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Abstract: We propose a partial information decomposition based on the newly introduced framework
of causal tensors, i.e., multilinear stochastic maps that transform source data into destination data.
The innovation that causal tensors introduce is that the framework allows for an exact expression
of an indirect association in terms of the constituting, direct associations. This is not possible when
expressing associations only in measures like mutual information or transfer entropy. Instead of a
priori expressing associations in terms of mutual information or transfer entropy, the a posteriori
expression of associations in these terms results in an intuitive definition of a nonnegative and left
monotonic redundancy. The proposed redundancy satisfies the three axioms introduced by William
and Beer. The symmetry and self-redundancy axioms follow directly from our definition. The data
processing inequality ensures that the monotonicity axiom is satisfied. Because causal tensors can be
used to describe both mutual information as transfer entropy, the partial information decomposition
applies to both measures. Results show that the decomposition closely resembles the decomposition
of other another approach that expresses associations in terms of mutual information a posteriori.

Keywords: information theory; causal inference; causal tensors; transfer entropy; partial information
decomposition; left monotonicity

1. Introduction

The ability to decompose information within a multivariate system, i.e., systems comprising
over two random variables, allows us to diagnose behavior of these systems. Mutual information, the
information measure used in information theory [1], does not lead to a satisfactory decomposition.
For example, the widely used “Interaction Information” [2] can have negative values, which is
counterintuitive. An alternative approach is offered via “partial information decomposition” [3].
Total information is written as the sum of nonnegative information components. The definition of these
nonnegative information components is still an open problem however, as summarized in [4].

In this article we contribute to this discussion by showing that a partial information decomposition
in nonnegative contributors follows naturally from the framework of causal tensors, i.e., the set of
transition probability matrices. For mutual information, the tensor can be represented by a matrix. The
tensor comprises several transition probability matrices in the case of transfer entropy. Information
theory [1] models the association between data as transmission of source data towards a destination
via a communication channel towards. A channel is characterized by its probability transition matrix [5].
The association between the source data and the destination data is the mutual information (MI). If
data is transmitted from a source to a mediator and from there to the destination, i.e., via a transmission
path comprising three or more nodes, the mutual information between the source and destination
can not be expressed in terms of the mutual informations between the source and mediator and the
MI between the mediator and destination. Using the causal tensors however, the causal tensor of the
resulting communication channel between source and destination is a function of the constituting
communication channels along the transmission path.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 February 2020                   doi:10.20944/preprints202002.0066.v1

©  2020 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202002.0066.v1
http://creativecommons.org/licenses/by/4.0/


2 of 12

Instead of a priori expressing associations in terms of mutual information or transfer entropy, we
propose to use a posteriori expression of associations in these terms. In doing so, an intuitive definition
of redundancy and related, unique information arises.

2. Materials and Methods

Because causal tensors as a representation for the communication channel plays a central role, a
short summary is given

2.1. Causal tensors

In information theory, the data are realizations of random variables representing stationary
ergodic processes [1]. Because the data comprise elements from a finite alphabet, we can describe an
outcome using the value, i.e., alphabet symbol, or using the index, assuming a fixed, e.g., lexicographic,
order of the alphabet elements. In this article we use the latter.

The communication channel transforms the probability mass function (pmf) of the source data
in the pmf of the destination data via a linear mapping. With pj representing the jth element of the
destination pmf, and pi representing the ith element of the source pmf, the relation between source
and destination is given by

pj = ∑
i

pi Aj
i .

