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Abstract: Wildfire susceptibility maps display the wildfires occurrence probability, ranked
from low to high, under a given environmental context. Current studies in this field often
rely on expert knowledge, including or not statistical models allowing to assess the cause-
effect correlation. Machine learning (ML) algorithms can perform very well and be more
generalizable thanks to their capability of learning from and make predictions on data.
Italy is highly affected by wildfires due to the high heterogeneity of the territory and to the
predisposing meteorological conditions. The main objective of the present study is to
elaborate a wildfire susceptibility map for Liguria region (Italy) by applying Random
Forest, an ensemble ML algorithm based on decision trees. Susceptibility was assessed by
evaluating the probability for an area to burn in the future considering where wildfires
occurred in the past and which are the geo-environmental factors that favor their spread.
Different models were compared, including or not the neighboring vegetation and using
an increasing number of folds for the spatial-cross validation. Susceptibility maps for the
two fire seasons were finally elaborated and validated and results critically discussed
highlighting the capacity of the proposed approach to identify the efficiency of fire fighting
activities.

Keywords: wildfires; susceptibility mapping; machine learning; random forest; model
validation; Liguria region

1. Introduction

Mapping current and past hazardous events, such as landslides, flooding, or wildfires,
represents a precious information for addressing prevention-planning programs aiming to
reduce human and material losses. Raw information is generally stored on national and
regional multi-temporal inventories reporting the occurrences from multiple source, aa
paper datasheets, field surveys, interpretation of aerial photograph and, more recently,
remotely sensed imagery. These inventories represent key data for the elaboration of hazard
and risk maps. Namely, hazard maps portray the zonation of the spatio-temporal
probability of events, while the expected damages or losses are assessed and represented on
risk maps. Furthermore, according to the assumption that future events are expected to
occur under similar conditions as the observed past ones, susceptibility map indicates zones
with a potential to experience a particular hazard in the future based solely on the intrinsic
local proprieties of a site and expressed in term of relative spatial likelihood. Although these
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concepts are well-consolidated in the research area related with the risk assessment,
especially for landslides [1-4] the need exist for elaborating susceptibility and risk maps for
other natural hazards and to develop new quantitative and robust methods supporting their
production.

In the field of wildfires risk assessment, fire risk has been defined as a quantitative or
qualitative indicator of the probability of an area to be source of ignition by natural or
artificial means in a certain period of time [5-8]. In this context, modeling fire risk represents
a modern tool to support forest protection plans and to address fuel management strategies
in order to reduce fires’ consequences [9-11]. More in general, risk and susceptibility
analyses are of great importance for land use planning, civil protection and risk reduction
programs. A number of techniques were recently developed to monitoring and mapping
the spatial distribution of burned area and to predict area at risk for wildfires. These, often,
involve the implementation of physically based models integrated into a Geographic
Information System (GIS), relying on expert knowledge to estimate the predisposing factors
or including statistical analyses and modeling to assess the variables” importance [12-22].
Lately, the comparison of deterministic physically/statistically based and stochastics
approaches, highlighted the benefit of using data driven methods [23-31] able to extract
knowledge directly from data. In comparison with deterministic methods, which, given a
set of initial conditions (i.e. predisposing factors) always perform the same results,
stochastics models assume that results obtained by the combination of independent
predisposing factors can be slightly different as a consequence of the randomness of the
process.

Although the terms “risk” and “susceptibility” are often used as synonymous,
hereinafter we refer to susceptibility mapping meaning that the propensity of an area to
wildfire occurrence is assessed with no consideration for the magnitude of a single event or
its temporal dimension. Indeed, only the spatial probability for an area to burn in the future,
assessed by defining a rank from low to high, is evaluated. This quantitative evaluation is
performed considering two aspects: where wildfires occurred in the past, in terms of burned
area, and which are the geo-environmental and anthropogenic predisposing factors that
favor their spread. In this regard, it is worth noting that meteorological factors, like wind
speed and wind direction, temperature, humidity, and rainfall are considered as triggering
and not predisposing factors. The trigger is a local condition that cause a risk to occur if and
only if the area is susceptible to that risk, while the susceptibility is assessed based only on
predisposing factors, which are stable over time. The proximity to road and pathway
networks and to urban and recreation areas are the most frequently mentioned as
predisposing human factors for wildfire [32-39]. As regards geo-environmental variables,
those related vegetation type and topography result to be the most significant drivers,
especially in Mediterranean-type regions [40—43].

