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1 Introduction

Nonlinear fractional integrodi�erential equations are important and widely applied in many areas such
as in physics, mechanics, electromagnetics, biology, signal processing, economics and more. There are
also many di�erent methods to solve these type of equations. In particular, the solutions of existence,
uniqueness and other properties for these type of equations have been studied by many authors by
using di�erent techniques. In 2016 Dhage et al. (see, [1]) introduced and proved algorithms for
the existence of nonlinear �rst order ordinary integrodi�erential equations and the approximation of
solutions to initial value problems.In this paper, we extend their study into the classes of nonlinear
hybrid fractional integrodi�erential equations. Let J = [t0, t0 + a] be a closed-bounded interval in the
real space R for some t0, a ∈ R with t0 ≥ 0 and a > 0. Consider the nonlinear hybrid fractional
integrodi�erential equation (Non−HFIDE) of the initial value problem (IV P )

(Dαu)(t) + λu(t) = f

(
t, u(t),

∫ t

t0

(t− s)α−1

Γ(α)
g(s, u(s))ds

)
,

u(t0) = B0 ∈ R. (1)

where f : J × R × R → R and g : J × R → R continuous functions and λ ∈ R(λ > 0), for all t ∈ J .
We mean by the solution of Eq.(1), the function u ∈ C1(J,R) that holds Eq.(1), where C1(J,R) the
space of continuously di�erentiable real−valued functions on J .

2 Preliminaries

Next, we introduce some related concepts which will be useful in our study, details can be found for
example in [4, 5, 6, 7, 8]
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De�nition 2.1 [2, 3] Let α ∈ R+. The operator Iα is de�ned on L1[a, b] by

Iαh(x) =
1

Γ(α)

∫ x

a

h(µ)

(x− µ)1−α dµ, α > 0, (2)

for a ≤ x ≤ b, is said to be Riemann-Liouville fractional integral having order α.

De�nition 2.2 [9, 10] Riemann & Liouville fractional di�erential operator is de�ned by

Dαh(u) =
1

Γ(m− α)

[
d

du

]m ∫ u

a

h(µ)

(u− µ)α−m+1
dµ, (m− 1) ≤ α < m, (3)

where m is an integer and α is a real number.

Throughout this study, E denotes a partially ordered real linear normed space with order relation
� and the norm ‖.‖ in which the scalar product and the addition by non-negative real numbers are
preserved by �.
The space E is called a regular ( see, [11]) if for any non-increasing (resp., non-decreasing) sequence
{un} in E such that un → u∗ as n→∞, un � u∗ (resp., un � u∗) for all n ∈ N .

De�nition 2.3 [12, 14] A function T : E → E is said to be partially continuous at point a ∈ E if for
every ε > 0 there exists δ > 0 such that

‖u− a‖< δ ⇒ ‖Tu− Ta‖< ε,

then the map T is called partially continuous on E if it is partially continuous in E.

De�nition 2.4 [13, 15] A subset Ω 6= ∅ of the partially ordered Banach space E is said to be partially
compact if B in Ω is a relatively compact set in E.

De�nition 2.5 [13, 16] A function T : E → E is called:

1. partially compact if T (E) is a partially relatively compact set in E,

2. uniformly partially compact if it is partially compact and uniformly partially bounded on E,

3. partially totally bounded if for any bounded subset Ω of E, T (Ω) is a partially relatively compact
subset of E,

4. partially continuous and partially totally bounded, then it is called partially completely continuous
on E.

De�nition 2.6 [12, 1] The metric d and the order relation � on E 6= ∅ are called compatible if for
every monotone sequence {un} in E with a subsequence {unk} of {un} converges to u∗, the sequence
{un} converges to u∗

Theorem 2.1 [13] Let (E,�, ‖.‖) be a complete regular space partially ordered so that the norm ‖.‖
and the order relation � in E are compatible in any compact chain C of E. Then T : E → E is a
partially continuous, partially compact operator and increasing. If an element u0 ∈ E exists such that
u0 � Tu0 or Tu0 � u0, then the equation of the operator Tu = u has a solution u∗ in E, and the
sequence {Tnu0} of successive iterations converges monotonously towards u∗.

Remark 2.1 The regularity of E in Theorem 2.1 above can be substituted by a stronger continuity
condition in the operator T in E (see [13]).