The elements of the tensor A, i.e., Aj
i , represent the transition probabilities Aj

i =

p(jth destination symbol|ith source symbol). A communication channel is the conceptual
implementation of the Law of Total Probability [6]. This immediately implies that the source pmf
can be reconstructed from the destination pmf: pi = ∑j pj A‡i

j . The ‡ indicates that the source pmf is
reconstructed. This is relevant in case a source is distinguishable from a destination, i.e., when transfer
entropy is used. The mutual between the source data, generated by process X, and the destination
data, generated by the process Y, is expressed as

I(X, Y) = ∑
i,j

pij log2

[
Aj

i
pj

]
. (1)

Equation 1 is equivalent to standard expression for mutual information, I(X, Y) =

∑x∈X ,y∈Y p(x, y) log2
[
p(y|x)

/
p(y)

]
(see, for example, [5]). This can be seen by switching from the

index notation to the notation in alphabet elements by replacing the transition probability matrix
elements Aj

i with the conditional probability p(y|x), the joint probability pij with p(x, y), the output
probability pj with p(y). The variable x is selected from alphabet X , and the variable y is selected from
the alphabet Y respectively.

Transfer entropy [7] is an information theoretical implementation of “Wieners principle of
causality” [8]: a “cause” combined with the past of the “effect” predicts the effect better than that the
“effect” predicts itself. It was proven that with a slight modification of the original proposed transfer
entropy (TE) fully complies with Wieners principle of causality [9]. Transfer entropy is the measure of
association for data transmission via a network of communication channels with an inverse multiplexer
topology (see Figure 1a). This becomes apparent when transfer entropy is written as

TEX→Y = ∑
ψ−g ∈Y `

p(ψ−g ) ∑
x−∈Xm

y∈Y

p(x−, y|y−=ψ−g ) log2

[
p(y|x−, y−=ψ−g ))

p(y|y−=ψ−g )

]
,

with x− representing the cause selecting symbols from the alphabet Xm, y− representing the past
of the effect, ψ−g equals the gth alphabet element from the alphabet Y `, and y representing the effect.
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It is assumed that Y is a Markov process of order `, and that the “cause” consists of m subsequent
symbols.

Transition probability matrices can be associated with this inverse multiplexer channel. There are
` sub-channels. Per sub-channel, the communication channel is identical to a communication channel
giving rise to MI as the measure of association, therefore, the elements of the gth sub-channel of the
causal tensor A are given by Aj

gi. Like MI, transfer entropy can be expressed in terms of the tensor:

TEX→Y = ∑
g,i,j

pijg log2

Aj
gi

pj
g

 .

Mutual information also results from transmission over an inverse multiplexer, an inverse
multiplexer comprising one sub-channel.

Definition 1. Mutual information is the measure of association from data transmission via a single-channel
inverse multiplexer. Transfer entropy is the measure of association from data transmission via a multi-channel
inverse multiplexer.

Figure 1. (a) The inverse multiplexer representing the communication network between X and Y.
Source data is partitioned on the past of the effect, indicated by index g, and transmitted via the related
communication channel. (b) The inverse multiplexers representing the transmission path {x, y, z}.
Index h is related to the past of the z. (c) An equivalent representation network communication channels
representing the transmission path {x, y, z}. The causal tensor elements Āj

hi equals ∑g pg
hi A

j
gi. Per

“sub-channel”, the resulting causal tensor equals ∑j Āj
hiB

k
hj.

2.1.1. Causal Tensors of a Cascade

A system comprising more than one random variables can be expressed as a graph in which the
nodes represent the random variables, and the edges represent the existence of an association. The
edges are undirected when MI is used as a measure of association and directed when TE is used. This
gives rise to “transmission paths”.

Definition 2. A transmission path, or path in short, is defined as the sequence in which nodes have been used
to transmit the data. The source is defined as the first variable in the path, the destination is the last variable in
the path. A path is denoted as {source, mediator1, · · · , mediatiorn, destination}.

The association between a source and destination of a path comprising over two nodes, i.e., a
cascade of (direct) paths, cannot be expressed in terms of the association constituting direct paths
when MI or TE are used. However, the following theorem can be proven [10]:
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Theorem 1. The causal tensor of a cascade of paths can be expressed in terms of the causal tensors of the
constituting direct paths.

