is evaluated against a binary
statistical indexing function M in order to classify it between 2 independent groups: 0 (smaller cost — better quality);
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1 (greater or equal cost — worse or unchanged quality). This distribution reveals the amount of inside information
available to the program and the entropy can be calculated. The Turing Machine can then use this information to reduce
entropy at each execution clock unit while maximizing the expected improvement in solution quality (ie finding a
shortest euclidean distance tour that visits all nodes as described in the TSP problem). In the TSP, the salesman receives
a list of cities and paths from a “wire” or “tape” and must decide between accepting any given new route against the
current know best route. If he is lucky and chooses the right path, he may very well end with a smaller distance to
travel across all cities and returning home. If he chooses the wrong path he may end up with thinking the current
total distance is the best one even though it’s not. For the classical salesman there is no way to know how good or bad
his path is because he has no inside information about the overall expected distance of the routes. At each execution
clock he must decide using only his current knowledge for that iteration about the best distance so far and the new
alternative solution.

Alternatively, the log-normal salesman’s can improve his strategy in the long run by quantifying the total of available
inside information in the channel (or a tape in the Turing machine) and maximizing the expected value of the logarithm
of value function (defined by Traveled Euclidean distance) for each execution clock. Using this approach, he can reduce
his uncertainty while optimizing his rate of distance reduction (quality improvement) at each execution time. He can do
it by creating the probability density function of the cost distance variable by sampling two sets (current and new) of

random tours distances.

4 PREVIOUS WORK & PRELIMINARES

This section contain an overview of the most important heuristics to solve the TSP problem. Other algorithms such as
Nearest Neighbor, Greedy, Insertion, Christofides, Lik-Kerninghan, Branch & Bound and Ant Colony Optimization

were not discussed in this paper. Those methods and its complexity considerations is studied in details by Nilson [18].

4.1 Heuristics for the TSP & Graph Theory

An algorithm that is searching for the smallest distance (cost or weight) between nodes v and u in a graph G must
record the information about the intermediary distances to w . This information can be encoded as a label attached to

the nodes where its value is defined as the distance between v and w. [4] For n nodes We can use an distance matrix
D = (di, j)nxn

where each element represents the distance between each city-nodes. Lets II be the set that contains all possible
permutations from node 1 to n. Zhan et al[26] in his work described that the goal of the TSP is to find a permutation 7z
that minimizes the distance between nodes. For symmetric instances the distance between two nodes in the graph is
the same in each direction, forming an undirected graph. For asymmetric instances the weights for the edges between

nodes can be dynamic or non-existent.

4.1.1 2opt, k-opt. Croes [3] proposed the 2-opt algorithm, an simple local-search heuristic, to solve the optimization
problem for the TSP. It works by removing two edges from the tour and reconnects the two paths created. The new
path is a valid tour since there is only one way to reconnect the paths. [18] The algorithm continues removing and
reconnecting until no further improvements can be found. k-opt implementations are instances of 2-opt function but
with k > 2 and can lead to small improvements in solution quality. However as k increases so does the time to complete
execution.
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In his work Glover proposed the Tabu Search method and it can be used to improve the performance of several
local-search heuristics such as 2opt. As neighborhood searches algorithms like 2opt can sometimes converge to a local
optimum, the Tabu search keeps a list of illegal moves to prevent solutions that provide negative gain to be chosen
frequently. In 2opt the two edges removed are inserted in the tabu list. If the same pair of edges are created again by
the 2opt move, they are considered tabu. The pair is keep in the list until its pruned or it improves the best tour. [18]
However using tabu searches increases computational complexity to O(n?), as additional computation is required to
insert and evaluate the elements in the list.

The Figure 21 show the 2-opt moves from Zunic et. al [28].

X

Fig. 21. 2-opt moves.

Nilsson [18] compared several heuristic strategies for the TSP problem such as Greedy, Insertion, SA, GA, etc. He
investigated the performance trade off between solution quality and computational time. He classify the heuristics in
two class: Tour construction algorithms and Tour Improvement algorithms. All algorithms in the first group stops when
a solution is found. In the second group, after a solution is found by some heuristics, it tries to improve that solution
(up to certain computation and/or time constraints.)” He concluded by showing that the computational time required is

proportional to the desired solution quality.

4.1.2  Genetic Algorithm (GA). Genetic Algorithms was first introduced by Hollad [7]based on natural selection theory,
as an stochastic optimization method in random searches for good (near-optimal) solutions. This approach is analogous to
the "survival of the fittest" principle presented by Darwin. This means that individuals that are fitter to the environment
are more likely to survive and pass their genetic information features to the next generation.

