Preprint
Article

Microstructure and Mechanical Properties of the Ni/Ti/Nb Multilayer Composite Manufactured by Accumulative Pack-roll Bonding

Altmetrics

Downloads

233

Views

150

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

03 February 2020

Posted:

03 February 2020

You are already at the latest version

Alerts
Abstract
In this work, the Ni/Ti/Nb multilayer composite was successfully manufactured by accumulative pack-roll bonding. The microstructure evolution and mechanical properties of the composite during the accumulative roll bonding (ARB) process were investigated by scanning electron microscopy(SEM), energy dispersive spectrometer(EDS), transmission electron microscopy (TEM), micro-hardness and tensile tests. The results showed that after 5 passes of the ARB process, the deformations of layers were relatively uniform, and no large number of interlayer fractures occurred. The microstructures of Ni and Ti were both equiaxed grains with a grain size of 200 nm and 150 nm, respectively, and finer equiaxed grains of the Ni layer were observed at the interface. The laminar structure of Nb layer was observed. The tensile strength and micro-hardness increased significantly as the number of ARB increased. After 5 passes of the ARB process, the tensile strength of the composite reached 792.3 MPa, and the micro-hardness of Ni, Ti, and Nb were increased to 270.2, 307.4, and 243.4 HV, respectively.
Keywords: 
Subject: Chemistry and Materials Science  -   Materials Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated