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1 Introduction

Nonlinear fractional integrodifferential equations are important and widely applied in many areas such
as in physics, mechanics, electromagnetics, biology, signal processing, economics and more. There are
also many different methods to solve these type of equations. In particular, the solutions of existence,
uniqueness and other properties for these type of equations have been studied by many authors by
using different techniques. In 2016 Dhage et al. (see, [1]) introduced and proved algorithms for
the existence of nonlinear first order ordinary integrodifferential equations and the approximation of
solutions to initial value problems.In this paper, we extend their study into the classes of nonlinear
hybrid fractional integrodifferential equations. Let J = [to, %o + a] be a closed-bounded interval in the
real space R for some ty,a € R with {5 > 0 and a > 0. Consider the nonlinear hybrid fractional
integrodifferential equation (Non — HFIDE) of the initial value problem (IV P)

(D°u)(t) + Mu(t) = f (t, u(t), /t %g(s,u(s))ds) ,
u(to) = By € R. (1)

where f: J X Rx R — R and g: J x R — R continuous functions and A € R(A > 0), for all t € J.
We mean by the solution of Eq.(1), the function v € C'(J, R) that holds Eq.(1), where C'(J, R) the
space of continuously differentiable real—valued functions on J.

2 Preliminaries

Next, we introduce some related concepts which will be useful in our study, details can be found for
example in [4, 5, 6, 7, 8]
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Definition 2.1 [2, 8] Let « € Ry. The operator I* is defined on Li[a,b] by

N
I%h(z) = )/a (x—u)l—ad'u’ >0, (2)

for a < x <b, is said to be Riemann-Liouville fractional integral having order «.

Definition 2.2 [9, 10] Riemann € Liouville fractional differential operator is defined by

i — L[ ) e
D) = e || [ o s (=1 < a<m ®

where m is an integer and o is a real number.

Throughout this study, F denotes a partially ordered real linear normed space with order relation
=< and the norm ||.|| in which the scalar product and the addition by non-negative real numbers are
preserved by <.

The space E is called a regular ( see, [11]) if for any non-increasing (resp., non-decreasing) sequence
{u,} in F such that w, — u* as n — oo, u, = u* (resp., u, < u*) for all n € N.

Definition 2.3 [12, 1] A function T : E — E is said to be partially continuous at point a € E if for
every € > 0 there exists 6 > 0 such that

lu—all<d=||Tu— Tal|< e,
then the map T is called partially continuous on E if it is partially continuous in E.

Definition 2.4 [13, 15] A subset Q # 0 of the partially ordered Banach space E is said to be partially
compact if B in Q is a relatively compact set in E.

Definition 2.5 [13, 16] A function T : E — E is called:
1. partially compact if T(E) is a partially relatively compact set in E,
2. uniformly partially compact if it is partially compact and uniformly partially bounded on F,

3. partially totally bounded if for any bounded subset Q of E, T(Q) is a partially relatively compact
subset of E,

4. partially continuous and partially totally bounded, then it is called partially completely continuous
on E.

Definition 2.6 [12, 1] The metric d and the order relation < on E # () are called compatible if for
every monotone sequence {u,} in E with a subsequence {u,} of {u,} converges to u*, the sequence
{un} converges to u*

Theorem 2.1 [13] Let (E, =,|.||) be a complete regular space partially ordered so that the norm ||.||
and the order relation = in E are compatible in any compact chain C of E. Then T : E — E is a
partially continuous, partially compact operator and increasing. If an element ug € E exists such that
ug = Tug or Tug = ug, then the equation of the operator Tu = u has a solution u* in E, and the
sequence {T™ug} of successive iterations converges monotonously towards u*.

Remark 2.1 The reqularity of E in Theorem 2.1 above can be substituted by a stronger continuity
condition in the operator T in E (see [13]).

In this work, we will prove the existence and uniqueness solution of the Non — HFIDE (1) by
using hybrid fixed point theorems where we need the following notion of a D—function.
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Definition 2.7 An upper semi—-continuous and monotone increasing function £ : Ry — R, is said
to be a D—function provided Z(0) = 0.