In TSP the chromosome that models a solution is represented by a "path" in the graph between cities. GA has thee
basic operations: Selection, Crossover and Mutation. In the Selection method the candidate individuals are chosen for
the production of the next generation by following some fittest function In the TSP This function can be defined as the

length (weight) of the candidate solutions tour. In figure 22 we have a representation of genes and Chromosomes.

Solution A 1 1 0 1 Gene
Solution B 1 1 1 1 1 Chromosome
Solution C 1 ll 0 0 0 Population
Solution D 0 0] 1 1 0

Fig. 22. Chromosome for a sample of individual candidate solutions..

Next those individuals are chosen to mate (reproduction) to produce the new offspring. Individuals that produce
better solutions are more fit and therefore have more chances of having offspring. However individuals that produces
worst solutions should not be discarded since they have a probability to improve solution in the future. In other words,

the heuristic accepts solutions with negative gain hopping that eventually it may lead to a better solution.
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Several researches have studied the performance trade off of selection strategy and how the input parameters affects
the quality of solution and the computational time. Julston studied the performance of rank-based and concluded that
tournament selection presents better results than rank-based selections.[16] Razali et al. [16] in his work explores
different selection strategies to solve the TSP and compare the performances quality and the number of generations
required. It concludes that tournament selection is more appropriate for small instance problems and rank-based roulette
wheel can be used to solve large size problems.

Goldenberg & Deb [5] compared the quality of the solution and the convergence time on many selection methods
such as proportional, tournament and raking. They conclude that ranking and tournament have produced better
results that proportional selection, under certain conditions to convergence. [16] In his work Zhong et al. [27] explored
proportional roulette wheel and tournament. He concluded tournament selection is more efficient than proportional
roulette selection.

The figure 23 contains the pseudo-code for a Genetic Algorithm from Ferentinos et. al [6]

generate an initial random population

while iteration <= maxiteration
iteration = iteration + 1
calculate the fitness of each individual
select the individuals according to their fitness
perform crossover with probability p.
perform mutation with probability pm
population = selected individuals after

crossover and mutation
end while

Fig. 23. Basic genetic algorithm.

4.1.3 Simulated Annealing (SA). Simulated Annealing are heuristics with explicit rules to avoid local minimal. It
can be described as a local random search that temporarily accepts moves with negative gain( i.e were produced by
solutions with worst quality than current). The probability of accepting a solution is set by a probability function of
a temperature parameter variable. As the temperature decreases over time the probability change accordingly. The

acceptance probability is defined as p(x) = 1if f(y) <= f(x) and when otherwise
p(x) = e~ (W)-f(x)/tmp]

where tmp is the input temperature. The SA algorithm specifies the neighborhood structure and the cooling function.

Other heuristics such as 2-opt, 3-opt, inverse, swap methods can be use to generate candidate solutions. Several
researches have been made to study the performance of different SA operators to solve the TSP problem. [1][10][8][21]
Zhan et. al [26] proposed a list-based SA algorithm using a list-based cooling method to dynamically adjust the
temperature decreasing rate. This adaptive approach is more robust to changes in the input parameters.
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The quality of the solution can be improved by allowing more time for the algorithm to run. Steiglitz and Weiner
observed that the performance can be improved by keeping a list of the closest neighbors for each city-node and thus

reducing the amount of solutions to search.

4.1.4 Nature inspired models. Researchers have proposed algorithms inspired by natural events and structures like
the heating of metals and the growing behavior of biological organisms. Those methods do not iterate over the entire
solution space but rather a portion in order to find the local minimum. They start with an initial random solution
and tries to improve the solution quality over each interaction until some constant parameter factor is reached like
a maximum number of interactions, maximum number of candidate solutions, the rate of decay in temperature or a
minimum quality threshold is achieved. This can be interpreted as a non-deterministic way to address the error rate
between the known solutions and the unknown solutions in polynomial time. Although such algorithms do not have to
traverse the entire solution space it must decide when a random candidate solution with negative gain will be accepted
(i.e. candidate with worst solution quality than current know best solution) in the hopes that eventually it would lead to
the shortest distance (i.e. a better solution quality).

What those methods have in common is that they ignore the data distribution of input and output strings for the
candidate solutions sequences. The algorithm does not care which city it starts and ends the tour, as long as the solution
sequence is semantically valid it must decide whether to return true or false using some function that defines the
decision rules based on the current best known total Euclidean distance tour. At each interaction those heuristics are
trying to optimize the calculated value function set as the total tour distance for that specific trial, it has no information
about the other possible candidate solution strings in the solution space. This assumption introduces a bias in the
algorithm since it implicitly assumes a prior knowledge about the data structure in order to reduce the resources
required to complete the computation. Put it simply, the algorithm is never sure if the solution at hand is the optimal
and may very well discard it hoping to look for a better one in the future based on some arbitrary criteria.

