Preprint
Article

Modified Election Algorithm in Accelerating the Performance of Hopfield Neural Network for Random kSatisfiability

Altmetrics

Downloads

353

Views

249

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

29 January 2020

Posted:

30 January 2020

You are already at the latest version

Alerts
Abstract
Election Algorithm (EA) is a powerful metaheuristics model motivated by phenomena of the socio-political mechanism of the presidential election conducted in many countries. EA is selected as a topic of discussion due to its capability and robustness to carry out complex problems in the random-2SAT logic program. This paper utilizes a hybridized EA assimilated with the Hopfield neural network (HNN) in carrying out random logic program (HNN-R2SATEA). The efficiency of the proposed method was compared with the existing traditional exhaustive search (HNN-R2SATES) model and the recently introduced HNN-R2SATICA model. From the result obtained, clearly proven that based on our proposed hybrid model outperformed other existing model based on the Global Minima Ratio (ZM), Mean Absolute Error (MAE), Bayesian Information Criterion (BIC) and Execution Time (ET). The expected outcome portrays that the EA algorithm outperformed the other two algorithms in doing random-kSAT logic program. The results proved the robustness, effectiveness, and compatibility of the HNN-R2SATEA model.
Keywords: 
Subject: Computer Science and Mathematics  -   Computational Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated