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Abstract 

Density distribution function of classical statistical mechanics is generally generalized as a 

product of a general complex function and its complex Hermitian conjugate function, and the 

average of classical statistical mechanics is generalized as the average of the quantum mechanics. 

Furthermore, this paper derives three ones of the five axiom presumptions of quantum mechanics, 

makes the three axiom presumptions into three theorems of quantum mechanics, not only solves 

the crisis to hard understand, but also gets new theories and new discoveries, e.g., this paper 

solves the crisis of the origin of the wave-particle duality (i.e., complementary principle), derives 

operators, eigenvalues and eigenstates, deduces commutation relations for coordinate and 

momentum as well as the time and energy, and discovers quantum mechanics is just a 

generalization ( mechanics ) theory of the square root of ( density function of ) classical statistical 

mechanics, which will make people renew thinking modern physics development. In addition, this 

paper discovers the reason why the time derivative of Schrȍdinger doesn’t takes the derivative of 

space coordinates. Therefore, this paper gives solution to the Crisis of the first quantization origin. 

Key words: Quantum mechanics, operators, basic presumptions, wave-particle duality, the first 

quantization, commutation relation, classical statistical mechanics, classical mechanics 

 

I.Introduction 

As far as quantum mechanics is concerned, there are still many problems that are very 

difficult to understand in terms of quantum mechanics. But classical mechanics is very well 

understood, and there is a very close correspondence between classical mechanics and quantum 

mechanics. Therefore, the studies on the correspondence between classical mechanics and 

quantum mechanics enable people to have a deeper understanding of quantum mechanics. Since 

quantum mechanics is a statistical theory [1,2], thus we naturally consider the correspondence 

relations between classical statistical mechanics and quantum mechanics. 

In fact, in the history of physics, people first studied classical mechanics [3], and then further 

researched on classical statistical mechanics with uncertainty [4], and finally have 

developmentally investigated to quantum mechanics [5,6], which is the inevitable result of steady 

development step by step. So, when we think about quantum mechanics, we need to think about 

the classical limit of quantum mechanics, which is to go first to classical statistical mechanics, and 

then to classical mechanics, not to go straight to classical mechanics. Otherwise, it will lead to that 

there are many problems that are hard to understand, which will lead to some crisises in the 

interpretations of the bases of current quantum mechanics [7,8]. And a lot of famous pioneers 
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have done a lot of exploration works, but still cannot solve the crisises, for example, the argument 

between Einstein and Bohr about the interpretation of quantum mechanics [9-12]. 

In fact, in both classical statistical mechanics and quantum mechanics, there are not only 

statistical average relations, but also uncertain relations etc. [13]. Therefore, it is necessary to 

study how the classical statistical mechanics can be directly extended to the situation of quantum 

mechanics, this paper intends to do just so. 

It is now known that the uncertainty relations in both classical statistical mechanics and 

quantum mechanics are the important relations [13,14]. In quantum mechanics, the uncertainty 

relation is derived from the wave-particle duality of microscopic particles. It is of great practical 

significance to clarify the correspondence between classical statistical mechanics and quantum 

mechanics for us to truly understand the more general physical essence of quantum mechanics, 

especially for the more general connection via quantum mechanics between the stability and 

uncertainty of the world [13,15]. 

In general, there is a correspondence between the general statistical sample space of classical 

statistical mechanics and the Hilbert space of quantum mechanics. Quantum mechanics is a 

general theory, and classical mechanics can be regarded as the limit of quantum mechanics when 

quantum effects are ignored. Therefore, there is a correspondence between quantum mechanics 

and classical mechanics. In classical mechanics, the motion of a particle is determined by the 

solution of Newton's equations and initial and boundary conditions. If the initial and boundary 

conditions are completely given, we get a completely deterministic description. If the initial and 

boundary conditions are given in the form of probability, the solution must also appear in the form 

of probability, so the form of motion obtained is also in the form of probability. Therefore, the 

description of classical statistical mechanics can be obtained [16]. 

The objects described by classical statistical mechanics can be an ensemble or some tiny 

particles [17]. For a system in classical statistical mechanics, a corresponding relationship with 

quantum mechanics can be established. 

As we all know, quantum mechanics is based on the five basic axiom presumptions: wave 

function axiom presumption, operator axiom presumption, measurement axiom presumption, 

evolution axiom presumption and identical axiom presumption, using the five axiom presumptions, 

one can deduce quantum mechanics [15,18]. 

We now process from classical statistical mechanics without the basic presumptions to 

naturally deduce the present quantum mechanics, give its solutions to the two crisises of both 

wave-particle duality origin and the first quantization interpretations. In addition, new important 

discoveries were made, and all the achieved conclusions satisfy that the classical limit of quantum 

mechanics is classical statistical mechanics, and the macroscopic limit of classical statistical 

mechanics is classical mechanics, which are exactly required by the self-consistency of physics, 

and are also a flashback of the related cognitive development processes in physics. 

After having tried to make a lot of efforts and experienced various explorations following the 

pioneers’ steps [19-22] and up to now various efforts of almost all quantum theorists in quantum 

theory [23-31], we finally overcome these large difficulties.  

The arrangement of this paper is as follows: section 2 studies the general average 

representation and the related discussions of any observable physical quantity; section 3 shows the 

general eigen-equations and new general Hellmann-Feynman theorem as well as the related 

discussions; section 4 deduces the general Schrȍdinger equation in quantum mechanics and shows 
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the related discussions; section 5 gives applications to different commutation relations and the first 

quantization; Section 6 is the summary and conclusions. 

 

2.The general average representation and the related discussions of any 

observable physical quantity 

In current quantum mechanics, the first basic axiom presumption is the wave function axiom 

presumption: the motion state of microscopic particles is described by the wave function (material 

wave), and the modulus square of the wave function is the probability density function of particles. 

Now we don't need the wave function axiom presumption and are able to derive both wave 

function axiom presumption content and new more physical contents. 

First, considering a general classical statistical physical system, in which a particle has a 

classical distribution density function ( , )r t =  at any time t, according to the positive 

definition of classical distribution density function, there is 0 ( , ) 1r t  , and since it must be 

in the space V at any time, thus we have ( , ) 1
V

r t dr = , thus the average of any observable 

physical quantity satisfying the statistical classical mechanics of the particle is 

( ) ( , ) ( , )
V

F t F r t r t dr=      .                      （2.1） 

So, we can give a description of the statistical property of a particle and in order to generalize to 

the general quantum theory from the classical statistical mechanics that we have, we can consider 

the density function of any positive definite real number ( , )r t = , mathematically the density 

function can always be represented as the product of a complex number and its complex 

Hermitian conjugate 

( , ) *( , ) ( , )r t r t r t  = .                                 （2.2） 

In order to do general research, we can generally consider when the density function takes 

discrete values 
1

( , ) ( , )
n

i

i

r t r t 
=

= , then we have 
1

( , ) *( , ) ( , )
n

i i

i

r t r t r t  
=

= , this 

expression can be expressed as a matrix product ( , ) ( , ) ( , )r t r t r t  += , where 

1 2( , ) ( *( , ) *( , ) ... *( , ))nr t r t r t r t   + =  is the row matrix, which is the Hermitian 

conjugate of the column matrix ( , )r t . The general average value (2.1) of discrete values of 

observable physical quantities can be expressed again as 

1

†

†

( ) ( , ) *( , ) ( , )

ˆ( , ) ( , ) ( , )

ˆ' ( , ) '( , ) '( , )

n

i i i
V

i

V

V

F t F r t r t r t dr

r t F r t r t dr

r t F r t r t dr

 

 

 

=

=

=

=






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, 1

ˆ'*( , ) ' ( , ) ' ( , )
k

m mn n
V

m n

r t F r t r t dr 
=

=        .                     （2.3） 

where 
1 2

ˆ ( , ) ( ( , ), ( , ), ... , ( , ))nF r t diag F r t F r t F r t=  is a nxn diagonal square matrix 