In the TSP problem all non-deterministic algorithm will have to work with random input and output sequences
and for each one it must decide when to halt or not. The candidate tour sequences from the perspective of the Turing
machine are random symbols being read by the machine’s head. All the available inside information are the symbols in
the tape. The tape is the communication channel used to transmit the messages (i.e. candidate solutions). Therefore,
modelling the TSP by means of Information Theory and Kolmogorov Complexity is the natural language as the number
of possible candidate solutions are very large even for small instances of the problem. This means that all cities are
assumed to have the same probability of being chosen and the outputted total tour distance would be proportional to
this choice over many trials.

Nature-inspired models such as GA and SA uses prior information to improve the solution results and thus are biased
towards this encoding. Alternatively, by modeling the TSP problem as a communication channel with a probability
density function associated with the stochastic process that generates the solutions at random, thus we can bound the
limits of the search space to a log-normal distribution. The advantage of this method is that by relying on the statistical
analysis of the solution space instead of the computational complexity of the problem we can have equal or better
qualities than the traditional algorithms without relying on computational complex implementations that have a high

time and space constrains.
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5 ALGORITHMIC-INFORMATION LANGUAGE

Let L be a finite language with N symbols in a set such as L : {NODE4; NODER; NODEc, ... NODEN }. Each item
is an identification label for the elements in the set under some probability distribution function pdf(x). This is the
likelihood of choosing a given symbol x in L. This can be interpreted as a random variable x in L that can assume any
item in the set by following the known distribution pdf(x). Each symbol represents a city with a 1-1 mapping to a
respective node in a super-graph G*. Therefore, each node is a point with X, and Y, coordinates in a 2D Euclidean
space. Let the function g(X) be the utility function for a given language L. This functions outputs the costs or weight of
X relative to a given threshold T defined as the expected value of E(g(X)). Assume g(X) is a Bernoulli distribution.

For example consider the alphabet L that describes 3 cities encoded by 3 symbols in the set L : {A(x1, y1), B(x2, y2), C(x3, y3)}.
Thus, each element is a node that have two variables that stores the x and y axis coordinate accordingly. A valid sequence
s* can be produced by combining elements of L. Permutations with duplicate elements are invalid. S* is the set with all
possible permutations of this sequence. The neighbor of each node at position i in the sequence is the next connected
city (i.e item at position i+1). This sequence describes a path between nodes and is a tour starting from the first node

until the last and returning to the first node when finished [13]. This is shown in figures 24 and 25:

Dist(ij) A B c D
(x2y2)
A (%] Dist(A.B) Dist{A.C) Dist{A.D)
g| %
= % | _
P B DistEA) @ DisB,C)  Dist(B,D)
]
C Disf{C.A)  Dist(C,B) Diet(C, D)
(x2-x1)  (xly1)
= St — eV (v, -
A= Y0 —e) + b -nr D Dis{DA)  DistD,B)  DisD,C} 7

A sample graph for the traveling salesman problem and the corresponding cost matrix.

Fig. 24. Cost Matrix

In figure 25 we have an example of valid and invalid tours sequences:
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Word in Language Path Sequence Total cost/weight distance
Valid A->B->C->D->E->A Sum of total Euclidian
Cost 1

Valid D->B->C->A->E->D Sum of total Euclidian
Cost 2

Valid D->B->A->C->E->D Sum of total Euclidian
Cost 3

Invalid A->B->A->D->E->A Sum of total Euclidian
Cost 4

Fig. 25. Sample path strings

In the figure 26 and 27 we can see an example of the probability density function for two random samples with
N=4 for both sets: Group A and B. The new expected cost for the sample Group B is 49.25 units. For example if the
expected cost for the current sample was 50 (in Group A) there are 2 solutions in B and 1 candidate in A which improve
the solution quality and reduces the traveling distance. The probability of finding a candidate solution at random in
group A that reduces cost is 25%. The probability of finding a candidate solution at random in group B that reduces cost

relative to the expected cost distance from A is 50%.

