Machine learning plays a key role in present day crime detection, analysis and prediction. The goal of this work is to propose methods for predicting crimes classified into different categories of severity. We implemented visualization and analysis of crime data statistics in recent years in the city of Boston. We then carried out a comparative study between two supervised learning algorithms, which are decision tree and random forest based on the accuracy and processing time of the models to make predictions using geographical and temporal information provided by splitting the data into training and test sets. The result shows that random forest as expected gives a better result by 1.54% more accuracy in comparison to decision tree, although this comes at a cost of at least 4.37 times the time consumed in processing. The study opens doors to application of similar supervised methods in crime data analytics and other fields of data science
Keywords:
Subject: Computer Science and Mathematics - Information Systems
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.