Italy is particularly affected by wildfires, because of the high topographic and
vegetation heterogeneity of the territory, as well as the favorable climatic conditions that
characterize the entire Mediterranean basin. Wildfires are more frequent and larger in
summer season (May - October) than in winter season (November - April) in almost all the
Mediterranean countries, since the first is hotter and dryer. Liguria region, in Italy,
represents an exception because it is highly affected by wildfires during the entire year and
the number of wildfires and burned area can be higher in winter than in summer.
Nevertheless, the spatial distribution of burned areas differs in the two seasons, probably
due to the vegetation phenology at different altitudes in terms of plant senescence.
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Therefore, it is important to assess the wildfires susceptibility of this region separately for
the summer and the winter season.

In this study, we adopted a stochastic approach based on machine learning algorithm
(ML) to elaborate wildfire susceptibility mapping for Liguria region. ML includes a class of
algorithms for the analysis, modelling and visualization of environmental data, and
performs particularly well to model environmental hazard, which naturally present a
complex and non-linear behavior [44,45]. Our model includes the inspection and selection
of predisposing factors acting as independent variables. Specifically, two models were
compared, including or not the neighboring vegetation and using an increasing number of
folds for the spatial-cross validation.

2. Study Area

The study area is the administrative Region of Liguria (Italy). It covers a total area of
5400 km? lying between the Cote d’ Azur (France) and Tuscany (Italy) on the northwest coast
of the Tyrrhenian Sea. This Mediterranean region is characterized by complex topography,
with a slope higher than 40% for the 50% of the total area, and dense vegetation, with more
than 70% of the total area covered by forests (Figure 1).

Land use
based on vegetation type

] Non-vegetated area
[ Other cultivated area
[ Grasslands

[ Olive groves

[ Pine forests

I Other deciduous forest
I Chestnut groves
I shrub vegetation
[ Less-burnable forest

Figure 1. Study areas with the location map. Land use results from the aggregation of the original classes

represented on the regional map of forest types, provided by Liguria Region.

In the investigated period, 1997-2017, an average of 365 wildfires burn an area of 55 km?
per year and are a recurrent phenomenon both in summer and winter season. Winter fire
regime is mainly due to frequent extremely dry winds from the north in condition of curing
for most of the herbaceous species and the number of wildfires and burned area can be
higher than in summer (Figure 2).
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Figure 2. Yearly frequency of wildfires (on the top) and burned area (on the bottom) in Liguria region
(Italy) in the last two decades (1997 — 2017) during the summer and the winter season.

Since the 1950 forest covers were limited to 30% of the total area, because most of the
areas were subject to grazing activities. After the Second World War, rural communities
were engaged in many reforestation programs using different Mediterranean pine species.
The widespread abandon of agricultural and grazing activities lead to a large spread of
pines and shrub species, frequently affected by fires. The urban development and rural
abandonment lead the region to face a very large extension of the Wildland Urban Interface.

3. Materials and Methods

3.1. Dataset: burned area and predisposing factors

The dependent variable of our model, allowing to assess the susceptibility of the region
to wildfires, is the burned area available as mapped fire perimeters and spanning a 20-years
period (1997-2017). This dataset have been acquired and elaborated as shapefile format by
the regional forestry service, on the base of GPS-survey and subsequent digitalization over
the cadastral map (scale 1:10 000). It is worth observing that fire perimeters are also affected
by the capacity of intervention which has not been considered in the analysis because the
lack of homogenized data.
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The seasonality of the fire regime was also considered, partitioning the dataset of
burned areas in two macro seasons: winter (November-April) and summer (May-October)
(Figure 3)

Winter season
Il Burned areas
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Summer season
[ Burned areas
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Figure 3. Spatial distribution of burned areas during the winter and summer season in Liguria region
(Italy)