( without differentiation ) operator of classical general functions; for the third equality, according 

to linear algebra theory, a general unitary matrix ( , )U r t  satisfies the properties 

( , ) ( , ) 1U r t U r t+ =  ( there is 
1( , ) ( , )U r t U r t+ −= ), and we have defined 

'( , ) ( , ) ( , )r t U r t r t = ，and then we have ' ( , ) ( , ) ( , )r t r t U r t + + +=  and 

ˆ ˆ'( , ) ( , ) ( , ) ( , )F r t U r t F r t U r t+= ，                          （2.4） 

that is, the off-diagonal square matrix operator can be obtained by a general diagonal square 

matrix operator ˆ ( , )F r t  through the similarity transformation of a general unitary operator, in 

other words, ˆ '( , )F r t  is a nxn general off-diagonal square matrix operator. In fact, formula (2.4) 

is an inverse operation on a general diagonalization of a matrix, and it is easy to prove that the 

general operator (2.4) must be Hermitian, that is, we quite naturally prove that the classical 

observable operator must be Hermitian. 

Therefore, we not only realize from the classical average representation to the quantum 

mechanics average representation of the operator that is between the probability function and its 

complex conjugate function, but also naturally find the average representation of different 

operators can be different in a similarity transformation, but its average value is invariant. And it 

has been proved in linear algebra that the Hermitian matrix is diagonalizable, and this 

diagonalizability is the necessary and sufficient condition for the Hermitian matrix to have 

eigenvalues on its eigenvectors [15]. 

Therefore, the above research is consistent with the known quantum mechanics theory, which 

is an important reason why we can generalize from classical statistical mechanics to quantum 

mechanics. It can be seen, from above discussions, that the three expressions in eq.(2.3) are 

equivalent invariant expressions, and we show that the density is invariant under this 

transformation 

'( , ) ' ( , ) '( , ) ( , ) ( , ) ( , ) ( , ) ( , )r t r t r t r t U r t U r t r t r t     + + += = =     .   (2.5) 

Therefore, we have obtained the general expression (2.3) of the average value of discrete 

observable values of any physical quantity in classical statistical mechanics, which is the same as 

that of quantum mechanics. These are just the requirements of physics consistence. For any m and 

n, when there are ˆ ' ( , ) 1mnF r t = ,  the last equation of eq.(2.3) can be written in normalized 

form 

, 1 , 1

( ) ' ( , ) ' ( , ) ' ( , ) 1
k k

m n mn
V V

m n m n

F t r t r t dr r t dr  +

= =

= = =   ,    （2.6） 
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where we have used '( , ) ( , ) ( , )r t U r t r t = . 

    On the other hand, if we take the Hermitian conjugate of equation (2.3), we have 

ˆ( ) ' ( , ) ' ( , ) '( , )
V

F t r t F r t r t dr + + +=      .                       （2.7） 

Every physical quantity measured is a real value, thus we have ( ) ( )F t F t+= , using eq.(2.3) 

and (2.7), one has ˆ ˆ'( , ) ' ( , )F r t F r t+= , i.e., from an experimental observation point of view, all 

operators of observable quantities are Hermitian operators, and their eigenvalues are real.  

In current quantum mechanics, the second basic axiom presumption is the axiom 

presumption of operators [15,18]: Classical mechanical quantities correspond to operators of 

quantum mechanics, the eigenvalue of operators is the measured value of their mechanical 

quantities. Quantization is the operatorization of mechanical quantities, all the eigenfunctions of 

quantum mechanics operators are complete. 

In addition, we have proved the operators of quantum mechanics correspond to the 

observable physical quantities in classical statistical mechanics by the generalized expression of 

operator mean value (2.3), and the eigenvalues of the operators are the measured values of its 

mechanical quantities. Quantization is the operatorization of mechanical quantities, because 

eq.(2.3) is the generalized expression from the mean value of observable physical quantities in 

classical statistical mechanics to the mean value of operators, and the eigenfunctions of all 

operators of mechanical quantities in quantum mechanics are complete (Since the sample space of 

classical statistics is not only complete but also corresponding to the eigenfunctions of all quantum 

mechanical operators). So, we naturally derive the second axiom presumption that is the axiom 

presumption of operators. 

