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Abstract: Wildfire susceptibility maps display the wildfires occurrence probability, ranked 

from low to high, under a given environmental context. Current studies in this field often 

rely on expert knowledge, including or not statistical models allowing to assess the cause-

effect correlation. Machine learning (ML) algorithms can perform very well and be more 

generalizable thanks to their capability of learning from and make predictions on data. 

Italy is highly affected by wildfires due to the high heterogeneity of the territory and to the 

predisposing meteorological conditions. The main objective of the present study is to 

elaborate a wildfire susceptibility map for Liguria region (Italy) by applying Random 

Forest, an ensemble ML algorithm based on decision trees. Susceptibility was assessed by 

evaluating the probability for an area to burn in the future considering where wildfires 

occurred in the past and which are the geo-environmental factors that favor their spread. 

Different models were compared, including or not the neighboring vegetation and using 

an increasing number of folds for the spatial-cross validation. Susceptibility maps for the 

two fire seasons were finally elaborated and validated and results critically discussed 

highlighting the capacity of the proposed approach to identify the efficiency of fire fighting 

activities.  

Keywords: wildfires; susceptibility mapping; machine learning; random forest; model 

validation; Liguria region 

 

1. Introduction 

Mapping current and past hazardous events, such as landslides, flooding, or wildfires, 

represents a precious information for addressing prevention-planning programs aiming to 

reduce human and material losses. Raw information is generally stored on national and 

regional multi-temporal inventories reporting the occurrences from multiple source, aa 

paper datasheets, field surveys, interpretation of aerial photograph and, more recently, 

remotely sensed imagery. These inventories represent key data for the elaboration of hazard 

and risk maps. Namely, hazard maps portray the zonation of the spatio-temporal 

probability of events, while the expected damages or losses are assessed and represented on 

risk maps. Furthermore, according to the assumption that future events are expected to 

occur under similar conditions as the observed past ones, susceptibility map indicates zones 

with a potential to experience a particular hazard in the future based solely on the intrinsic 

local proprieties of a site and expressed in term of relative spatial likelihood. Although these 
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concepts are well-consolidated in the research area related with the risk assessment, 

especially for landslides [1–4] the need exist for elaborating susceptibility and risk maps for 

other natural hazards and to develop new quantitative and robust methods supporting their 

production.  

In the field of wildfires risk assessment, fire risk has been defined as a quantitative or 

qualitative indicator of the probability of an area to be source of ignition by natural or 

artificial means in a certain period of time [5–8]. In this context, modeling fire risk represents 

a modern tool to support forest protection plans and to address fuel management strategies 

in order to reduce fires’ consequences [9–11]. More in general, risk and susceptibility 

analyses are of great importance for land use planning, civil protection and risk reduction 

programs. A number of techniques were recently developed to monitoring and mapping 

the spatial distribution of burned area and to predict area at risk for wildfires. These, often, 

involve the implementation of physically based models integrated into a Geographic 

Information System (GIS), relying on expert knowledge to estimate the predisposing factors 

or including statistical analyses and modeling to assess the variables’ importance [12–22]. 

Lately, the comparison of deterministic physically/statistically based and stochastics 

approaches, highlighted the benefit of using data driven methods [23–31] able to extract 

knowledge directly from data. In comparison with deterministic methods, which, given a 

set of initial conditions (i.e. predisposing factors) always perform the same results, 

stochastics models assume that results obtained by the combination of independent 

predisposing factors can be slightly different as a consequence of the randomness of the 

process.  