The following independent variables provide a detailed knowledge of topography and
land cover, allowing to understand the main features involved in wildfire occurrences and
their behavior: DEM (altitude) and derivatives (slope, northness and eastness), distance to
an anthropogenic features (urban area, road, pathways, crops), protected area, vegetation
type and neighboring vegetation. In more details, northness and eastness, corresponding
respectively to the cosine and to the minus sine of aspect angle, were considered instead of
the pure aspect angle (i.e. the terrain orientation) to avoid the use of a circular variable. The
distances-values were evaluated computing, for each pixel, the Euclidean distance to the
closest considered element. Protected areas were introduced as a binary variable, computing
for each pixel if it falls inside or outside to these delimited areas. The vegetation type was
obtained joining the land use map (scale 1:10 000) - allowing to select the non-vegetated
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areas - and all the vegetation types out of the forest species (i.e. agricultural areas and
grasslands), with the regional map of forest types (scale 1:25 000). This map includes more
than hundred classes, which were aggregated for the purposes of the present study into 37
classes, based on the flammability of each vegetation type. The non-vegetated areas (e.g.
urban area, industrial and commercial units, road and rail network, port and airport area,
bare rocks, water bodies), were unified under the label “non-flammable area” and kept out
in the final step, consisting in the elaboration of the wildfires susceptibility area. All these
digital layers (Table 1) were provided by the authority of Liguria Region and available on
the official geo-portal (https://geoportal.regione.liguria.it/). The ensemble of the spatial

layers was pre-processed and resampled to match with the same spatial resolution of 100
meters.

A set of new variables was computed for each pixel by considering the percentage of
each land cover type, including both the vegetated (37 classes) and the non-flammable areas
(1 class), within a 300 by 300 meters neighborhood distance. This resulted into 38 additional
variables to the basic model, which include only 10 variables (Table 1). To prove if the
neighboring vegetation type allows to rise the model accuracy, and consequently if this
factor need to be included in this kind of study, two models were tested: the first which does
not consider the neighboring vegetation (hereafter defined “standard model”) and the
second accounting for this factor (hereafter defined “neighboring vegetation model”).

Table 1 List of predisposing factors and their characteristics

Independent variables Acquisition scale Variable type Range # of variables
DEM 1:5000 Numerical (meters) 0-2132 1
Slope - Numerical (degree) 0-60 1
Northness & Eastness - Numerical [-1,+1] 2
Distance to anthropogenic 1:10000 .
features Numerical (meters) 0-9000 4
Protected area 1:25000 Binary Oorl 1
Vegetation type 1:25000 Categorical 37 classes 1
Neighboring vegetation - Numerical (percentage) [0,100] 38

3.2 Methods: machine learning approach

ML is based on algorithms capable of learning from and make predictions on data,
through the modeling of the hidden relationships between a set of input and output
variables, representing respectively the predisposing factors (independent variables) and
the occurrences of the phenomenon (dependent variable). A training procedure is carried
out to calibrate the parameters of the model: the optimal parameters are the ones that
minimize the error on the validation dataset, as this is a sign of overfitting to the training
dataset. Lastly, to provide an unbiased evaluation of the final model and to assess its
performance (i.e. generalization) this one is predicted over unused observations, defined as
the testing dataset. Model generalization refers to the ability of the model to perform good
prediction on new/previously unseen data, drawn from the same distribution as the ones
used to create the model. This concept is closely related with the overfitting: this happen
when the model performs well on the training data but is unable to predict new data. Thus,
a model that perfectly fit the training data normally displays a large generalization error.

A binary classification problem, such as the prediction of burned and unburned areas
in the present case study, can be solved counting how many times each observation is
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classified as positive or negative and normalizing the result over the total number of
predictions. This provides probabilistic outputs, which can be used to elaborate
susceptibility maps identifying areas affected by fires over a rank from low to high. The
proposed approach involves the generation of pseudo-absences, to ascertain unburned area.
Indeed, to assure a good generalization of the model, avoiding the overestimation of the low
classes, pseudo-absences need to be generated in all cases where they are not explicitly
expressed (e.g. wildfires location is known, normally as mapped burned areas, but the not-
burned areas have to be defined). We solved this problem generating randomly a number
of absences equal to the number of presences (i.e. equals to the number of pixels burning).