Mathematically we have implemented the sum of observable values from the classical 

statistical mean value sum to the mean value sum of the quantum mechanics’ matrix operators in 

the middle of a state vector and its complex conjugate. In fact, when we take the state of the 

microscopic particle system described by the general complex function of square root of the 

density function, we begin to enter a more general description system that is different from the 

classical statistical mechanics system, namely the quantum mechanics system. 

Therefore, we not only obtain the statistical description of microscopic particles, but also 

obtain the state vector description of microscopic particles, namely the probability vector 

description, and obtain the coherence (2.6) of different components of the state vector. Later, we 

can more specifically prove that this description system is exactly the system of quantum 

mechanics. 

 

3.Derivations of general eigen-equations and general Hellmann-Feynman 

theorems 

Following the studies in literature [15,18] and using the generally deduced expression (2.3), 

we derive the general eigen-equation and general Hellmann—Feynman theorem. 

In order to make general studies without losing generality, in eq.(2.3), respectively denoting 

'  as  , then ' + =  +
, and taking the operator ˆ 'F  as 



A , then eq.(2.3) can be written as 
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A A d  
 

+=       .                           （3.1） 

Obviously, eq.(3.1) is a direct extension of eq.(2.3), d  can be the measure of general 

representation, that is, d  may be taken as the measures of different representations, such as the 

measures of coordinate, momentum and energy representations etc., and 1d  + =  can be 

obtained under the corresponding measures. 

Because according to the probability theory, any particle must have the value under the 

corresponding measure, so it has its normalization. On the other hand, for the general function 

i ( 1,2,...,i n= ), we generally have 

                           
1

n

i i i

i

d d      + +

=

=   ，                   （3.2） 

where   is a diagonal matrix. According to the variational theory, 
i ( 1,2,...,i n= ) can be 

taken as the Lagrange multipliers, so the following function can be constructed 

       
1

'
n

i i i

i

A A d d      
 

+ +

=

=   .                         （3.3） 

Using the variational theory, we have 

1

' ( ) 0
n

i i i

i

A A d d        
 

+ +

=

=  =    

              ( )A d   


+=  [(A 


+  ) ] d  + ( )A d    


++  .    （3.4） 

According to eq.(3.4) and using the independences of complex functions +
 and  , we have 

( ) 0   A A   
 

 = =，i.e.,  ，                 （3.5） 

[( ) ] 0   ( ) 0A A   
 

+ =  =，i.e.,    .              （3.6） 

It follows from eq.(3.6) that A 


= , when the positive signs of eqs.(3.5) and (3.6) are 

taken, the eigenvalue equation in quantum mechanics can be obtained, and it is also necessary to 

satisfy the condition that the first order linear eq.(3.5) has a non-trivial solution 

                0A 


− =  ，
1 2( , , ... , )ndiag   =  .                （3.7） 

Eq.(3.7) is the condition that any matrix in linear algebra can be diagonalized, or the 

condition that any matrix in linear algebra can be diagonalized is that the matrix has n linearly 

independent eigenvectors. 

They also indicate that the eigenvalues of all operators are the values corresponding to the 

extreme values of the variational (3.4). From the last term in eq.(3.4), we have 
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( ) 0A d A d d           
 

+ + + = =  ，i.e.,  .        （3.8） 

Using i

i

i

i

a
a

A
Aa

a















== ,  and when 
ia  are linearly independent parameters, 

eq.(3.8) becomes 

i i

A
d d

a a

 
     

 



+ +=  ，                          （3.9） 

where, the positive sign has been taken in eq.(3.8), that is, only the negative sign is taken in 

eq.(3.3). Therefore, we get the general Hellmann—Feynman theorem (3.9). When the diagonal 

elements of the matrix are all the same, eq.(3.9) is simplified to the usual Hellmann—Feynman 

theorem 

i

i i

A
d

a A

a ad


  

 

   



+


+
= =



   .                  （3.10） 

Eq.(3.9) is the general Hellmann-Feynman theorem that we derived. This relation implies 

that ordinary Hermitian operators satisfy this important relation as well. In particular, the 

Hellmann-Feynman theorem is established under the condition that not only the eigenvalues of all 

operators are the values corresponding to the extreme values of their variational system, but also 

the values of the rest of the system are the results of taking the extreme values for the variational 

system. 