In this work, we will prove the existence and uniqueness solution of the Non − HFIDE (1) by
using hybrid �xed point theorems where we need the following notion of a D−function.
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De�nition 2.7 An upper semi−continuous and monotone increasing function Ξ : R+ → R+ is said
to be a D−function provided Ξ(0) = 0.

De�nition 2.8 An operator T : E → E is said to be a partial nonlinear D−contraction if there is a
D−function such that

‖Tu− Tv‖≤ Ξ(‖u− v‖)

for u, v ∈ E, where 0 < Ξ(r) < r, ∀r > 0. In particular, if Ξ(r) = kr, ∀k > 0, then T is called a
partial Lipschitz operator with constant k and moreover, if 0 < k < 1, then T is known as partial linear
contraction on E.

Theorem 2.2 (E,�, ‖.‖) is a partially ordered, regular, a complete normalized linear space so that
the norm ‖.‖ and the order relation � in E are compatible in every compact chain C of E. Now
A,B : E → E are two increasing operators such that

(a) the operator A is partially nonlinear D−contraction and partially bounded,

(b) the operator B is partially compact and partially continuous, and

(c) there is an element u0 ∈ E such that u0 � Au0 +Bu0 or u0 � Au0 +Bu0.

Then the equation Au+Bu = u has a solution u∗ in E and the sequence {un} of successive iterations
introduced by un+1 = Aun +Bun, n = 0, 1, ..., converges monotonically to u∗.

3 Existence of Solutions and Uniqueness

The equivalent integral form of Non − HFID (1) is considered in the function space C(J,R) of
continuous real−valued functions introduced on J . We de�ne the order relation � and a norm ‖.‖ in
C(J,R) by

‖u‖= sup
t∈J
|u(t)|, (4)

and
u ≤ v ⇔ u(t) ≤ v(t), for all, t ∈ J. (5)

Obviously, C(J,R) is a Banach space with respect to previous supremum norm and is also partially
ordered with respect to the previous partially order relation �. Further, it is also clear that Banach
space of partially ordered C(J,R) is regular and is a lattice, so each pair of elements in the space has
an upper and a lower bound in the space.

The following lemma regarding the compatibility of sets in C(J,R) followed by an application
theorem of the Arzela-Ascoli.

Lemma 3.3 Let (C(J,R),�, ‖.‖) be a Banach space of partially ordered with the order relation � and
the norm ‖.‖ introduced by (4) and (5), respectively. Then, � and ‖.‖ are compatible in each partially
compact subset of C(J,R).

We can see the proof of the lemma in [1]. Before to show our result, we need the following de�nition:

De�nition 3.9 A di�erentiable function z ∈ C1(J,R) is a lower solution of the Non −HFIDE (1)
if it ful�lls

(Dαz)(t) + λz(t) ≤ f
(
t, z(t),

∫ t

t0

(t− s)α−1

Γ(α)
g(s, z(s))

)
ds

z(t0) ≤ B0 ∈ R, (6)

for every t in J . Likewise, an upper solution y ∈ C1(J,R) to the Non−HFIDE(1) is introduced on
J by inverting the previous inequalities.
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De�nition 3.10 A function z ∈ C1(J,R) is called a lower solution of the Non −HFIDE (19) if it
ful�lls

(Dαz)(t) + λu(t) ≤ f1

(
t, z(t),

∫ t

t0

(t− s)α−1

Γ(α)
g(s, z(s))ds

)

+f2

(
t, z(t),

∫ t

t0

(t− s)α−1

Γ(α)
g(s, z(s))ds

)
, (7)

z(t0) ≤ B0,

likewise, an upper solution y in C1(J,R) to the Non −HFIDE (19) is introduced on J by inverting
the above inequalities.

3.1 Existence theorem

In the following hypothesis relating to our further discussion:

(A1) There is a constant Mf > 0 such that |f(t, u, v)| ≤Mf , ∀t ∈ J and u in R.

(A2) The function f(t, u, v) is monotone increasing in u and v for any t in J .

(A3) The function g(t, u) is monotone increasing in u for any t in J .

(A4) The Non HFIDE (1) has a lower solution z ∈ C1(J,R).

(A5) There is a constant L > 0 such that

0 ≤ g(t, u)− g(t, v) ≤ L(u− v)

for every t ∈ J , u, v ∈ R, with u ≥ v.