3.2.1 Random Forest

Analyses were performed using Random Forest [46], an ensemble ML algorithm based
on decision trees. The most important hyperparameters that need to be specified are the
number of decision trees (ntree) and the number of variables randomly sampled as
candidates at each split (mtry). As general rule, ntree should be large enough to ensure that
every observation (i.e. input rows) gets predicted at least a few times; the standard value for
mtry in classification problems is equal to the square root of the number of predictors (i.e.
the independent variables), but this value can be optimized. Operationally, the algorithm
generates ntree-subsets of the training dataset by bootstrapping (i.e. random sampling with
replacement), each subset counting about two-third of the observations. Then a decision tree
is generated for each subset considering a reduced number of variables (mtry) randomly
selected: at each node, the Gini impurity is computed and the variable that minimize this
value is selected as the best one for the split. Gini impurity measures how often a randomly
chosen observation from the training dataset is incorrectly labeled if it is labeled randomly,
according to the distribution of the labels in the subset. This process is iterated up to the
maximum level, or it can stop when each node contains less than a fixed number of data
points. For a classification problem, the prediction of new data is finally computed taking
the maximum voting, which can be converted into a probabilistic output. The model’s
hyperparameters where optimized by evaluating the prediction-error on those observations
that were not used in the training subsets (called “out-of-bag”). In this study,
hyperparameters were set to 750 for mtree and to the round up square root of the number of
predictor factors for mtry, both optimized by applying a trial and error process.

3.2.2. Model validation

In machine learning, the dataset is usually split into training, validation, and testing,
typically including respectively the 60% to 80%, 10% to 20% and 5% to 20% observations of
the original. The training dataset is needed to train the model used to get predictions on new
data on the validation dataset. The ultimate purpose of the validation dataset is to provide
an unbiased evaluation of the model’s fitness. Indeed, a good model is the one which gives
accurate predictions on new data and avoids overfitting and underfitting. Finally, the test
dataset contains data that has never been used in the training step and helps with the final
model evaluation or to compare different models.

When dealing with a spatial environmental phenomenon, if the validation dataset is
selected randomly, observations can be located close to the training ones, leading to an over-
estimation of the predictive performance of the model. This circumstance is known as
“spatial autocorrelation”, meaning that observations close to each other hold similar
characteristics. To overcome this issue, training and validation data have to be selected far
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enough apart in the geographic space. In the present study we adopted the spatial k-fold
cross validation and then we evaluated the performance of different models over an
independent testing dataset. Methodologically, the k-cross validation consists in splitting
the dataset into k groups, holding out a set at a time, training the model on the remaining
k-1 sets, and finally testing the model on the hold out set. The process is repeated for each
subset and the evaluation scores resulting from each model are finally averaged. In the same
way, the final prediction value is computed as the arithmetical mean among all the
predictions estimated from each folding. We evaluated three models, considering one, five,
and nine-folds. One-fold corresponds to the random selection of the validation dataset
including, in our case, 20% of the observations. In the case on five and nine folds, data were
selected dividing the space into spatial block of 15 by 15 kilometers: this resulted in nearby
50 boxes covering the entire study area, which gave rise for each fold to include about 9 and
6 blocks respectively, distributed randomly (Figure 4).

5-folds i 4 9-folds

Figure 4: spatial arrangement of the blocks for the 5- and 9-folds adopted in the work (each color corresponds to

a single fold).

The testing dataset was defined by splitting the original dataset by years: mapped
burned areas observed in the period 1997-2011 were used in the training and validation step,
while the last six years (2012-2017) were hold out for testing the predictive performance of
the model. This was assessed by computing the fraction of the area with a probabilistic
predicted value of burning within certain threshold, falling inside the testing burned areas.
We expect that low classes hold higher values for the total area, but lower values for the
fraction of this area covering a burning area on the testing dataset. Vice-versa, only a small
area will be allocated into the high classes, but this will mainly belong to the burning testing
area. To define the classes, we chose the following percentile rank range: 25%, 50%, 75%,
90%, and 95%. These limits correspond to different values of the probabilistic output
(Prob_value) resulting from each model (Table 2), allowing to a flexible interpretation of the
results. Moreover, the root mean square error (RMS) was computed (Table 3) based on the
difference between the predicted and the observed values, where observations can only
assume the value “one” (if the area burned) or “zero” (if the area did not burned), while the
prediction results in a probabilistic value expressed as floating number within this range.