As a result, we find that not only all the eigenvalues of the operators are the values 

corresponding to their variational system’s taking extreme value, and also find 

Hellmann-Feynman theorem is established on condition that not only all the eigenvalues of the 

operators are the values corresponding to extremum value of their variational system, but also the 

rests of this system are also the result of taking extreme values for the variational system. That is, 

the whole variational system takes the extreme value among all possible values, i.e., the particle 

system will choose the optimal way to express the physical properties of the system. More detailed 

studies are shown in the next section. 

 

4. Derivation of general Schrȍdinger equation in quantum mechanics  

Using the general eigen-equation (3.5) derived from us, taking A


 and   as the classical 

Hamiltonian operator H


 and the energy eigenvalue E ( there is no differential operator but can 

include the matrix ), respectively, then the equation (3.5) can be specifically written as the 

corresponding eigen-equation 

ˆ ˆ H( , ) ( , ) H( , ) ( , ) ( , )T V p E p r p E E p E  = =  .            （4.1） 

Namely, in E
† ˆ( , ) H( , )p E p r =  q.(3.3), d  can be taken as the measure of momentum 
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representation, i.e., Ĥ ' ( ,T )V = †( , )p E Ĥ ( , ) ( , )T V p E dp  
†( , ) ( , )p E E p E dp −    

= ( p
†, )E Ĥ ( ,p r ) ( ,p )E d p ( ,p− )E + E ( p , )E d p . The 4-dimensional 

momentum representation wave function ( , )p E  just reflects the system’s global property 

(having nothing to do with spacetime coordinates) that is just particle property for the single 

particle. Using 
/ 1/2/ (2 )itEe  −

times eq.(4.1) and making the integral from minus infinity to 

positive infinity, namely, we make Fourier integral transformation of plane wave relevant to 

energy, we get 

/ /

1/2 1/2

1 1ˆ H( , ) ( , ) ( , )
(2 ) (2 )

ˆ( , ) H( , ) ( , )

itE itEp r p E e dE E p E e dE

i p t p r p t
t

  
 

  

 
− −

− −
=


= =



 
，   （4.2） 

where   is a constant making their dimensions [ ] / [ ] 1tE  = , and according to general 

mathematical principle, we have defined  

/

1/2

1
 ( , ) ( , )

(2 )

itEp t p E e dE 



−

−
=    ，                      （4.3） 

eq.(4.3) is Fourier transformation of plane wave relevant to energy,  

Eq.(4.2)’s second line is still the incomplete Schrȍdinger equation for the classical 

Hamiltonian Ĥ( , )p r  and the wave function ( , )p t  of the momentum representation, 

Because p  is still a classical quantity not an operator. And from eq.(4.2), we get 

Ĥ( , ) /p r i t=   . It can be found from the above study, it is the presence of a weight factor 

/itEe −
 that enables the classical Hamiltonian to be written in operator form Ĥ( , ) /p r i t=   . 

It is well known from the mathematical properties of the Fourier transformation that any 

continuous physical quantity can be represented by the discrete Fourier basic vector expansion, 

which can be equivalent to the projection of the physical quantity onto the discrete Fourier basic 

vector, i.e., the physical quantity is thus discretization (i.e., a discrete quantization). 

Similarly, any continuous quantity can be represented by a continuous Fourier basic vector 

expansion. In particular, it should be pointed out that eq.(4.3) uses 
/ 1/2/ (2 )itEe  −

times 

( , )p E  and makes Integral from minus infinity to positive infinity for E, that is, the wave 

function of the energy representation is deduced at time t via considering the E’s contribution to 
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( , )p E  from minus infinity to positive infinity, which is also the natural property of the Fourier 

integral transformation for plane wave energy part. 