(A6) There are D−functions Ξ1 and Ξ2 such that

0 ≤ f(t, x1, x2)− f(t, y1, y2) ≤ Ξ1(x1 − y1) + Ξ2(x2 − y2)

for all u1, u2, v1, v2 ∈ R with u1 ≥ v1 and u2 ≥ v2. Furthermore

aα

Γ(α+ 1)

(
Ξ1(r) + Ξ2(Lar)

)
< r, for any, r > 0

(A7) The Non−HFIDE (19) has a lower solution z ∈ C1(J,R).

The following lemma is important in our next work and its proof is clear by a direct veri�cation
(by using the de�nition Riemann & Liouville di�erential operator).

Lemma 3.4 Let h : J → R, be an integrablea function then u ∈ C1(J,R) is a solution of Non −
HFIDE

(Dαu)(t) + λu(t) = h(t), t ∈ J
u(t0) = B0 ∈ R

if and only if it is a solution of the folloeing nonlinear integral equation

u(t) = ce−λ
tα

α! + e−λ
tα

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ

sα

α! h(s)ds, t ∈ J

where c = B0e
λtα0
Γ(α) is a constant.
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Theorem 3.5 Let the conditions (A1 − A4) be held. Then the Non−HFIDE (4) has a solution u∗

on J and the sequence {un}∞n=1 the successive approximations, de�ned by

u1(t) = y(t),

un+1(t) = ce−λ
tα

α! + e−λ
tα

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ

sα

α! f

(
s, un(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds (8)

for all t in R, converges monotonically to u∗.

Proof. From Lemma 3.4, the Non−HfIDE (4) is equivalent to the nonlinear integral equation

u(t) = ce−λ
tα

α! + e−λ
tα

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ

sα

α! f

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds, t ∈ J. (9)

Set E = C(J,R). Then, by Lemma 3.3 it follows that each compact chain in E has the property of
compatibility with respect to the order relation � and the norm ‖.‖ in E. We introduce the operator
T by

Tu(t) = ce−λ
tα

α! + e−λ
tα

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ

sα

α! f

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds, t ∈ J. (10)

Since Tu is continuous, then Tu ∈ E. That is, T maps E into itself. The Non −HFIDE (4) is
then equivalent to the operator equation

Tu(t) = u(t), t ∈ J. (11)

Through a series of steps, we must prove that the operator T ful�lls all the conditions of Theorem 2.1.
Step I: Let T be increasing on E. Let u, v in E with u ≤ v. Then, from (A2), we get

Tu(t) = ce−λ
tα

α! + e−λ
tα

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ

sα

α! f

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dT

)
ds,

≤ ce−λ t
α

α! + e−λ
tα

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ

sα

α! f

(
s, v(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, v(ξ))dξ

)
ds

= Tv(t)

for all t in J . This proves that T is a increasing operator on E.
Step II: Let T be partially continuous on E. {un} is a chain points sequences C in E such that
un → u, ∀n ∈ N . Then, by the controlled convergence theorem,

lim
n→∞

Tun(t) = lim
n→∞

(
ce−λ

tα

α! + e−λ
tα

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ

sα

α! f

(
s, un(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds

)
= ce−λ

tα

α! + e−λ
tα

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ

sα

α!

(
lim
n→∞

f

(
s, un(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds

)
= ce−λ

tα

α! + e−λ
tα

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ

sα

α! f

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds

= Tu(t)

for every t in J . This proves that {Tun} converges to Tu point-wise on J . Therefore, we prove that
{Tun} is an equi-continuous sequence of functions in E. Let t1, t2in J with t1 < t2. Then

|Tun(t2)− Tun(t1)| ≤ c|e−λ
tα1
α! − e−λ

tα2
α! |

, +|e−λ
tα2
α!

∫ t2

t0

(t2 − s)α−1

Γ(α)
eλ

sα

α! f

(
s, un(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds
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−e−λ
tα1
α!

∫ t1

t0

(t1 − s)α−1

Γ(α)
eλ

sα

α! f

(
s, un(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds|

≤ c|e−λ
tα1
α! − e−λ

tα2
α! |+ |e−λ

tα2
α!