For example, assume that the tensor elements for the path {x, y} are given by Aj
gi, with g the

index for the past of the effect (y), and the tensor elements for the path {x, y} are given by Bk
hj, with h

the index for the past of the effect (z). The causal tensor for the path {x, y, z} equals

Ck
hi = ∑

g,j
pg

hi A
j
giB

k
hj. (2)

Figure 1b depicts the transmission of data over two inverse multiplexers in series, resulting
in Eq.(2). The term ∑g pg

hi A
j
gi can be interpreted as the weighted sum of the causal tensors of the

sub-channels of the first direct path, {x, y}, and it evaluates to a causal tensor Āj
hi [10]. Transmission of

data over a cascade of multi-channel inverse multiplexers is equivalent to the transmission of data
over a parallel set of cascades of single-channel inverse multiplexers, i.e., results applicable to MI also
apply to TE. For this reason, we can restrict ourselves, without loss of generality, to MI. The mutual
information for the path {x, y, z}, the tensor elements of the resulting causal tensor equal ∑j Aj

i B
k
j . The

mutual information for this path equals

I{x, y, z} = ∑
i,j,k

pijk log2

∑j Aj
i B

k
j

pk

 .

2.1.2. Indirect Associations and No Associations

There are two underlying reasons to delete an edge in a graph: (i) the association it represents
is indirect, or (ii) there is no association at all. These two reasons can be distinguished using causal
tensors. First, because the causal tensor of a cascade can be determined exactly from the constituting
causal tensors, causal tensors can differentiate between direct and indirect associations [10].

Theorem 2. If the association between two nodes is indirect, the causal tensor of the direct path equals the
resulting causal tensor of the cascade. The direct path does not exist.

For example, the path {x, z} does not exist in when the graph X→Y→ Z is the ground truth.
Second, if there is no association between two nodes at all, the causal tensor represents a communication
channel that cannot transmit any information. Here the transition probability matrix has identical
rows, e.g., ∀ i 6= f : Aj

i = Aj
f . The direct path not not-exists. The distinction between no existence and

not not-existence is relevant for our definition of redundancy.

2.2. Partial Information Decomposition

The partial information decomposition framework of Williams and Beer [3] allows for a
decomposition of the total information in nonnegative unique, redundant, and synergistic information
components. The unique information U (Y; Z) represents information in Z only provided by Y and
not by X. The redundant informationR(X, Y; Z) represents the information in Z provided by both X
and Y. The synergistic information S(X, Y; Z) represents information in Z that results via interaction
between X and Y. The relations between these information components for a system comprising three
variables are given by the following set of equations,
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I(X, Y; Z) = U (Y; Z) + U (X; Z) +R(X, Y; Z) + S(X, Y; Z), (3)

I(Y; Z) = U (Y; Z) +R(X, Y; Z), (4)

I(X; Z) = U (X; Z) +R(X, Y; Z). (5)

Williams and Beer propose three redundancy related axioms: (i) Redundancy does not change
when sources are permuted, e.g., R(Z; X, Y)=R(Z; Y, X). (ii) Self-Redundancy: for a single source, the
redundancy equals the mutual information between the source and the destination, e.g., R(Z; X)=

I(Z; X). (iii) Monotonicity: the redundancy does not increase when a new source is added, e.g.,
R(Z; X)≥R(Z; X, Y).

2.2.1. Redundancy, Indirect Paths and the Data Processing Inequality

If the association between two nodes is indirect, no direct path exists. Source data is transmitted
to the mediator node, received by this node, stored, partly copied, possibly modified, and possibly
enriched with information from the mediator node, after which it is transmitted again from the
mediator node towards the next mediator node or destination node. This consideration leads to the
following proposition:

Proposition 1. Unique information can only result from data transmission via a direct path. Shared or
redundant information is the consequence of data transmission via an indirect path.

A direct consequence of this proposition is that in case the chain X→Y→Z is the ground truth,
no unique information is shared between X and Z, or stated otherwise, all information shared between
X and Z is redundant. Another immediate consequence of this proposition is that in case of the XOR
example from [11], there is neither unique, nor redundant information shared between the sources and
the destination: all information shared is synergistic.

