Global Positioning System (GPS) stations located along coastal areas have the ability to measure tide gauge (TG) records by reflected signal reception from the sea water surface. In this study we used the GPS signal-to-noise ratio (SNR) data from the SEPT station (44.63 ⁰N, 124.05 ⁰W) located at South Beach, Oregon, USA, to estimate the TG records using only a few measurements. First, we derived the TG record from a GPS station (GPS-TG) and used traditional TG data from the National Water Level Observation Network (NWLON) sentinel station (Station ID: 9435380) located in Oregon for validation purposes because it was closest to the SEPT station. Our results show that the GPS-TG and NWLON-TG correlate well with the correlation coefficient (CC) of 0.942 and the root mean square (RMS) of their residuals was about 12.90 cm. The corresponding TG prediction by autoregressive moving average (ARMA-TG) and singular spectrum analysis (SSA-TG) models are evaluated for their effectiveness over the station. The comparative analysis demonstrates that the GPS-TG has improved correlation with ARMA-TG (CC of ~0.981 CC, RMS of ~4.80 cm), and SSA-TG (CC of ~0.998 CC, RMS of ~ 0.88 cm) compared to the NWLON-TG (CC of ~0.942 CC, RMS of ~12.90 cm) values. We believe the outcomes from this study contribute to a better understanding of the numerical modeling of TG records as well as other measurements based on reflectometry techniques.
Keywords:
Subject:
Environmental and Earth Sciences - Remote Sensing
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.