∫ t2

t0

(t2 − s)α−1

Γ(α)
eλ

sα

α! f

(
s, un(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds

−e−λ
tα1
α!

∫ t2

t0

(t1 − s)α−1

Γ(α)
eλ

sα

α! f

(
s, un(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds|

+|e−λ
tα1
α!

∫ t2

t0

(t1 − s)α−1

Γ(α)
eλ

sα

α! f

(
s, un(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds

−e−λ
tα1
α!

∫ t1

t0

(t1 − s)α−1

Γ(α)
eλ

sα

α! f

(
s, un(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds|

≤ c|e−λ
tα1
α! − e−λ

tα2
α! |

+|e−λ
tα2
α! − e−λ

tα1
α! ||

∫ t2

t0

(t2 − s)α−1 − (t1 − s)α−1

Γ(α)
eλ

sα

α! f

(
s, un(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds|

+e−λ
tα1
α! |
∫ t2

t0

(t1 − s)α−1

Γ(α)
eλ

sα

α! f

(
s, un(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, xn(ξ))dξ

)
ds

−
∫ t1

t0

(t1 − s)α−1

Γ(α)
eλ

sα

α! f

(
s, un(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds|

≤ c|e−λ
tα1
α! − e−λ

tα2
α! |+

∣∣∣e−λ tα2α! − e−λ
tα1
α!

∣∣∣∣∣∣ ∫ t0+a

t0

(t2 − s)α−1 − (t1 − s)α−1

Γ(α)
eλ

sα

α! f

(
s, un(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds
∣∣∣

|
∫ t2

t1

(t1 − s)α−1

Γ(α)
eλ

sα

α! f

(
s, un(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds|

≤ |e−λ
tα1
α! − e−λ

tα2
α! |
(
c+

Mf

Γ(α)

∫ t0+a

t0

(t2 − s)(α−1) − (t1 − s)α−1eλ
sα

α! ds
)

+
Mf

Γ(α)

∣∣∣ ∫ t2

t1

−(t1 − s)α−1eλ
sα

α!

∣∣∣ds
≤ |e−λ

tα1
α! − e−λ

tα2
α! |
(
c+

Mf

Γ(α)

∫ t0+a

t0

(
(t2 − s)(α−1) − (t1 − s)α−1

)
eλ

sα

α! ds
)

+
Mf

Γ(α)

∣∣∣(p(t1)− p(t2)
∣∣∣

≤
∣∣∣e−λ tα1α! − e−λ

tα2
α!

∣∣∣(c+
Mf .e

λ(t0+a)α−1

Γ(α)

)
+

Mf

Γ(α)

∣∣∣(p(t1)− p(t2)
∣∣∣

where, p(t) =

∫ t

t0

(t0 + a− s)α−1

Γ(α)
eλ

sα

α! ds, t ∈ J .

Step III: Let T be a operator of partially compact on E and C is an arbitrary chain in E. Then
we prove that T (C) is a equi-continuous an uniformly bounded set in E. Firstly, we prove that T (C)
is uniformly bounded. We put u ∈ C is arbitrary. Then,

|Tu(t)| ≤ |ce−λ t
α

α! |+ |e−λ t
α

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ

sα

α! f

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds|

≤ |c|+ aαMf

Γ(α+ 1)
= r
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for every t in J . We are taking the supremum over t, we get ‖Tu‖≤ r for every u ∈ C. Thus T (C) ≺ E
is a uniformly bounded. Therefore, we will prove that T (C) is an equicontinuous set in E. We put
t1, t2 ∈ J is arbitrary with t1 < t2. Then

|Tu(t2)− Tu(t1)| ≤ c|e−λ
tα1
α! − e−λ

tα2
α! |

+|e−λ
tα2
α!

∫ t2

t0

(t2 − s)α−1

Γ(α)
eλsf

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds

−e−λ
tα1
α!

∫ t1

t0

(t1 − s)α−1

Γ(α)
eλ

sα

α! f

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds|

≤ c|e−λ
tα1
α! − e−λ

tα2
α! |+ |e−λ

tα2
α!

∫ t2

t0

(t2 − s)α−1

Γ(α)
eλ

sα

α! f

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds

−e−λ
tα1
α!

∫ t2

t0

(t1 − s)α−1

Γ(α)
eλ

sα

α! f

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds|

+|e−λ
tα1
α!