In a fully connected three-node system, there are two source nodes transmitting data to the
destination node, and per source node, there is one indirect path between that source node and the
destination node. All indirect paths fall in two categories: (i) the indirect path includes the direct path
between a specific source and destination, and (ii) the indirect path does not include the direct path
between a specific source and destination. For the first category, the Data Processing Inequality (PID)
[5] is directly applicable. Data Processing Inequality states that processing of data can never increase
the amount of information. For the path {x, y, z} this means that I{x, y, z}≤min[I{x, y}, I{y, z}]. Via
this path the redundant information from X is transmitted. For the path {y, x, z} this means that
I{y, x, z}≤min[I{y, x}, I{x, z}]. Via this path the redundant information from Y is transmitted. Based
on this example, the following definition of redundancy is proposed:

Definition 3. Redundant information shared between a specific set of sources with respect to a destination is
defined as the weakest of all indirect paths that: (1) contain all the sources, (2) starts with a source and ends at
the destination, and (3) do not contain non-existing paths.

Because the redundancy in this definition equals a mutual information, the proposed redundancy
is per definition nonnegative. This definition of redundancy also satisfies the three axioms introduced
in [3].

Sketch of Proof of Symmetry. Because of the definition of redundancy, all indirect paths representing
all permutations of sources are compared. The order of the sources in the redundancy expression is
therefore irrelevant.
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Sketch of Proof of Self-Redundancy. Assume that one source is a copy of the other source, e.g., Y=X.
This means that for the causal tensors describing the mapping between the sources and destination, B
and C: B = C. Per definition R(X, X; Z) = I{x, x, z}. The causal tensor for the path equals B, because
the causal tensor A equals the Kronecker delta δ

j
i : δ

j
1=0 unless i= j in which case δ

j
i =1. In this case

I{x, x, z} = I(X; Z).

Sketch of Proof of Monotonicity. Because of the definition of redundancy, adding more sources
increases the number of nodes within the indirect path. As per Data Processing inequality, the adding
sources can never increase the redundancy.

Apart from these three axioms, Bertschinger et al. proposed several other axioms [12]. The
proposed redundancy measure satisfies the “left monotonicity” property. This property captures
the intuition that if X and Y share some information about Z1, “then at least the same amount of
information is available to reduce the uncertainty about the joint outcome” of Z1 and Z2:

R(Z1; Y, X) ≤ R(Z1Z2; Y, X).

In Appendix A, the following theorem is proved.

Theorem 3 (Left Monotonicity). The proposed redundancy is left monotonic.

Figure 2. The redundancy lattice [3] for: a) two sources, and (b) three sources. In case two lattice nodes
are connected, then the redundancy related to the highest lattice node (in position) is greater than or
equal to the redundancy of the lower lattice node.
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For a three-node system, the proposed redundancy gives rise to an identical redundancy lattice
introduced by [3], and shown in Figure 2. If we write this self-redundancy as R(X, X; Z), the “copy”
example used in the sketch of proof of Self-Redundancy implies that R(X, X; Z) = I(X; Z). Because of
the DPI there is a natural ordering in terms of (self-) redundancy:

• R(X, X; Z)≥R(X, Y; Z),
• R(Y, Y; Z)≥R(X, Y; Z),
• R({X, Y}, {X, Y})≥R(Y, Y; Z),
• R({X, Y}, {X, Y})≥R(X, X; Z).

The last two relations are a consequence of the fact that the tensor of the path {x, z} can be expressed
as a tensor contraction of the tensor related to the path {xy, z} and {x, y}, and that the tensor of the
path {y, z} can be expressed as a tensor contraction of the tensor related to the path {xy, z} and {y, x}
[10].