Substituting the classical operator Ĥ( , ) ( ) ( )p r T p V r= +  into eq.(4.2), using 

/ 1/2/ (2 )ip re  
to multiply the second row of eq.(4.2), and integrating from minus infinity to 

positive infinity, then we deduce 

/

1/2

/

1/2

1
 [ ( ) ( )] ( , )
(2 )

1 ˆ[ ( ) ( )] ( , )
(2 )

ˆˆ( , ) H( , ) ( , )

ip r

ip r

T p V r p t e dp

T i V r p t e dp

i r t p r r t
t








 


  




−




−

+

= −  +


= =





      .                （4.4） 

where we have already used that the kinetic energy ( )T p  can be expanded into a series of 

p (e.g., 
2( ) / (2 )T p p m= ),   is a constant making their dimensionality [ ] / [ ] 1p r  = , 

and according to general mathematical rule, we can define 

/

3/2

1
 ( , ) ( , )

(2 )

ip rr t p t e dp 





−
=  .                         （4.5） 

Eq.(4.5) is the Fourier transform of momentum part of plane wave  ( , )p t ,  ( , )r t  is 

deduced from the probability density of the classical particle and the projection of the time part 

state vector  ( , )p t  of the base vector of the plane wave to the space part 
/ip re 

 of the base 

vector of the plane wave and by integration for momentum p , this makes it not only have the 

characteristics of the probability density state vector of the classical particle but also have the 

characteristics of the plane wave, which makes  ( , )r t  have the characteristics of the 

wave-particle duality state vector at the same time. 

The Hamiltonian becomes an operator with differentiation form ˆ ˆˆ ˆH( , ) ( ) ( )p r T p V r= +  

( p̂ i= −  ), it can be found from the above study, it is the presence of a weight factor 
/ip re 

 

that enables momentum p  to be written in operator form p̂ i= −  . By using eq.(4.4) in a 

practical example or in comparison with the existing Schrȍdinger equation, we get  = = , 

and substituting  = =  into eq.(4.4), we finally get the Schrȍdinger euation in quantum 
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mechanics 

ˆˆ ( , ) H( , ) ( , )i r t p r r t
t
 


=


  .                               （4.6） 

Finally, from eq.(4.6), we get that the Hamiltonian operator can be written as 

ˆĤ( , ) /p r i t=   . 

It can be seen from the above derivation that eq.(4.1) is the eigenvalue equation of the 

probability of classical particles from classical statistical mechanics, and the state function 

( , )p E  is the square root of the probability density of classical particles in the complex number 

field, ,p E  are the physical quantities of classical particles in classical statistical mechanics, and 

they reflect the properties of particles.  

When eq.(4.1) is related to Fourier transformation (4.2) and (4.4) of the four-dimensional 

spacetime, eq.(4.1) is projected onto a plane wave function 
/ /ip r iEte   −

 of the four dimensional 

spacetime state vector and making integration, we get Schrȍdinger equation (4.6), Schrödinger 

equation (4.6) is reflecting both the particle property and the wave property, eq.(4.1) is only 

reflecting the nature of the particle, and that eq.(4.6) is turned into quantum mechanics just reflects 

the material particle property and wave property in the wave-particle duality for Schrȍdinger 

equation. 

The square root function ( , )p E  of the probability density of the classical particle in the 

complex field is transformed into  ( , )r t  through (4.3) and (4.5), which not only has the 

characteristics of the probability density state vector of the classical particle, but also has the 

characteristics of the wave, that is, which makes  ( , )r t  have the characteristics of the 

wave-particle duality state vector at the same time. 

Thus, the basic interpretation problem of quantum mechanics has been debated for more than 

a century, e.g., the crisis of the dispute over the origin of the wave-particle duality of microscopic 

particles has been solved. 

Consequently, eq.(4.1) and eq.(4.4), respectively, show the classical locality and quantum 

non-locality, ( , )p E (from the square root function of the classical probability density of a 

particle in the complex domain in eq.(4.3) ) and eq.(4.5) directly shows the classical locality and 

quantum non-locality. 