∫ t2

t0

(t1 − s)α−1

Γ(α)
eλ

sα

α! f

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds

−e−λ
tα1
α!

∫ t1

t0

(t1 − s)α−1

Γ(α)
eλ

sα

α! f

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds|

≤ c|e−λ
tα1
α! − e−λ

tα2
α! |

+|e−λ
tα2
α! − e−λ

tα1
α! ||

∫ t2

t0

(t2 − s)α−1 − (t1 − s)α−1

Γ(α)
eλ

sα

α! f

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds|

+e−λ
tα1
α! |
∫ t2

t0

(t1 − s)α−1

Γ(α)
eλ

sα

α! f

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds

−
∫ t1

t0

(t1 − s)α−1

Γ(α)
eλ

sα

α! f

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds|

≤ c|e−λ
tα1
α! − e−λ

tα2
α! |+ |e−λ

tα2
α! − e−λ

tα1
α! |

|
∫ t0+a

t0

(t2 − s)α−1 − (t1 − s)α−1

Γ(α)
eλ

sα

α! f

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds|

|
∫ t2

t1

(t1 − s)α−1

Γ(α)
eλ

sα

α! f

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds|

≤ |e−λ
tα1
α! − e−λ

tα2
α! |(c+

Mf

Γ(α)

∫ t0+a

t0

(t2 − s)(α−1) − (t1 − s)α−1eλ
sα

α! ds)

+
Mf

Γ(α)

∫ t2

t1

(t1 − s)α−1eλ
sα

α! ds

≤ |e−λ
tα1
α! − e−λ

tα2
α! |(c+

Mf

Γ(α)

∫ t0+a

t0

(
c(t2 − s)(α−1) − (t1 − s)α−1

)
eλ

sα

α! ds) +
Mf

Γ(α)
|(p(t1)− p(t2)|

where, p(t) =
∫ t
t0

(t0 + a− s)α−1eλ
sα

α! ds, t ∈ J .
Since the functions t→ (t− s)α−1 and t→ p(t) are uniformly continuous on compact J = [t0, t0 + a],
we have that |Tu(t2) − Tu(t1)| → 0 as t2 → t1, uniformly for every u ∈ C. This proves that T (C) is
an equi-continuous set in E. Thus T (C) ≺ E is compact and consequently T is a operator of partially
compact on E → E.
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Step IV : z ful�lls the operator inequality z ≤ Tz.
from the supposition (A4) Achieves, y is a lower solution of Non−HFIDE (4) introduced on J . Thus

(Dαz)(t) + λz(t) ≤ f
(
t, z(t),

∫ t

t0

(t− s)α−1

Γ(α)
g(s, z(s))ds

)
, (12)

and
z(t0) ≤ B0 ∈ R. (13)

for every t in J . The integrating (12) from t0 to t, we have

z(t) ≤ ce−λ t
α

α! + e−λ
tα

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ

sα

α! f
(
s, z(s),

∫ s
t0

(s−ξ)α−1

Γ(α) g(ξ, z(ξ))dξ
)
ds (14)

for every t in J . This prove that z is a lower solution of the operator equation u = Tu.
Thus T satis�es all the conditions of Theorem 2.1, and Remark 2.1 and we can deduce which the
operator equation Tu = u contain of a solution. Therefore, the integral equation and Non−HfIDE
(4) have a solution u∗ introduced in J . Moreover, the sequence {un} of successive approximations
introduced by Eq. (8) converges monotonically to u∗. Thus we have completed the proof.

Remark 3.2 The inference of theorem 3.5 also still true if we substitute condition (A4) with (B4) The
Non−HfIDE (4) contain a upper solution v ∈ C1(J,R).

Example 3.1 The interval J = [0, 1] is a closed and bounded, we consider the Non−HFIDE

(D
3
2u)(t) + u(t) = tanhu(t) + tanh

∫ t

0

(t− s) 1
2

Γ( 3
2 )

sinhu(s)ds, (15)

u(0) = 1.