2.2.2. Unique information

Unique information for a three-node system is defined by Eq.(4) and Eq.(5). Using the proposed
redundancy, the resulting unique information is nonnegative because of the DPI. The proof is
straightforward and left to the reader. The unique information defined in this fashion, fully matches
our intuition. This can demonstrated by applying it to the fully connected three-node system. The
information in Z results from information transmitted via the paths I{x, y, z} and I{y, x, z}. The
redundant informationR(X, Y; Z) equals

R(X, Y; Z) = min [I{x, y, z}, I{y, x, z}] .

The causal tensor elements of the paths I{y, x, z} and I{x, y, z} are given by ∑i A‡i
j Ck

i and ∑j Aj
i B

k
j

respectively. Using Eq.(4) the unique information we get

U (Y; Z) = max

[
∑
i,j,k

pijk log2

 Bk
j

∑m A‡m
j Ck

m

 , ∑
i,j,k

pijk log2

[
Bk

j

∑` A`
i Bk

`

] ]
. (6)

The first sum is a measure for the divergence between the direct path {y, z} and the indirect path
{y, x, z}. If the association between Y and Z is indirect, this sum evaluates to zero. This also implies
that a direct path between Y and Z does not exist. The second sum is an indication how much Y differs
from an exact copy of X. If Y is an exact copy, this term evaluates to zero: no unique information is
shared between Y and Z because all information was already shared via X.

2.2.3. Relationship of Proposed Redundancy with Redundancy Lattice

As shown earlier, the proposed redundancy for two sources matches the redundancy lattice
derived in [3]. With three sources, this is also the case. The lattice nodes are indicated as
{X1}{· · · }{Xn} (see Figure 2). The redundancy related to the lattice node equals R(X1, · · · , X2; Z),
i.e., the minimum overall mutual informations of the indirect paths ending in Z and containing all
permutations of the sources X1, · · · , Xn. This means that a lattice node gives a description of all
individual sources involved. Because of the DPI, the redundancy associated with a lattice node must
be less than or equal to the redundancy of lattice nodes comprising only a subset of the sources.
For example, R(1, 23; Z)≤ R(1; Z), where 23 indicates the join of the sources 2 and 3. When this is
combined with the order suggested by the redundancy lattice for two sources, e.g., R(12; Z)≥R(1; Z),
the proposed definition fully complies with the order implied by the redundancy lattice.

3. Results

In this section the behavior of the proposed partial information decomposition we start with
investigating its behavior with respect the conceptual issue related to, Imin, the original redundancy
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measure used in [3]: Imin does not distinguish between “same information” or “the same amount of
information”.

3.1. Two Bit Copy Problem

A conceptual problem with the redundancy measure used in [3], Imin, is illustrated with the so
called “two-bit copy problem”. For two independent and identically distributed binary variables X and
Y, the destination Z is a copy of these two variables: Z = (X, Y). It can be shown that Imin(Z; {1}{2})=
1 bit [13]. The problem lies in the fact that there is no overlap between the information of both variables:
the result does not match out intuition, Imin seems to overestimate the redundancy. All indirect paths

Table 1. (The truth table for the “two-bit copy problem”.

X Y Z p(Z)
0 0 (0,0) 1

4
0 1 (0,1) 1

4
1 0 (1,0) 1

4
1 1 (1,1) 1

4

contain the paths between X and Y. Using Table 1, the causal tensor for the path {x, y}, A, can be
determined:

A =

(
1
2

1
2

1
2

1
2

)
.

The tensor related to the path {y, x}, A‡ equals A. This implies that no information can be
transmitted via the paths between X and Y, i.e., R(X, Y; Z)=0. The proposed redundancy does not
suffer from this conceptual issue.

3.2. Dyadic and Triadic Systems

Next we apply the proposed method to the two data sets from Table 2. Although these sets have
different underlying dependency structures, they apparently have the same statistical structure [14].