Although the terms “risk” and “susceptibility” are often used as synonymous, 

hereinafter we refer to susceptibility mapping meaning that the propensity of an area to 

wildfire occurrence is assessed with no consideration for the magnitude of a single event or 

its temporal dimension. Indeed, only the spatial probability for an area to burn in the future, 

assessed by defining a rank from low to high, is evaluated. This quantitative evaluation is 

performed considering two aspects: where wildfires occurred in the past, in terms of burned 

area, and which are the geo-environmental and anthropogenic predisposing factors that 

favor their spread. In this regard, it is worth noting that meteorological factors, like wind 

speed and wind direction, temperature, humidity, and rainfall are considered as triggering 

and not predisposing factors. The trigger is a local condition that cause a risk to occur if and 

only if the area is susceptible to that risk, while the susceptibility is assessed based only on 

predisposing factors, which are stable over time. The proximity to road and pathway 

networks and to urban and recreation areas are the most frequently mentioned as 

predisposing human factors for wildfire [32–39]. As regards geo-environmental variables, 

those related vegetation type and topography result to be the most significant drivers, 

especially in Mediterranean-type regions [40–43].  

Italy is particularly affected by wildfires, because of the high topographic and 

vegetation heterogeneity of the territory, as well as the favorable climatic conditions that 

characterize the entire Mediterranean basin. Wildfires are more frequent and larger in 

summer season (May - October) than in winter season (November - April) in almost all the 

Mediterranean countries, since the first is hotter and dryer. Liguria region, in Italy, 

represents an exception because it is highly affected by wildfires during the entire year and 

the number of wildfires and burned area can be higher in winter than in summer. 

Nevertheless, the spatial distribution of burned areas differs in the two seasons, probably 

due to the vegetation phenology at different altitudes in terms of plant senescence. 
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Therefore, it is important to assess the wildfires susceptibility of this region separately for 

the summer and the winter season. 

In this study, we adopted a stochastic approach based on machine learning algorithm 

(ML) to elaborate wildfire susceptibility mapping for Liguria region. ML includes a class of 

algorithms for the analysis, modelling and visualization of environmental data, and 

performs particularly well to model environmental hazard, which naturally present a 

complex and non-linear behavior [44,45]. Our model includes the inspection and selection 

of predisposing factors acting as independent variables. Specifically, two models were 

compared, including or not the neighboring vegetation and using an increasing number of 

folds for the spatial-cross validation.  

2. Study Area  

The study area is the administrative Region of Liguria (Italy). It covers a total area of 

5400 km2 lying between the Cote d’Azur (France) and Tuscany (Italy) on the northwest coast 

of the Tyrrhenian Sea. This Mediterranean region is characterized by complex topography, 

with a slope higher than 40% for the 50% of the total area, and dense vegetation, with more 

than 70% of the total area covered by forests (Figure 1).  

 

 

Figure 1. Study areas with the location map. Land use results from the aggregation of the original classes 

represented on the regional map of forest types, provided by Liguria Region. 

In the investigated period, 1997-2017, an average of 365 wildfires burn an area of 55 km2 

per year and are a recurrent phenomenon both in summer and winter season. Winter fire 

regime is mainly due to frequent extremely dry winds from the north in condition of curing 

for most of the herbaceous species and the number of wildfires and burned area can be 

higher than in summer (Figure 2). 
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Figure 2. Yearly frequency of wildfires (on the top) and burned area (on the bottom) in Liguria region 

(Italy) in the last two decades (1997 – 2017) during the summer and the winter season. 

 

Since the 1950 forest covers were limited to 30% of the total area, because most of the 

areas were subject to grazing activities. After the Second World War, rural communities 

were engaged in many reforestation programs using different Mediterranean pine species. 

The widespread abandon of agricultural and grazing activities lead to a large spread of 

pines and shrub species, frequently affected by fires. The urban development and rural 

abandonment lead the region to face a very large extension of the Wildland Urban Interface.  

3. Materials and Methods  

3.1. Dataset: burned area and predisposing factors   

The dependent variable of our model, allowing to assess the susceptibility of the region 

to wildfires, is the burned area available as mapped fire perimeters and spanning a 20-years 

period (1997-2017). This dataset have been acquired and elaborated as shapefile format by 

the regional forestry service, on the base of GPS-survey and subsequent digitalization over 

the cadastral map (scale 1:10 000). It is worth observing that fire perimeters are also affected 

by the capacity of intervention which has not been considered in the analysis because the 

lack of homogenized data.  
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The seasonality of the fire regime was also considered, partitioning the dataset of 

burned areas in two macro seasons: winter (November-April) and summer (May-October) 

(Figure 3) 

 

 

Figure 3. Spatial distribution of burned areas during the winter and summer season in Liguria region 

(Italy) 

The following independent variables provide a detailed knowledge of topography and 

land cover, allowing to understand the main features involved in wildfire occurrences and 

their behavior:  DEM (altitude) and derivatives (slope, northness and eastness), distance to 

an anthropogenic features (urban area, road, pathways, crops), protected area, vegetation 

type and neighboring vegetation. In more details, northness and eastness, corresponding 

respectively to the cosine and to the minus sine of aspect angle, were considered instead of 

the pure aspect angle (i.e. the terrain orientation) to avoid the use of a circular variable. The 

distances-values were evaluated computing, for each pixel, the Euclidean distance to the 

closest considered element. Protected areas were introduced as a binary variable, computing 

for each pixel if it falls inside or outside to these delimited areas. The vegetation type was 

obtained joining the land use map (scale 1:10 000) - allowing to select the non-vegetated 
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areas - and all the vegetation types out of the forest species (i.e. agricultural areas and 

grasslands), with the regional map of forest types (scale 1:25 000). This map includes more 

than hundred classes, which were aggregated for the purposes of the present study into 37 

classes, based on the flammability of each vegetation type. The non-vegetated areas (e.g. 

urban area, industrial and commercial units, road and rail network, port and airport area, 

bare rocks, water bodies), were unified under the label “non-flammable area” and kept out 

in the final step, consisting in the elaboration of the wildfires susceptibility area. All these 

digital layers (Table 1) were provided by the authority of Liguria Region and available on 

the official geo-portal (https://geoportal.regione.liguria.it/). The ensemble of the spatial 

layers was pre-processed and resampled to match with the same spatial resolution of 100 

meters. 

A set of new variables was computed for each pixel by considering the percentage of 

each land cover type, including both the vegetated (37 classes) and the non-flammable areas 

(1 class), within a 300 by 300 meters neighborhood distance. This resulted into 38 additional 

variables to the basic model, which include only 10 variables (Table 1). To prove if the 

neighboring vegetation type allows to rise the model accuracy, and consequently if this 

factor need to be included in this kind of study, two models were tested: the first which does 

not consider the neighboring vegetation (hereafter defined “standard model”) and the 

second accounting for this factor (hereafter defined “neighboring vegetation model”). 

Table 1 List of predisposing factors and their characteristics 

Independent variables Acquisition scale Variable type Range # of variables 

DEM  1 : 5 000 Numerical (meters) 0-2132 1 

Slope  - Numerical (degree) 0-60 1 

Northness & Eastness - Numerical  [-1,+1] 2 

Distance to anthropogenic 

features  

1 : 10 000 
Numerical (meters) 0-9000 4 

Protected area 1 : 25 000 Binary 0 or 1 1 

Vegetation type 1 : 25 000 Categorical 37 classes 1 

Neighboring vegetation  - Numerical (percentage) [0,100] 38 

 

3.2 Methods: machine learning approach 

ML is based on algorithms capable of learning from and make predictions on data, 

through the modeling of the hidden relationships between a set of input and output 

variables, representing respectively the predisposing factors (independent variables) and 

the occurrences of the phenomenon (dependent variable). A training procedure is carried 

out to calibrate the parameters of the model: the optimal parameters are the ones that 

minimize the error on the validation dataset, as this is a sign of overfitting to the training 

dataset. Lastly, to provide an unbiased evaluation of the final model and to assess its 

performance (i.e. generalization) this one is predicted over unused observations, defined as 

the testing dataset. Model generalization refers to the ability of the model to perform good 

prediction on new/previously unseen data, drawn from the same distribution as the ones 

used to create the model. This concept is closely related with the overfitting: this happen 

when the model performs well on the training data but is unable to predict new data. Thus, 

a model that perfectly fit the training data normally displays a large generalization error.  