We applied the theorem 3.5, we get λ = 1, c = 1, g(t, u) = sinhu and f(t, u, v) = tanhu + tanh v.
Obviously, the functions f and g are continuous on J ×R, and f achieves (A1) with Mf = 2. Further-
more, g(t, u) is increasing in u for any t in J , and f(t, u, v) is increasing in u and v for any t in J , thus
conditions (A2) and (A3) are achieved. Finally, the Non−HFIDE(15) has a lower solution z de�ned
by

z(t) = 2
Γ( 3

2 )

(
e

−t
1
2

Γ( 3
2

) − 1
)

on J . Hence, all the assumption of Theorem 2.1 are achieved, and thus Non − HFIDE(15) has a
solution u∗ introduced on J , and the sequence {un}, introduced by

u1(t) = y(t),

un+1(t) = e−
tα

α! + e−
tα

α!

∫ t

0

(t− s) 1
2

Γ(
3
2 )

e
sα

α! tanhun(s)ds

+e−
tα

α!

∫ t

0

(t− s) 1
2

Γ( 3
2 )

e
sα

α! tanh

(∫ s

0

(s− ξ) 1
2

Γ( 3
2 )

sinhun(ξ)dξ

)
ds

for all t ∈ J and where Γ( 3
2 ) = 3

√
π

2 , converges monotonically to u∗.
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3.2 Uniqueness theorem

In this section, we investigate a uniqueness theorem for the Non −HfIDE (4) by using the weaker
partially Lipschitz condition.

Theorem 3.6 A suppose that conditions (A4)−(A6) achieve. Then the Non−HfIDE (4) contain of
an unique solution u∗ introduced on J , and the sequence {un} of successive approximations introduced
by the Eq. (8) converges monotonically to u∗.

Proof. Set E = C(J,R). Obviously, E is a lattice with respect to the order relation � and thus upper
and lower bounds there is for all pair of elements in E. We introduce the operator T by (10). Then,
the Non −HfIDE (4) is equivalent to the operator equation (11). We must prove that T ful�lls all
the conditions of Theorem 2.1.
Obviously, T is a increasing operator from E → E. We want to prove that the operator T is a partially
nonlinear D−contraction on E, thus let u, v ∈ E with u ≥ v. Then, by (A5) and (A6)

|Tx(t)− Tv(t)| ≤ |e−λ t
α

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ

sα

α! f

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds

−e−λ t
α

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ

sα

α! f

(
s, v(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, v(ξ))dξ

)
ds|

≤ e−λ t
α

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ

sα

α! |f
(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
−f
(
s, v(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, v(ξ))dξ

)
|ds

≤ e−λ t
α

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ

sα

α!

(
ξ1(u(s)− v(t)) + ξ2

(
c

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ − g(ξ, v(ξ))

)
dξ

)
ds

≤ e−λ t
α

α!

∫ t

t0

(t− s)α−1

Γ(α)
e

−λ
α! (tα−sα)

(
ξ1(u(s)− v(s)) + ξ2

∫ s

t0

(s− Ξ)α−1

Γ(α)
L(u(ξ)− v(ξ))dξ

)
ds

≤ 1

Γ(α)

∫ t

t0

(t− s)α−1e
−λ
α! (tα − sα)

(
ξ1(‖u− v‖) + ξ2

bα

Γ(α+ 1)
La‖u− v‖

)
ds

≤ ξ‖u− v‖ (16)

for every t ∈ J , where ξ(r) = aα

Γ(α+1)

(
ξ1(r) + ξ2(Lar)

)
< r, r > 0.

Taking the supremum over t, we get

‖Tu− Tv‖≤ ξ(‖u− v‖)

for every u, v ∈ E, with u ≥ v. Consequently, T is a partially nonlinear D−contraction in E. In
addition, as in the proof of Theorem 3.5, we can show that the function z given in condition (A4)
achieves the inequality of the operator z ≤ Tz in J . Now, we apply direction of Theorem 2.1 gives that
the Non−HfIDE (4) has a unique solution u∗, and the sequence {un} of successive approximations
introduced by Eq.(10) converges monotonically to u∗.

Remark 3.3 The inference of theorem 3.6, also still true if we substitute condition (A4) with (B4).