3. Results

The main results obtained by our approach are the following: i) comparison between
the “standard model” and the “neighboring vegetation model”; ii) comparison between the
random selection of testing dataset (in space) versus five- and nine-folds spatial cross
validation; iv) prediction values as main output of random forest, allowing to elaborate
susceptibility maps of wildfires for the winter and the summer season.
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3.1 Models comparison

Values indicated in Table 2 allow to compare and evaluate the prediction performance
of different models: the standard vs the neighboring vegetation model and the use of one-
vs five- vs nine-folds spatial cross validation for the winter (values above) and the summer
season (values below). In addition to the percentile ranking ranges (Classes), the
corresponding probabilistic output value (Prob_value) is specified. The field “Total area”
indicates the surface predicted by the model to fall within each interval, normalized over
the entire area. The field “Predicted BA” represents the fraction of the “Total area” falling
inside the burned area detected in the testing dataset. For example, looking at one-fold
standard model, the first class (25" percentile) indicates that only 5.07% of the 25% of the
area with the lowest probabilistic values, corresponding to < 0.13, falls inside the burned
area in the testing dataset. On the opposite extreme, the 95" percentile indicates that about
47% of the 5% of the area with the highest probabilistic values of burning, corresponding in
this case to > 0.91, falls inside the burned area in the testing dataset. Thus, a way to compare
the different models is to evaluate which one predicts the largest area with the highest
probability of burning falling inside the burned area in the testing dataset (hereafter defined
for brevity “predicted burned area”), and vice-versa for the lower classes. To facilitate the
comparison, the last 75" percentile was considered and discussed in the following. Results
show that the neighboring vegetation model performs better than the standard model in
both the seasons. Indeed, the predicted burned area is higher both for the one- and the five-
folds cross validation when the model includes the information concerning the type of
vegetation and non-flammable area in the neighboring of each pixel. The increment in this
case is of about three-percentage points or more, while, when comparing with the nine-folds
cross validation, the predicted burned area increases of only 0.87 % in the winter season and
0.02% in the summer season. So, using nine- instead of five-folds allows to slightly increase
the prediction performance of the model, face to the fact that the training algorithm is much
more computationally intensive as it has to be rerun from scratch five more times. On the
other hand, the prediction performance of using five-folds cross validation compared with
the one-fold increases of about four-percentage points in the winter season, both when
considering the standard and the neighboring vegetation model, and 2.24% and only 0.07%
for the equivalent models in the summer season. Despite this last low value, which will be
discussed later, overall it results that using five-folds cross validation give better
performances of the model than selecting randomly 20% of the dataset for validation.

The root-mean-square errors computed for all the models (Table 3) confirms these
results. As expected, all RMS-errors are lower than 0.5, as on average each model performs
good prediction of burned and unburned areas. The neighboring vegetation model
performs better than the standard one in both the seasons. Increasing the number of folds
in the cross validation allows to increase the model’s performance in all the cases, except
that in the case of the neighboring vegetation model in summer season which performs the
same regardless the number of folds.

All the models perform better in winter than in summer season. Indeed, in winter, the
testing burned area values for the last 75" percentile ranges from about 80% (1-fold
“standard model”) to 87% (5- and 9-folds “neighboring vegetation model”). In summer,
these values are quite lower, ranging from about 70% (1-fold “standard model”) to 75% (5-
and 9- folds “neighboring vegetation model”). These performances are confirmed by the
RMS-error, showing lower values in summer than in winter for the same model.
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To resume, the neighboring vegetation model using five-folds cross validation results to be
the one performing better. This last model was than evaluated by computing the fraction of
predicted burning area above the 75th percentile falling inside the testing burned areas for
each single year and by season. Values are expressed as percentage and as number of pixels
(Table 4). This allowed to investigate the influence of the testing dataset on the predictive
performances of the model. In the winter season, the model performed well every years,
with value ranging from 83.4% in 2013 to 91.7% in 2016. In the summer season, performances
are still quite good in the first five testing periods (years 2012 to 2016) while in the last period
(year 2017) the assessed value drops to 45.7%. At the same time, we notice that the size of
the burned area, which can highly differs in each testing period, does not compromise the
predictive performance of the model. More specifically, this result seems to imply that
something during the 2017 wildfire summer season in Liguria region does not worked as
predicted by the model.
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1
2 Table 2. Validation of the models (see Section 3.2.2)
Winter season 1-fold cross validation 5-folds cross validation 9-folds cross validation
standard model neighboring vegetation standard neighboring vegetation neighboring vegetation
Classes Total Area (%) | Testing BA (%) Prob_value BurnArea (%) Prob_value BurnArea (%) Prob_value BurnArea (%) Prob_value BurnArea (%) Prob_value
25% 25 5.07 0.13 3.85 0.09 4.42 0.11 3.50 0.07 3.36 0.07
50% 25 4.95 0.25 3.40 0.22 3.44 0.23 3.27 0.18 3.17 0.17
75% 25 10.52 0.48 8.80 0.47 8.90 0.43 6.22 0.39 6.44 0.39
90% 15 17.64 0.78 14.98 0.74 15.77 0.70 13.05 0.68 11.91 0.69
95% 5 14.38 0.91 15.26 0.87 15.67 0.85 17.70 0.83 16.43 0.85
100% 5 47.26 1.00 52.86 1.00 51.78 1.00 56.26 1.00 58.69 1.00
>75% 79.28 83.10 83.22 87.01 87.03
Summer season 1-fold cross validation 5-folds cross validation 9-folds cross validation
standard model neighboring vegetation standard neighboring vegetation neighboring vegetation
Classes Total Area (%) | Testing BA (%) Prob_value Testing BA (%) Prob_value Testing BA (%) Prob_value Testing BA (%) Prob_value Testing BA (%) Prob_value
25% 25 4.71 0.08 1.04 0.04 4.04 0.06 0.80 0.04 0.80 0.04
50% 25 7.52 0.23 4.64 0.17 9.39 0.19 5.08 0.14 5.54 0.14
75% 25 17.94 0.51 18.27 0.41 15.16 0.44 19.77 0.35 18.44 0.35
90% 15 24.45 0.78 26.19 0.70 23.31 0.69 21.51 0.65 22.11 0.66
95% 5 14.06 0.91 14.60 0.87 14.60 0.83 15.06 0.83 14.73 0.85
100% 5 30.66 1.00 33.43 1.00 33.50 1.00 37.71 1.00 38.31 1.00
3 >75% 69.17 74.22 71.41 74.28 75.15
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Table 3 Root-mean-square error based on the difference between the predicted and the observed value