A binary classification problem, such as the prediction of burned and unburned areas 

in the present case study, can be solved counting how many times each observation is 
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classified as positive or negative and normalizing the result over the total number of 

predictions. This provides probabilistic outputs, which can be used to elaborate 

susceptibility maps identifying areas affected by fires over a rank from low to high. The 

proposed approach involves the generation of pseudo-absences, to ascertain unburned area. 

Indeed, to assure a good generalization of the model, avoiding the overestimation of the low 

classes, pseudo-absences need to be generated in all cases where they are not explicitly 

expressed (e.g. wildfires location is known, normally as mapped burned areas, but the not-

burned areas have to be defined). We solved this problem generating randomly a number 

of absences equal to the number of presences (i.e. equals to the number of pixels burning).  

3.2.1 Random Forest 

Analyses were performed using Random Forest [46], an ensemble ML algorithm based 

on decision trees. The most important hyperparameters that need to be specified are the 

number of decision trees (ntree) and the number of variables randomly sampled as 

candidates at each split (mtry). As general rule, ntree should be large enough to ensure that 

every observation (i.e. input rows) gets predicted at least a few times; the standard value for 

mtry in classification problems is equal to the square root of the number of predictors (i.e. 

the independent variables), but this value can be optimized. Operationally, the algorithm 

generates ntree-subsets of the training dataset by bootstrapping (i.e. random sampling with 

replacement), each subset counting about two-third of the observations. Then a decision tree 

is generated for each subset considering a reduced number of variables (mtry) randomly 

selected: at each node, the Gini impurity is computed and the variable that minimize this 

value is selected as the best one for the split. Gini impurity measures how often a randomly 

chosen observation from the training dataset is incorrectly labeled if it is labeled randomly, 

according to the distribution of the labels in the subset. This process is iterated up to the 

maximum level, or it can stop when each node contains less than a fixed number of data 

points. For a classification problem, the prediction of new data is finally computed taking 

the maximum voting, which can be converted into a probabilistic output. The model’s 

hyperparameters where optimized by evaluating the prediction-error on those observations 

that were not used in the training subsets (called “out-of-bag”). In this study, 

hyperparameters were set to 750 for mtree and to the round up square root of the number of 

predictor factors for mtry, both optimized by applying a trial and error process.  

3.2.2. Model validation 

In machine learning, the dataset is usually split into training, validation, and testing, 

typically including respectively the 60% to 80%, 10% to 20% and 5% to 20% observations of 

the original. The training dataset is needed to train the model used to get predictions on new 

data on the validation dataset. The ultimate purpose of the validation dataset is to provide 

an unbiased evaluation of the model’s fitness. Indeed, a good model is the one which gives 

accurate predictions on new data and avoids overfitting and underfitting. Finally, the test 

dataset contains data that has never been used in the training step and helps with the final 

model evaluation or to compare different models. 

When dealing with a spatial environmental phenomenon, if the validation dataset is 

selected randomly, observations can be located close to the training ones, leading to an over-

estimation of the predictive performance of the model. This circumstance is known as 

“spatial autocorrelation”, meaning that observations close to each other hold similar 

characteristics. To overcome this issue, training and validation data have to be selected far 
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enough apart in the geographic space. In the present study we adopted the spatial k-fold 

cross validation and then we evaluated the performance of different models over an 

independent testing dataset. Methodologically, the k-cross validation consists in splitting 

the dataset into k groups, holding out a set at a time, training the model on the remaining 

k-1 sets, and finally testing the model on the hold out set. The process is repeated for each 

subset and the evaluation scores resulting from each model are finally averaged. In the same 

way, the final prediction value is computed as the arithmetical mean among all the 

predictions estimated from each folding. We evaluated three models, considering one, five, 

and nine-folds. One-fold corresponds to the random selection of the validation dataset 

including, in our case, 20% of the observations. In the case on five and nine folds, data were 

selected dividing the space into spatial block of 15 by 15 kilometers: this resulted in nearby 

50 boxes covering the entire study area, which gave rise for each fold to include about 9 and 

6 blocks respectively, distributed randomly (Figure 4).  