Since in the current quantum mechanics, the third axiom presumption is the evolution axiom 

presumption: the evolution law of the wave function representing the state of the quantum isolated 

system before the measurement satisfies the wave equation (namely Schrȍdinger equation) 

relevant to the energy-momentum relation of classical mechanics. In the above study, we do not 

need the third axiom presumption to derive not only the entire contents of the third axiom 

presumption, but also more new physical contents.  

It especially needs to point out: we extensively take the square root function of the 

probabilistic density function in the most general mathematical form, then the probabilistic density 

square root state vector function is obtained, which similarly take square root of Klein-Gorden 

equation to get very different Dirac equation, we have obtained a general quantum mechanical 
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function of complex numbers, which is completely different from the classical probabilistic 

density function of real Numbers, and vice versa. 

What is also special is that we have the classical statistical eigen-equation which is only 

different from Schrȍdinger equation of quantum mechanics in terms of the Fourier transformation 

of the plane wave, which is what makes the classical statistical mechanics eigen equation of 

particles become Schrȍdinger equation with wave-particle duality. So, they are related and 

consistent, and thus we have determined the strict correspondence relationships from the classical 

statistical mechanics to the quantum mechanics, or from the quantum mechanics to the classical 

statistical mechanics. 

 

5. Applications to different commutation relations and the first quantization 

Using the deduced operators p̂ i= −   and ˆĤ( , ) /p r i t=   , we have 

ˆˆ[H( , ), ] [ / , ]p r t i t t i=   =   ,                       (5.1) 

ˆ[ , ] [ , / ]i j i j ijx p x i x i = −   = ,                       (5.2) 

and  

ˆ ˆ ˆ[ , ] [ , ] [ , ] [ , ] 0i j i j i ix x p p x t p t= = = = .                 (5.3) 

Therefore, for more operators, we naturally have 

ˆ ˆˆ ˆ ˆ ˆ[ , ] ,[ , ]i j ijn n k l klm mJ x i x p L i p = = .                 (5.4) 

where angular momentum components 123 132
ˆ ˆ ˆ , 1i ijk j kJ x p  = = − = . 

In fact, when people deduce wave functions, operator expressions of mechanics quantities, 

operators’ eigen-values and commutation relations of different operators, the first quantization of 

quantum theory has been achieved [15].   

According to all the investigations above in this paper, we have done all the above these, 

consequently, we naturally show general quantum theory and its solutions to the two crisises of 

both wave-particle duality origin and the first quantization interpretations.  

Quantum effects are actually caused by the wave-particle duality. Because if there is no 

matter wave property, i.e., there is not a plane wave with the integral transformation, it is not 

possible, at the same time, the presence of multiple points in the space, and multiple points all 

have probability waves, because probability wave can have distribution, matter probability wave 

function is used to describe wave-particle duality in current quantum theory, which is the basic 

hypothesis of quantum mechanics, but in our study is a natural deducing consequence. 

 

6. Summary and conclusions 

In classical statistical physics, the state of a microscopic particle or microscopic particle 

system is described by a density function, we extensively find that the state of a microscopic 

particle or microscopic particle system can be described by a general complex function ( or call a 

state vector ) ( , )r t  from Fourier integral transformation, with plane wave, of square root 

( , )p E  of the density function of classical statistical mechanics. In fact, when we take the state 

( , )r t , we begin to enter a general description system that is different from the classical 

statistical mechanics system, namely the quantum mechanics system, which is, in some meaning, 
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analogous to taking the square root of Klain-Gooden equation, we get a new system, Dirac 

equation Fermi system, which just means that we may say that quantum mechanics is a 

generalization mechanic theory of the square root of density function of classical statistical 

mechanics, namely, we, for the first time, factually discover that quantum mechanics is a 

generalization mechanics theory of the square root of density function of classical statistical 

mechanics, for short, quantum mechanics is just a generalization theory of the square root of 

classical statistical mechanics, which can be seen from the overall deductions in this paper, and it 

is both new physics and revolutionary discovery, further will affect people’s deep philosophical 

thinking for modern physics development.  