Winter season 1-fold 5-folds 9-folds
Standard model 0.407 0.380 -
Neighboring vegetation 0.377 0.354 0.351
Summer season 1-fold 5-folds 9-folds
Standard model 0.437 0.428 -
Neighboring vegetation 0.411 0.411 0.411

Table 4 Model validation evaluated by computing the percentage of the predicted burning area above the 75th
percentile falling inside the testing burned areas for each single year (BA>75%). The number of pixel above and

below this value for each season are also shown.

Winter season Summer season
BA>75 BA < BA>75 BA<

% BA >75% 75% Tot_Winter % BA >75% 75% Tot_Summer | TOT_Year
Year (%) (# pixels) | (# pixels) (# pixels) (%) (# pixels) | (# pixels) (# pixels) (# pixels)
2012 84.1 844 159 1003 77.8 337 96 433 1436
2013 83.4 121 24 145 86.9 140 21 161 306
2014 86.0 117 19 136 92.8 103 8 111 247
2015 91.2 465 45 510 84.9 535 95 630 1140
2016 91.7 220 20 240 92.7 936 74 1010 1250
2017 86.4 3144 496 3640 45.7 449 534 983 4623
TOT 5674 3328 9002

3.1 Susceptibility mapping

Random forest gives as output a probabilistic value, expressing the probability for each
pixel of burning under the assumption of a set of predisposing variables. These values were
used to elaborate wildfire susceptibility maps in the summer (Figure 5.a) and winter (Figure
5.b) season. Only the results of the neighboring vegetation model using five-folds cross
validation, which is the one performing better, were retained for this purpose. The two
seasons display a different behavior in relation with the predicted susceptibility to wildfires.

Higher classes (above the 90t percentile) are closer to the coast in summer and develop
along the interior, at higher altitude, in winter. This can be due to the state of the vegetation:
in winter, vegetation is more stressed and senescent at higher altitude, due to the lower
temperature in altitude. On the contrary, in summer vegetation is dryer and more burnable
at lower elevations because of the high temperature and the dry weather. Finally, even
though the two models implemented separately for the winter and the summer season used
the same independent variables as input, Random Forest succeeded in discriminating
among the two pattern in the distribution of the wildfire susceptible areas thanks to the
training procedure.
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Figure 5. Wildfires susceptibility map in the winter and summer season for Liguria region (Italy)

4. Discussion and conclusions

In the present paper, we introduced an innovative Machine Learning approach, based
on Random Forest, allowing to elaborate the wildfire susceptibility map for Liguria region
(Italy). Susceptibility was assessed by evaluating the probability for an area to burn in the
future taking into account the spatial extension of past-burned areas and the geo-
environmental factors that favor their occurrence (i.e. altitude and its derivatives, distance
to an anthropogenic feature, protected area, vegetation type). An alternative model,
including the neighboring vegetation type at each location, was developed and compared
with the standard one. For validation purposes, we adopted the spatial k-fold cross
validation (with k=1, 5 and 9) and then we evaluated the predictive performances of the
different models over an independent testing dataset. This last was defined by splitting the
original dataset, spanning from 1997 to 2017, by years and holding out the last six years for
testing purposes. Finally, we compared the standard vs the neighboring vegetation model
and the use of one- vs five- vs nine-folds spatial cross validation, both for the winter and the
summer season. It results that: 1) neighboring vegetation model performs better than the
standard one in both the seasons; 2) five results to be the optimal number of folds based on
model performances; 3) all the models perform better in winter than in summer season.
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The implemented models globally shows a high capacity to discriminate most of the
burned area within the 75" percentile for most of the testing periods (2012 to 2017) and in
both the wildfire seasons. The neighboring vegetation model using five-folds cross
validation gives the best performances and was retained to elaborate winter and summer
wildfires susceptibility maps. The performance of this model in the summer 2017 testing-
period manifests the only notable exception to the overall good prediction capability, and it
will be object of discussion in the following. Instead of considering this fact a downside of
the proposed modeling framework, it indeed shifted the attention towards a specific
situation, the fire management in summer 2017. As a matter of fact, it is worth considering
that the Italian Forestry Corp, in charge of fire management since 1984, was dismissed at the
end of 2016 (DLGS 19/08/2016 n. 177). To counter this, Liguria Region named Italian Fire
Fighters (CNVVF) in charge of forest fire management. Before 2017, the role of CNVVF was
limited to the management of fire in the Wildland Urban Interface and mainly restricted to
the safeguard of civilians (protection of houses and infrastructures). In January 2017 a week
of severe fire danger caused the burning of about 3 000 ha, most of them characterized by
high or extreme fire risk. However, the summer season of 2017 has been a year peculiar not
only in terms of fire management procedures, but also with respect to the meteorological
conditions. This season was in fact characterized by a long drought, but with a remarkable
average relative humidity higher than 67%. In Figure 6 the distribution of the relative
humidity observed by 40 meteorological stations in the period ranging from 01/05/2017 to
31/10/2017 is reported. Only a couple of days were characterized by relative humidity lower
than 40%.

Relative Humidity in Liguria, from 01/05/2017 to 31/10/2017

254

20 A

Days

0 20 40 60 80 100
Relative Humidity

Figure 6. Histogram of daily average relative humidity from May to October observed from 40 meteorological

stations scattered all over Liguria
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In this frame period, 205 wildfires burned a total area of 927 ha. Only six events burned
an area greater than 50 ha each, resulting in 554 ha (corresponding to 60% of the total burned
area). These six events were analyzed in detail for a better understanding of the implication
that the new management can have on the model performance and prediction capabilities.

Summer season 2017

[ sumsawsss

Random Forest prohabits oispat

Figure 7 The six large wildfire occurrences of Summer 2017, along with the fire susceptibility map.

As it is evident in Figure 7, most of the burned area within these six large wildfire
occurrences are characterized by a middle-to-low level susceptibility, reflecting that
Random Forest cannot take into account the management issues of 2017. Despite the rapid
capacity of intervention of CNVVF, the fire brigade did not considered the mop up phase,

which caused each single fires to be reignited several times, extending the fire propagation
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for many days. These considerations put in evidence the capacity of the proposed approach
to identify also the efficiency of fire fighting activities, specifically if fire extinction
procedures are handled with modalities which differ compared with the ones used in the
past, and implicitly valued into the model. Before 2017, the different tactic of fire
management, which included the mop up phase, could have resulted in lower burned areas

which, by the way, were identified by the models as result from the susceptibility map.

In conclusion, the proposed approach proved to be globally effective to deal with large,
high dimensional spatial data, which reflects the great flexibility of machine learning in
general. In particular, one advantage of Random Forest is its capability of handling directly
categorical variable, such as the land use classes or the vegetation type. Ultimately, the
results of the present study highlights the importance of accurately select the predisposing
factors and the parameters in the model, and of taking into account possible changes of

surrounding conditions which can affect the validity of the model in space and in time.
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