 

 

Figure 4: spatial arrangement of the blocks for the 5- and 9-folds adopted in the work (each color corresponds to 

a single fold). 

The testing dataset was defined by splitting the original dataset by years: mapped 

burned areas observed in the period 1997-2011 were used in the training and validation step, 

while the last six years (2012-2017) were hold out for testing the predictive performance of 

the model. This was assessed by computing the fraction of the area with a probabilistic 

predicted value of burning within certain threshold, falling inside the testing burned areas. 

We expect that low classes hold higher values for the total area, but lower values for the 

fraction of this area covering a burning area on the testing dataset. Vice-versa, only a small 

area will be allocated into the high classes, but this will mainly belong to the burning testing 

area. To define the classes, we chose the following percentile rank range: 25%, 50%, 75%, 

90%, and 95%. These limits correspond to different values of the probabilistic output 

(Prob_value) resulting from each model (Table 2), allowing to a flexible interpretation of the 

results. Moreover, the root mean square error (RMS) was computed (Table 3) based on the 

difference between the predicted and the observed values, where observations can only 

assume the value “one” (if the area burned) or “zero” (if the area did not burned), while the 

prediction results in a probabilistic value expressed as floating number within this range.  

3. Results 

The main results obtained by our approach are the following: i) comparison between 

the “standard model” and the “neighboring vegetation model”; ii) comparison between the 

random selection of testing dataset (in space) versus five- and nine-folds spatial cross 

validation; iv) prediction values as main output of random forest, allowing to elaborate 

susceptibility maps of wildfires for the winter and the summer season.  
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3.1 Models comparison 

Values indicated in Table 2 allow to compare and evaluate the prediction performance 

of different models: the standard vs the neighboring vegetation model and the use of one- 

vs five- vs nine-folds spatial cross validation for the winter (values above) and the summer 

season (values below). In addition to the percentile ranking ranges (Classes), the 

corresponding probabilistic output value (Prob_value) is specified. The field “Total area” 

indicates the surface predicted by the model to fall within each interval, normalized over 

the entire area. The field “Predicted BA” represents the fraction of the “Total area” falling 

inside the burned area detected in the testing dataset. For example, looking at one-fold 

standard model, the first class (25th percentile) indicates that only 5.07% of the 25% of the 

area with the lowest probabilistic values, corresponding to < 0.13, falls inside the burned 

area in the testing dataset. On the opposite extreme, the 95th percentile indicates that about 

47% of the 5% of the area with the highest probabilistic values of burning, corresponding in 

this case to > 0.91, falls inside the burned area in the testing dataset. Thus, a way to compare 

the different models is to evaluate which one predicts the largest area with the highest 

probability of burning falling inside the burned area in the testing dataset (hereafter defined 

for brevity “predicted burned area”), and vice-versa for the lower classes. To facilitate the 

comparison, the last 75th percentile was considered and discussed in the following. Results 

show that the neighboring vegetation model performs better than the standard model in 

both the seasons. Indeed, the predicted burned area is higher both for the one- and the five-

folds cross validation when the model includes the information concerning the type of 

vegetation and non-flammable area in the neighboring of each pixel. The increment in this 

case is of about three-percentage points or more, while, when comparing with the nine-folds 

cross validation, the predicted burned area increases of only 0.87 % in the winter season and 

0.02% in the summer season. So, using nine- instead of five-folds allows to slightly increase 

the prediction performance of the model, face to the fact that the training algorithm is much 

more computationally intensive as it has to be rerun from scratch five more times. On the 

other hand, the prediction performance of using five-folds cross validation compared with 

the one-fold increases of about four-percentage points in the winter season, both when 

considering the standard and the neighboring vegetation model, and 2.24% and only 0.07% 

for the equivalent models in the summer season. Despite this last low value, which will be 

discussed later, overall it results that using five-folds cross validation give better 

performances of the model than selecting randomly 20% of the dataset for validation.  