Current path Current total Small than current Distance difference
route (A) distance cost A expected cost A

ABCDEA 50 False 0

ACBDEA 52 False +2

ACDBEA 48 True -2

AEBDCA 50 False 0

Fig. 26. Group A candidate solution sample

The average quality improvement from B is 26.5 units with distance reduction from expected cost of 50 to 35 and 50
to 12. The average quality decrease or unchanged is 25 units, from 50 to 50 and 50 to 100. The rate of improvement is
the average distance reduction divided by the average quality reduction. For this example, 26.5/25 = 1.06. In the figure

27 we can see the data distribution for group B relative to the costs from E(A):
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New path route | New total distance Small than current Distance difference
(B) cost B expected cost A

ABCDEA 50 False 0

ACBDEA 35 True -15

BACDEB 12 True -38

CEBADC 100 False +50

Fig. 27. Group B candidate solution sample

The Kelly criterion is 0.0283 (2.83%). This can be interpreted as a measurement of risk that a salesman has on choosing

rints202001.0360.v2

the wrong path (with larger distances). In simple terms, it’s the level of uncertainty about the overall possible states.
This is the error rate of transmission of information in a noisy communication channel. If the fraction is negative the

salesman must switch strategy and stay with current know best path sample and wait for the next alternative sample

that will be created at the next execution iteration clock. [14].

Solution Group B relative to Expected Cost E(A)
Average Solution Cost

Average Absolute Cost Reduction

49,25 26,5
Average Absolute Cost Increase Rate of Quality Improvement
25 1,06
Probability Cost Increase Probability of Cost Decrease
0,5 0,5
Kelly fraction
0,028301887

Fig. 28. Kelly fraction to measure information uncertainty

The entropy of the new cost output is one full bit of information and is show in figure 29
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T

H(X)

Fig. 29. Entropy for p =0.5 and g=0.5 withp=1—gq

The contingency table for sample is demonstrated in figure 30:

doi:10.20944/pre
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Reduce Distance Increase Distance

Group A 1 3 4
Group B 2 2 4
Marginal Column Totals 3 5 8

Marginal Row Totals

(Grand Total)

Fig. 30. Contingency Table for current (Group A) and alternative (Group B) solution candidates relative to expected current cost from

Group A.

Consider for example a larger solution sample. The current solution group (A) and the alternative solution group (B).

Group A has 100 solution sequences and B also has 100 candidates. There are 25 possible candidate tours that reduce

the distance in A. In group B there are 50 candidates that increase the average cost relative to current expected distance

from A. The salesman can use the chi-square test statistic to determine if there is a significant difference between

the sample means. This can be used to determine if the expected distance decrease from the candidate solutions in

group A (i.e. null hypothesis) is equivalent to the performance of the alternative candidates in group B (i.e. alternative

hypothesis). The chi-square statistic and p-value are shown in the figure 31

Resuits

Fig. 31. Contingency Table for group A and B relative to E(A)

Reduce Distance Increase Distance Row Totals
Group A 25 (37.50) [4.17] 75 (62.50) [2.50] 100
Group B 50 (37.50) [4.17] 50 (62.50) [2.50] 100
Column Totals 75 125 200 (Grand Total)
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The chi-square statistic is 13.3333. The p-value is .000261. The result is significant at p < .05. With a significance
level of 0.05 there is strong evidence against the null hypothesis and there is a 5% chance the null is correct. We can
reject the null hypothesis and accept the alternative hypnosis that Group B has solutions that produce better quality
than in Group A.

5.0.1 Algorithm and Pseudo code. In the figure 32 we can see the flowchart for the salesman stochastic algorithm:

Create the permutations for the model group alpha.
Find the average, minimum and maximum cost distance for the alpha sample.
List solution_pool = new empty list

Y

{ Create Coningency Table for alpha and expecied value E{alpha) for the cost vecior. ‘

Calculate the probability of improvement and the average distance improvement.
Calculate the entropy for cost distribution from the alpha set.

Create the alternative random sample beta.
Find the minimum and maximum cost for the alternative
sample beta.

v

Create Contingency Table for beta against the expected cost value E{alpha) I

while iteration <= max iteration parameter

Calculate the probability of improvement and the aver age cost improvement
for the distance vector beta relative to E(alpha).

v

‘ Calculate the chi square test using the Contingency Table for cost vector beta relative o expected

False

cost value from alpha.
Calculate the entropy using the distribution from the vector cost beta relative to E(alpha).
Calculate the Kelly fraction for the cost distribuion of alpha and beta.
Calculate the Je for the cost ion for alpha and beta relative
o the expected model distance value.

v

itleration = iteration + 1 }

Print solution_pool
Store solution_pool in file F

solution_pool.append(Keily fraction, chi_square, information divergence
average, min and max cost distance for vector cost beta)

Fig. 32. Flowchart for the information theory based algorithm

The pseudo-code for the procedure is described below:

A-Sample(Reference group): Create a model sample A using a random generated (semantic valid)
solution, 2-opt method, Simulated Annealing, Genetic Algorithms or any Artificial Intelligence
heuristics.