Table 2. Two systems, both comprising three random variables with identical joint probabilities per
combination of the random variables. The underlying structures are very different, which can be seen
when the variables are represented in two bits, e.g., the binary expansion for X=3 equals X0X1 =11.
(a) For the dyadic (pair-wise) set, X0 = Y1,Y0 = Z1, and Z0 = X1. (b) For the triadic (three-way) set,
X0 + Y0 + Z0 mod2, and X1 + Y1 + Z1.

(a) Dyadic (b) Triadic
X Y Z p X Y Z p
0 0 0 1

8 0 0 0 1
8

0 2 1 1
8 1 1 1 1

8
1 0 2 1

8 0 2 2 1
8

1 2 3 1
8 1 3 3 1

8
2 1 0 1

8 2 0 2 1
8

2 3 1 1
8 3 1 3 1

8
3 1 2 1

8 2 2 0 1
8

3 3 3 1
8 3 3 1 1

8

For the dyadic set, the causal tensors are given by:

A =


1
2 0 1

2 0
1
2 0 1

2 0
0 1

2 0 1
2

0 1
2 0 1

2

 , C =


1
2

1
2 0 0

0 0 1
2

1
2

1
2

1
2 0 0

0 0 1
2

1
2

 ,
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B=A, A‡ = C, B‡ = C, and C‡ =A. The channel capacity equals the maximum mutual information
[5], therefor this was used as indicative of the existence of a direct path. Using the Blahut-Arimito
algorithm [15], the channel capacity was determined to be equal to one bit for every relation. Because
no relation is the result of a cascade, e.g., Bk

j 6=∑i A‡i
j Ck

i , the structure is that of an undirected triangle.
Lets assume we are interested in the partial information decomposition of the total information in Z.
Because ∀ i, k : ∑j Aj

i B
k
j =

1
4 , the redundant information equals zero. For the triadic set, the causal

tensors are given by:

A =


1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0
0 1

2 0 1
2

 ,

B=A, C=A, A‡ =A, B‡ =A, and C‡ =A. Here, the ground structure is that of a chain because any
relation results from a cascade, e.g., Ck

i =∑j Aj
i B

k
j . To compare the partial information decomposition

of the triadic set, we have to investigate the set of the chains X→Y→Z and Y→X→Z. By definition,
Z does not contain unique information from X, nor does it contain any unique information from Y.

This example shows that the difference in underlying structure is reflected in two ways. First, the
graphs related to the dyadic set and the triadic set are different (a triangle versus a chain). Second,
for the dyadic set there is no redundant information and no synergistic information, because the total
information in Z can not exceed 2 bit. In the triadic set, Z contains only redundant and synergistic
information.

3.3. Comparison with Other Measures

To get an idea about the behavior of the proposed redundancy measure compared three other
measures: (i) the earlier mentioned redundancy measure Imin, (ii) Ibroja, the measure proposed [16],
and (iii) the redundancy based on Pointwise Common Change in Surprisal, ICCS[13]. For a description
of the examples we refer to [13].

Table 3. PID for 5A. The proposed measure is represented as ICT .

Lattice Node Imin Ibroja ICCS ICT
{12} 0.3333 0 0.1383 0.1383
{2} 0.3333 0.6666 0.5283 0.5283
{1} 0.3333 0.6666 0.5283 0.5283
{1}{2} 0.5850 0.2516 0.3900 0.3900

Table 4. PID for 5B. The proposed measure is represented as ICT .

Lattice Node Imin Ibroja ICCS ICT
{12} 0.5 0 0 0
{2} 0.5 1 1 1
{1} 0 0.5 0.5 0.5
{1}{2} 0.5 0 0 0

Table 5. PID for 5C. The proposed measure is represented as ICT .

Lattice Node Imin Ibroja ICCS ICT
{12} 0.67 0.67 0.67 0.67
{2} 0.25 0.25 0.25 0.25
{1} 0 0 0 0
{1}{2} 0 0 0 0
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Table 6. PID for ReducedOr. The proposed measure is represented as ICT .

