Fabrics comprised of porous fibers could provide effective passive protection against chemical and biological (CB) threats whilst maintaining high air permeability (breathability). Here, we fabricate hierarchically porous fibers consisting of regenerated silk fibroin (RSF) and activated-carbon (AC) prepared through two fiber spinning techniques in combination with ice-templating – namely cryogenic solution blow spinning (Cryo-SBS) and cryogenic wet-spinning (Cryo-WS). The Cryo-WS RSF fibers had exceptionally small macropores (as low as 0.1 µm) and high specific surface areas (SSAs) of up to 79 m2 g-1. The incorporation of AC could further increase the SSA to 210 m2 g-1 (25 wt. % loading) whilst also increasing adsorption capacity for volatile organic compounds (VOCs).
Keywords:
Subject: Chemistry and Materials Science - Biomaterials
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.