We naturally give inverse calculation of general matrix diagonalization for any observable 

physical quantity operator, and prove the general observable quantity operator must be Hermitian 

operator. In linear algebra, people have proved that any Hermitian matrix is diagonalizable, and 

the diagonalizable conditions are the sufficient and necessary conditions that the Hermitian 

matrixes acting on their eigen-vectors have eigenvalues.  

Therefore, the above research is consistent with the known quantum mechanics theory, which 

is an important reason why we can generalize to quantum mechanics from classical statistical 

mechanics. 

Not only do we deduce that the eigenvalues of all the operators are the values corresponding 

to the extreme values of their variational system, and find Hellmann-Feynman theorem is true 

only if the eigenvalues of all operators are the values corresponding to the extreme values of their 

variational system, and the rest values of the system are also the result of taking the extreme 

values for the variational system. 

From the research in the second and third sections, we have now reduced the third axiom 

presumption ( evolution axiom presumption ) to evolution theorem, that is, the evolution theorem 

has been proved from the classical statistical mechanics. 

When making 4-dimensional spacetime Fourier integral transformations (4.2) and (4.4) of 

eq.(4.1), that is, when eq.(4.1) is projected onto the state vector of the plane wave function 

/ /ip r iEte   −
of the four-dimensional spacetime and is integrated, we get Schrȍdinger equation (4.6), 

eq. (4.6) reflects both the particle nature of matter and the wave nature of matter. According to the 

exact deducing logic, in other words, eq.(4.1) only reflects the properties of particles, while 

eq.(4.6) is transformed into Schrȍdinger equation reflecting the wave-particle duality in quantum 

mechanics. The square root function ( , )p E  of the probability density of the classical particle 

in the complex field is converted to  ( , )r t  by eq.(4.3) and eq.(4.5), it not only has the property 

of the probability density state vector of classical particles, but also has the property of the wave, 

which make  ( , )r t  have characteristics of wave-particle duality state vector at the same time. 

However, the crisis of the fundamental interpretation of quantum mechanics, which has been 

debated for more than a century, isn’t still solved, but, e.g., the crisis of the debates of the origin of 

the wave-particle duality of microscopic particles has been rigorously settled in this paper. 
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Therefore, eq.(4.1) and eq.(4.4), respectively, show the classical locality and quantum 

non-locality, ( , )p E  in eq.(4.3) and ( , )r t  in eq.(4.5) directly shows the classical locality 

and quantum non-locality respectively. 

Using eq.(4.2), we deduce Ĥ( , ) /p r i t=   , therefore, we discover that it is the existence 

of a projection weight factor 
/itEe−

 that makes the Hamiltonian be written in operator form 

Ĥ( , ) /p r i t=   , which just shows, in Schrȍdinger equation, taking derivative of the wave 

function is a partial derivative about time t rather than a full derivative, i.e., it is the reason why 

people don't take the time derivative of space coordinates of the wave function. People haven't 

found out the reason for more than 80 years, because Schrȍdinger equation is still an axiom 

presumption up to now, it has not been rigorously derived in the most general way. 

Because we have deduced wave functions, operator expressions of mechanics quantities, 

operators’ eigenvalues and commutation relations of different operators, the first quantization of 

quantum theory not only has been achieved, but also we very naturally give the origin of the first 

quantization of quantum theory. Consequently, the crisis of the origin of the first quantization of 

quantum theory is naturally solved. 

Therefore, we finally naturally deduce the very important three ones of the five axiom 

presumptions of quantum mechanics, then these three axiom presumptions are changed into three 

basic theorems of quantum mechanics. Consequently, we show general quantum theory and its 

solutions to crisises of origins of both wave-particle duality and the first quantization. Due to 

length limit of this paper, the studies on the other two axiom presumptions of quantum mechanics, 

origins and classifications of entanglements, wave collapse and so on would be given in following 

paper [32].  
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