Example 3.2 The interval J = [0, 1] is a closed and bounded, we consider the HFIDE

(D
3
2u)(t) + x(t) =

1

2

(
tan−1 u(t) + tan−1

∫ t

t0

(t− s) 1
2

Γ( 3
2 )

g(s, u(s))ds

)
(17)
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u(0) = 1

where g : J ×R→ R is the function introduced by

g(t, u) =

{
1 if u ≤ 0

1 + u
1+u if u > 0

Hence, λ = 1, c = 1, f(t, u, v) = 1
2

(
tan−1 u+ tan−1 v

)
. Obviously, the functions f and g are continuous

on J × R × R and J × R, consecutively. The function f achieves (A1) with Mf = π
2 and it is easy to

prove that g achieves (A5) with L = 1. Further, f(t, u, v) is increasing in u and v for any t in J . To
prove that f ful�lls (A6) on J ×R×R, let u1, u2, v1, v2 ∈ R be such that u1 ≥ v1 and u2 ≥ v2. Then,

0 ≤ f(t, u1, u2)− f(t, v1, v2) ≤ 1

2

(
tan−1 u1 − tan−1 v1 + tan−1 u2 − tan−1 v2

)
≤ 1

2

u1 − v1

1 + η2
1

+
1

2

u2 − v2

1 + η2
2

≤ Ξ1(u1 − v1) + Ξ2(u2 − v2)

for all t ∈ J and for some u1 > η1 > v1 and u2 > η2 > v2, where Ξ1 and Ξ2 are D−functions introduced
by

Ξ1(r) =
r

1 + η2
1

, and Ξ2(r) =
r

1 + η2
2

for 0 < η1, η2 < r. Furthermore,

1

2

aα

Γ(α+ 1)
(Ξ1(r) + Ξ2(ar)) =

r

1 + η2
< r

where η = min{η1, η2}.

In the end, the Non − HFIDE (4) has a lower solution z(t) =
2

Γ( 3
2 )

(
e

−t
1
2

Γ( 3
2

) − 1
)
introduced on J .

Thus, all the supposition of Theorem 3.6 are ful�lled and thus we conclude that the Non −HFIDE
(17) has a unique solution u∗ introduced on J . Moreover, the sequence {un}, introduced by

u0(t) = z(t)

xn+1(t) = e−
tα

α! +
1

2
e−

tα

α!

∫ t

0

(t− s)α−1

Γ(α)
e
sα

α! tan−1un(s)ds

+
1

2
e−

tα

α!

∫ t

0

(t− s)α−1

Γ(α)
e
sα

α! tan−1

(∫ s

0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds (18)

for every t in J , converges monotonically to u∗.

3.3 The �rst type linear perturbations

At times, it is conceivable that the non-linearity of those involved in Non − HFIDE (1) does not
ful�ll either the supposition of theorem 3.5 or the supposition of theorem 3.6. In spite of, from incising
the functions f1 and f2 of f in the form f = f1 + f2 ful�ll the conditions of Theorems (3.5 and 3.6).
Consecutively. in Dhage's terminology [1], the resulting equation is said to be the hybrid integro-
di�erential equation with the �rst type linear disturbance. The objective of this section is to get an
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existence result for such an equation.
Given above notations in the sections, we consider the nonlinear hybrid Non−HFIDE

Dαu(t) + λu(t) = f1

(
t, u(t),

∫ t

t0

(t− s)α−1

Γ(α)
g(s, u(s))

)
ds

+f2

(
t, u(t),

∫ t

t0

(t− s)α−1

Γ(α)
g(s, u(s))ds

)
u(t0) = B0, (19)

for every t in J , where f1, f2 : J ×R×R→ R and g : J ×R→ R are continuous functions.

From a solution of the Non − HFIDE (19), we denote a function u ∈ C1(J,R) that ful�lls
equation (19), where C1(J,R) is the habitual space of continuously di�erentiable real-valued functions
introduced on on J .
The Non − HFIDE (19) is called the hybrid fractional integrodi�erential equation with a the �rst
type linear perturbation [12, 16].

The Non−HFIDE (19) is well recognized in the literature and discussed of the existence and other
properties. herein, we prove that existence of solutions by using partially compactness type conditions
and the mixed partially Lipschitz.

Theorem 3.7 Assume that (A1)− (A3) ful�lled with f and replaced by f2, and further let (A1), (A5),
and (A6) ful�lled with f and replaced by f1. If (A7) satis�ed, then the Non − HFIDE (19) has a
solution u∗ introduced on J and the sequence {un} of successive approximations, introduced by

u1(t) = z(t),

un+1(t) = ce−λ
tα

α! + e−λ
tα

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ

sα

α! f1

(
s, un(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds

+e−λ
tα

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ

sα

α! f2

(
s, un(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, un(ξ))dξ

)
ds, (20)

for t ∈ J , converges monotonically to u∗.