Lattice Node Imin Ibroja ICCS ICT
{12} 0.69 0.69 0.38 0.40
{2} 0 0 0.31 0.29
{1} 0 0 0.31 0.29
{1}{2} 0.31 0.31 0 0.02

Table 7. PID for XOR. The proposed measure is represented as ICT .

Lattice Node Imin Ibroja ICCS ICT
{12} 1 1 1 1
{2} 0 0 0 0
{1} 0 0 0 0
{1}{2} 0 0 0 0

Table 8. PID for AND/OR. The proposed measure is represented as ICT .

Lattice Node Imin Ibroja ICCS ICT
{12} 0.5 0.5 0.29 0.19
{2} 0 0 0.21 0.31
{1} 0 0 0.21 0.31
{1}{2} 0.31 0.31 0.10 0

Table 9. PID for SUM. The proposed measure is represented as ICT .

Lattice Node Imin Ibroja ICCS ICT
{12} 1 1 0.5 0.5
{2} 0 0 0.5 0.5
{1} 0 0 0.5 0.5
{1}{2} 0.5 0.5 0 0

From these examples, it is clear that our proposed PID closely resembles the PID proposed by
Ince [13]. This should not come as a surprise because the pointwise approach suggested by Ince
expresses associations in terms of mutual information a posteriori.

In this article, we have shown that a partial information decomposition comprising nonnegative
information terms follows naturally from the framework of causal tensors. Because we introduced no
new information theoretical measures, it is our contention that a partial information decomposition
is possible within the framework of “classical” Shannon information theory. The partial information
decomposition is problematic when no exact expressions for indirect paths can be determined. It
reduces to a rather straightforward exercise when this is possible, for example, within the framework
of causal tensors.

Appendix A.

Sketch of Proof of Left Monotonicity Theorem 3. Assume that there are two “destinations”, Z1 and
Z1. Furthermore, assume that the redundant information in destination Z1 equals the mutual
information of the path {x, y, z1}:

R(Z1; Y, X) = ∑
i,k1,k2

pi,k1,k2 log2

∑j Aj
i B

k1
j

pk1

 .
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The index k1 is related to destination Z1. We multiplying the denominator and the numerator with the
conditional probability pk2

k1
, the index k2 is related to destination Z2, and we use pk2

k1
=∑j′ pj′ pk2

j′k1
. This

results in

R(Z1; Y, X) = ∑
i,k1,k2

pi,k1,k2 log2

∑j ∑j′ Aj
i B

k1
j pj′ pk2

j′k1

pk1k2

 ,

which is equivalent to

R(Z1; Y, X) = ∑
i,k1,k2

pi,k1,k2 log2

∑j Aj
i B

k1k2
j pj

pk1k2
+

∑j ∑j′ 6=j Aj
i B

k1
j pj′ pk2

j′k1

pk1k2

 . (A1)

Because the logarithm is a concave function, and the product of two probabilities is always less than or
equal to the individual terms of the product, pj′ pk2

j′k1
≤ pj′ , Eq.(A1) leads to the following inequality:

R(Z1; Y, X) ≤ ∑
i,k1,k2

pi,k1,k2 log2

∑j Aj
i B

k1k2
j pj

pk1k2
+

∑j ∑j′ 6=j Aj
i B

k1
j pj′

pk1k2

 . (A2)

we derive another inequality for the right-hand side of Eq.(A2). According to the “pigeonhole
principle”, ∀ j′ 6= j : pj′ ≤ 1− pj. Because the sum of products is less than or equal to the product of
sums, the right-hand side of Eq.(A2) is less than, or equal to

∑
i,k1,k2

pi,k1,k2 log2

∑j

(
Aj

i B
k1k2
j

) (
∑j pj

)
pk1k2

+

(
∑j Aj

i B
k1
j

) (
∑j 1− pj

)
pk1k2

 ,

which finally proofs the left monotonicity of the redundancy.

R(Z1; Y, X) ≤ R(Z1Z2; Y, X).
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