The root-mean-square errors computed for all the models (Table 3) confirms these 

results. As expected, all RMS-errors are lower than 0.5, as on average each model performs 

good prediction of burned and unburned areas. The neighboring vegetation model 

performs better than the standard one in both the seasons. Increasing the number of folds 

in the cross validation allows to increase the model’s performance in all the cases, except 

that in the case of the neighboring vegetation model in summer season which performs the 

same regardless the number of folds. 

All the models perform better in winter than in summer season. Indeed, in winter, the 

testing burned area values for the last 75th percentile ranges from about 80% (1-fold 

“standard model”) to 87% (5- and 9-folds “neighboring vegetation model”). In summer, 

these values are quite lower, ranging from about 70% (1-fold “standard model”) to 75% (5- 

and 9- folds “neighboring vegetation model”). These performances are confirmed by the 

RMS-error, showing lower values in summer than in winter for the same model.  
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To resume, the neighboring vegetation model using five-folds cross validation results to be 

the one performing better. This last model was than evaluated by computing the fraction of 

predicted burning area above the 75th percentile falling inside the testing burned areas for 

each single year and by season. Values are expressed as percentage and as number of pixels 

(Table 4). This allowed to investigate the influence of the testing dataset on the predictive 

performances of the model. In the winter season, the model performed well every years, 

with value ranging from 83.4% in 2013 to 91.7% in 2016. In the summer season, performances 

are still quite good in the first five testing periods (years 2012 to 2016) while in the last period 

(year 2017) the assessed value drops to 45.7%. At the same time, we notice that the size of 

the burned area, which can highly differs in each testing period, does not compromise the 

predictive performance of the model. More specifically, this result seems to imply that 

something during the 2017 wildfire summer season in Liguria region does not worked as 

predicted by the model.
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 1 

Table 2. Validation of the models (see Section 3.2.2) 2 

3 

Classes Total Area (%) Testing BA (%) Prob_value BurnArea (%) Prob_value BurnArea (%) Prob_value BurnArea (%) Prob_value BurnArea (%) Prob_value

25% 25 5.07 0.13 3.85 0.09 4.42 0.11 3.50 0.07 3.36 0.07

50% 25 4.95 0.25 3.40 0.22 3.44 0.23 3.27 0.18 3.17 0.17

75% 25 10.52 0.48 8.80 0.47 8.90 0.43 6.22 0.39 6.44 0.39

90% 15 17.64 0.78 14.98 0.74 15.77 0.70 13.05 0.68 11.91 0.69

95% 5 14.38 0.91 15.26 0.87 15.67 0.85 17.70 0.83 16.43 0.85

100% 5 47.26 1.00 52.86 1.00 51.78 1.00 56.26 1.00 58.69 1.00

>75% 79.28 83.10 83.22 87.01 87.03

Classes Total Area (%) Testing BA (%) Prob_value Testing BA (%) Prob_value Testing BA (%) Prob_value Testing BA (%) Prob_value Testing BA (%) Prob_value