Proof. Set E = C(J,R). Then, from Lemma 3.4 it follows that each compact chain C in E has the
property of compatibility with respect to the order relation � and the norm ‖.‖ in E.
According to Lemma 3.4, the Non−HFIDE (19) is equivalent to the nonlinear integral equation

u(t) = ce−λ
tα

α! + e−λ
tα

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ

sα

α! f1

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds,

+e−λ
tα

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ

sα

α! f2

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds, t ∈ J. (21)

Set E = C(J,R) and introduce the operators A and B on E by

Au(t) = e−λ
tα

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ

sα

α! f1

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds, t ∈ J (22)

and

Bu(t) = ce−λ
tα

α! + e−λ
tα

α!

∫ t

t0

(t− s)α−1

Γ(α)
eλ

sα

α! f2

(
s, u(s),

∫ s

t0

(s− ξ)α−1

Γ(α)
g(ξ, u(ξ))dξ

)
ds, t ∈ J. (23)

Obviously, A,B : E → E. In addition, Non−HFIDE (19) is equivalent to the operator equation

Au(t) +Bu(t) = u(t), t ∈ J. (24)
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Following similar arguments to those used in the proofs of Theorems 3.5 and 3.6, we can show that
operator A is a nonlinear Dcontraction and partially bounded and B is a partially compact operator
and partially continuous in E. From the direct application of Theorem 2.2 gives that the operator
equation u ≤ Au+Bu has a solution u∗. Thus, Non−HFIDE (19) has a sequence {un}∞n=1, and the
solution u∗ introduced by (20) monotonic converges to u∗. This completes the proof.
The inference of Theorem 3.7 residues true if we substitute (A7) with (B7). The Non−HFIDE (19)
has a upper solution y ∈ C1(J,R).

Example 3.3 The interval J = [0, 1] is closed and bounded, we consider the Non−HFIDE,

D
1
2u(t) + u(t) = tan−1 u(t) + tanh

(∫ t

0

(t− s)−1
2

Γ( 1
2 )

sinhu(s)ds
)
, (25)

u(0)=1.

We applied the Theorem 3.7, we get λ = 1, c = 1, f1(t, u, v) = tan−1 u, f2(t, u, v) = tanh v and
g(t, v) = sinh v. Therefore the function f1 ful�lls (A1) with Mf1 = π

2 and also ful�lls (A6) with
Ξ1(r) = r

1+ξ2 , 0 < ξ < r and Ξ2(r) = 0. Now f2 ful�lls (A1) with Mf2 = 1 and it is increasing

in v, thus (A2) ful�lls. Likewise, g ful�lls (A3). In the end, z(t) = 3(e−t − 1), for every t ∈ J ,
is a lower solution of the Non − HFIDE (25) on J , and thus (A7) is ful�lled. Next, by Theo-
rem 3.7, the Non−HFIDE (25) possesses a solution u∗ on J , and the sequence {un}∞n=1, introduced by

u1(t) = 3(e−t − 1),

un+1(t) = e−
tα

α! + e−
tα

α!

∫ t

t0

(t− s)α−1

Γ(α)
e
sα

α! tan−1 un(s)ds

+e−
tα

α!

∫ t

0

(t− s)α−1

Γ(α)
e
sα

α! tanh

(∫ s

0

sinhun(ξ)dξ

)
ds, (26)

for t ∈ J , converges monotonically to x∗.

Remark 3.4 We observe that if the Non−HFIDE ( (1) or (19)) have a upper y solution, in addition
to a lower solution z such that y ≥ z, then the congruous solutions u∗ and u

∗ of the Non−HFIDE( (1)
or(19)) ful�lls u∗ ≤ u∗, and these are the maximum and minimum solutions in the vector segment [z, y]
of the Banach space E = C(J,R). In fact, the order relation � introduced by Eq. (5) is equivalent to
the order relation introduced by the order etcher

K = {u ∈ c(J,R) | u(t) ≥ 0, for every t ∈ J}

that is a closed set in C(J,R).
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