Let E(A) be the expected cost for the candidates in sample A.

Category(A,1): Count the number of candidate solutions in sample A that have total path
distance (ie cost value) greater or equal to E(A).

Category(A,0) : Count the number of candidate solutions in sample A that have total path
distance (ie cost value) less than E(A).

Pr(A,0): Calculate the probability of randomly finding a candidate solution in sample A that
increases quality (i.e. reduces cost).

Pr(A,1): Calculate the probability of randomly finding a candidate solution in sample A that
decreases quality (i.e. increase cost).

Let A_QualityIncrease: Average quality improvement for sample A.
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Let A_QualityReduction: Average quality reduction for sample A.
Let R_Quality_A: A_QualityIncrease/A_QualityReduction be the ratio of quality in sample A.
Let Halt = False be the control boolean flag.
While Halt is equal to False, Repeat:
B-Sample: Create an alternative sample B using a random generated (semantic valid) solution,
2-opt method, Simulated Annealing, Genetic Algorithms or any Artificial Intelligence heuristics.
Category(B,1): Count the number of candidate solutions in sample B that have total path
distance (ie cost value) greater or equal to E(A).
Category(B,0@) : Count the number of candidate solutions in sample B that have total path
distance (ie cost value) less than E(A).
Pr(B,@): Calculate the probability of randomly finding a candidate solution in sample B that
increases quality (i.e. reduces cost).
Pr(B,1): Calculate the probability of randomly finding a candidate solution in sample B that
decreases quality (i.e. increase cost).
Let B_QualityIncrease: Average quality improvement for sample B.
Let B_QualityReduction: Average quality reduction for sample B.
Let R_Quality_B: B_QualityIncrease/B_QualityReduction be the ratio of quality in sample B.
CT_AB: Create the Contingency Table for groups A and B with the occurrences of each 10
Categories.
Chi2_AB: Calculate the Chi-square test for CT_AB.
k_AB: Calculate the Kelly fraction for Pr(A+B,@) and R_Quality_A + R_Quality_B.
info_B: Calculate the entropy for the estimated probability distribution function from
alternative sample B using CT_AB.
if Chi2_AB < 0.05 and k_AB > @ than return [Halt=True, “Solution Found.”] else [Halt=False,

“We don’t have enough evidence and/or information to reject the null hypothesis]

6 CONCLUSION

In this paper we have demonstrated the statistical analysis of a stochastic process created by a set of Shannon-Bernoulli
sequences. From this framework it’s possible to analyze the distribution of information for a given random variable and
the correlation between this variable and a utility function that compares the differences between state sequences. This
function shares information with the random variable itself and this side information can be measured. The knowledge
of this side information can be used by any program - executing in a Turing Machine - to decide whatever to halt or not.

The advantage of this approach is that it is independent of the computer encoding the problem and the time and
space complexities are additive up to a limit that is linearly proportional to the input size. Other heuristics methods
assume a predefined knowledge about the data structure and thus are biased towards this encoded knowledge. The
implications of this interpretation is that by reducing the NP problems to a matter of modularization of encoded and
decoded random signals in an alphabet we can find near optimal solutions that are statistically significant and are
guaranteed to produce the best rate of improvement in the long run over many trials(i.e. simulation iterations) even
though the problems itself is computationally complex and the alternative sequential brute force algorithm would

require exponential time to solve.
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From Fekete et al. [15] the classical interpretation of hard decision problems argues that unless P=NP there is
no polynomial-time algorithm for NP problems such as the TSP: "Assuming triangle inequality, the best polynomial
heuristic known to date uses the computation of an optimal weighted matching: Christofides method combines a
Minimum Weight Spanning Tree (MWST) with a Minimum Weight Perfect Matching of the odd degree vertices, yielding
a worst-case performance of 50% above the optimum." The traditional interpretation of the halting problems says there
is no general algorithm to solve the decision problem for all possible program-input pairs. However, as demonstrated
in this paper, the decision problem itself can be quantified in bits and the distribution of random sequences that are -
syntactically and semantically - valid is not neglectable. In other words, although not all sequences produce outputs
that optimizes the quality for any utility function g(X), there are some infrequent random sequences that improve g(X)
and are statistically significant under some given degree of freedom. This new interpretation of information rate can
be used to define the limitations imposed by the computational complexity of Turing Machines when solving non

polynomial problems, regardless of time and space constraints.
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