25% 25 4.71 0.08 1.04 0.04 4.04 0.06 0.80 0.04 0.80 0.04

50% 25 7.52 0.23 4.64 0.17 9.39 0.19 5.08 0.14 5.54 0.14

75% 25 17.94 0.51 18.27 0.41 15.16 0.44 19.77 0.35 18.44 0.35

90% 15 24.45 0.78 26.19 0.70 23.31 0.69 21.51 0.65 22.11 0.66

95% 5 14.06 0.91 14.60 0.87 14.60 0.83 15.06 0.83 14.73 0.85

100% 5 30.66 1.00 33.43 1.00 33.50 1.00 37.71 1.00 38.31 1.00

>75% 69.17 74.22 71.41 74.28 75.15

Summer season
1-fold cross validation 5-folds cross validation 9-folds cross validation

standard model neighboring vegetation standard neighboring vegetation neighboring vegetation

Winter season
1-fold cross validation 5-folds cross validation 9-folds cross validation

standard model neighboring vegetation standard neighboring vegetation neighboring vegetation
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Table 3 Root-mean-square error based on the difference between the predicted and the observed value 

Winter season 1-fold 5-folds 9-folds 

Standard model 0.407 0.380 - 

Neighboring vegetation 0.377 0.354 0.351 

Summer season 1-fold 5-folds 9-folds 

Standard model 0.437 0.428 - 

Neighboring vegetation 0.411 0.411 0.411 

 

Table 4 Model validation evaluated by computing the percentage of the predicted burning area above the 75th 

percentile falling inside the testing burned areas for each single year (BA>75%). The number of pixel above and 

below this value for each season are also shown. 

  Winter season Summer season  

 
BA > 75 

% BA >75% 
BA < 
75% Tot_Winter 

BA > 75 
% BA >75% 

BA < 
75% Tot_Summer TOT_Year 

Year (%) (# pixels) (# pixels) (# pixels) (%) (# pixels) (# pixels) (# pixels) (# pixels) 

2012 84.1 844 159 1003 77.8 337 96 433 1436 

2013 83.4 121 24 145 86.9 140 21 161 306 

2014 86.0 117 19 136 92.8 103 8 111 247 

2015 91.2 465 45 510 84.9 535 95 630 1140 

2016 91.7 220 20 240 92.7 936 74 1010 1250 

2017 86.4 3144 496 3640 45.7 449 534 983 4623 

TOT       5674       3328 9002 
          

3.1 Susceptibility mapping  

Random forest gives as output a probabilistic value, expressing the probability for each 

pixel of burning under the assumption of a set of predisposing variables. These values were 

used to elaborate wildfire susceptibility maps in the summer (Figure 5.a) and winter (Figure 

5.b) season. Only the results of the neighboring vegetation model using five-folds cross 

validation, which is the one performing better, were retained for this purpose. The two 

seasons display a different behavior in relation with the predicted susceptibility to wildfires.  

Higher classes (above the 90th percentile) are closer to the coast in summer and develop 

along the interior, at higher altitude, in winter. This can be due to the state of the vegetation: 

in winter, vegetation is more stressed and senescent at higher altitude, due to the lower 

temperature in altitude. On the contrary, in summer vegetation is dryer and more burnable 

at lower elevations because of the high temperature and the dry weather. Finally, even 

though the two models implemented separately for the winter and the summer season used 

the same independent variables as input, Random Forest succeeded in discriminating 

among the two pattern in the distribution of the wildfire susceptible areas thanks to the 

training procedure. 
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Figure 5. Wildfires susceptibility map in the winter and summer season for Liguria region (Italy) 

4. Discussion and conclusions 

In the present paper, we introduced an innovative Machine Learning approach, based 

on Random Forest, allowing to elaborate the wildfire susceptibility map for Liguria region 

(Italy). Susceptibility was assessed by evaluating the probability for an area to burn in the 

future taking into account the spatial extension of past-burned areas and the geo-

environmental factors that favor their occurrence (i.e. altitude and its derivatives, distance 

to an anthropogenic feature, protected area, vegetation type). An alternative model, 

including the neighboring vegetation type at each location, was developed and compared 

with the standard one. For validation purposes, we adopted the spatial k-fold cross 

validation (with k= 1, 5 and 9) and then we evaluated the predictive performances of the 

different models over an independent testing dataset. This last was defined by splitting the 

original dataset, spanning from 1997 to 2017, by years and holding out the last six years for 

testing purposes. Finally, we compared the standard vs the neighboring vegetation model 

and the use of one- vs five- vs nine-folds spatial cross validation, both for the winter and the 

summer season. It results that: 1) neighboring vegetation model performs better than the 

standard one in both the seasons; 2) five results to be the optimal number of folds based on 

model performances; 3) all the models perform better in winter than in summer season.  
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The implemented models globally shows a high capacity to discriminate most of the 

burned area within the 75th percentile for most of the testing periods (2012 to 2017) and in 

both the wildfire seasons. The neighboring vegetation model using five-folds cross 

validation gives the best performances and was retained to elaborate winter and summer 

wildfires susceptibility maps. The performance of this model in the summer 2017 testing-

period manifests the only notable exception to the overall good prediction capability, and it 

will be object of discussion in the following. Instead of considering this fact a downside of 

the proposed modeling framework, it indeed shifted the attention towards a specific 

situation, the fire management in summer 2017. As a matter of fact, it is worth considering 

that the Italian Forestry Corp, in charge of fire management since 1984, was dismissed at the 

end of 2016 (DLGS 19/08/2016 n. 177). To counter this, Liguria Region named Italian Fire 

Fighters (CNVVF) in charge of forest fire management. Before 2017, the role of CNVVF was 

limited to the management of fire in the Wildland Urban Interface and mainly restricted to 

the safeguard of civilians (protection of houses and infrastructures). In January 2017 a week 

of severe fire danger caused the burning of about 3 000 ha, most of them characterized by 

high or extreme fire risk. However, the summer season of 2017 has been a year peculiar not 

only in terms of fire management procedures, but also with respect to the meteorological 

conditions. This season was in fact characterized by a long drought, but with a remarkable 

average relative humidity higher than 67%. In Figure 6 the distribution of the relative 

humidity observed by 40 meteorological stations in the period ranging from 01/05/2017 to 

31/10/2017 is reported. Only a couple of days were characterized by relative humidity lower 

than 40%. 

 

Figure 6. Histogram of daily average relative humidity from May to October observed from 40 meteorological 

stations scattered all over Liguria 
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In this frame period, 205 wildfires burned a total area of 927 ha. Only six events burned 

an area greater than 50 ha each, resulting in 554 ha (corresponding to 60% of the total burned 

area). These six events were analyzed in detail for a better understanding of the implication 

that the new management can have on the model performance and prediction capabilities. 

Figure 7 The six large wildfire occurrences of Summer 2017, along with the fire susceptibility map. 

As it is evident in Figure 7, most of the burned area within these six large wildfire 

occurrences are characterized by a middle-to-low level susceptibility, reflecting that 

Random Forest cannot take into account the management issues of 2017. Despite the rapid 

capacity of intervention of CNVVF, the fire brigade did not considered the mop up phase, 

which caused each single fires to be reignited several times, extending the fire propagation 
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for many days. These considerations put in evidence the capacity of the proposed approach 

to identify also the efficiency of fire fighting activities, specifically if fire extinction 

procedures are handled with modalities which differ compared with the ones used in the 

past, and implicitly valued into the model. Before 2017, the different tactic of fire 

management, which included the mop up phase, could have resulted in lower burned areas 

which, by the way, were identified by the models as result from the susceptibility map. 

In conclusion, the proposed approach proved to be globally effective to deal with large, 

high dimensional spatial data, which reflects the great flexibility of machine learning in 

general. In particular, one advantage of Random Forest is its capability of handling directly 

categorical variable, such as the land use classes or the vegetation type. Ultimately, the 

results of the present study highlights the importance of accurately select the predisposing 

factors and the parameters in the model, and of taking into account possible changes of 

surrounding conditions which can affect the validity of the model in space and in time.  
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