Definition 2.8 An operator T : E — FE is said to be a partial nonlinear D— contraction if there is a
D—function such that

[Tu —Tol|< E(flu = vl])
for u,v € E, where 0 < Z(r) < r, Vr > 0. In particular, if Z(r) = kr, Vk > 0, then T is called a
partial Lipschitz operator with constant k and moreover, if 0 < k < 1, then T is known as partial linear
contraction on E.

Theorem 2.2 (E,=,|.||) is a partially ordered, reqular, a complete normalized linear space so that
the norm ||.|| and the order relation < in E are compatible in every compact chain C' of E. Now
A, B : E — FE are two increasing operators such that

(a) the operator A is partially nonlinear D— contraction and partially bounded,
(b) the operator B is partially compact and partially continuous, and
(c) there is an element ug € E such that ug = Aug + Bug or ug = Aug + Buyg.

Then the equation Au+ Bu = u has a solution u* in E and the sequence {un,} of successive iterations
introduced by u,1 = Au, + Bu,, n=0,1,..., converges monotonically to u*.

3 Existence of Solutions and Uniqueness

The equivalent integral form of Non — HFID (1) is considered in the function space C(J, R) of
continuous real—valued functions introduced on J. We define the order relation < and a norm ||| in
C(J,R) by
Jull= sup u(®)], (4)
teJ

and
u<veu(t) <o), for all, t e J (5)

Obviously, C(J, R) is a Banach space with respect to previous supremum norm and is also partially
ordered with respect to the previous partially order relation <. Further, it is also clear that Banach
space of partially ordered C(J, R) is regular and is a lattice, so each pair of elements in the space has
an upper and a lower bound in the space.

The following lemma regarding the compatibility of sets in C(J, R) followed by an application
theorem of the Arzela-Ascoli.

Lemma 3.3 Let (C(J,R),=,|.||) be a Banach space of partially ordered with the order relation < and
the norm ||.|| introduced by (4) and (5), respectively. Then, =< and ||.|| are compatible in each partially
compact subset of C(J, R).

We can see the proof of the lemma in [1]. Before to show our result, we need the following definition:

Definition 3.9 A differentiable function z € C'(J, R) is a lower solution of the Non — HFIDE (1)
if it fulfills

(D*2)(t) + Az(¢)

IN

f(t, z(t), /t (t}(so);_lg(s, z(s)))ds

to

Z(to) < Bo (S R, (6)

for every t in J. Likewise, an upper solution y € C*(J, R) to the Non — HFIDE(1) is introduced on
J by inverting the previous inequalities.
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Definition 3.10 A function z € C*(J, R) is called a lower solution of the Non — HFIDE (19) if it
fulfills

(D°2)(t) + M) < fi (t, 0. “}2;“9@, z(s))ds)

w2 (1), [ U st ). (1)

Z(to) S Bo,
likewise, an upper solution y in C'(J, R) to the Non — HFIDE (19) is introduced on J by inverting

the above inequalities.

3.1 Existence theorem

In the following hypothesis relating to our further discussion:

A1) There is a constant My > 0 such that |f(¢,u,v)| < My, Vt € J and u in R.
As) The function f(t,u,v) is monotone increasing in « and v for any ¢ in J.

(A1)
(A2)
(A3) The function g(¢,u) is monotone increasing in « for any ¢ in J.
(A4) The Non HFIDE (1) has a lower solution z € C*(J, R).

(45)

As) There is a constant L > 0 such that
0<g(t,u)—g(t,v) < L(u—v)
for every t € J, wu,v € R, with u > v.

(Ag) There are D—functions Z; and =5 such that

0< f(t,x1,22) — f(t,y1,y2) < Ei(x1 —y1) + Ea(z2 — y2)

for all uq,us,v1,v9 € R with uq > v1 and us > ve. Furthermore

aDL

INa+1) (

—_

E1(r)+Z2(Lar) ) <r, for any, r>0

(A7) The Non — HFIDE (19) has a lower solution z € C1(J, R).

The following lemma is important in our next work and its proof is clear by a direct verification
(by using the definition Riemann & Liouville differential operator).

Lemma 3.4 Let h : J — R, be an integrablea function then u € C*(J,R) is a solution of Non —
HFIDE

(Du)(t) + Mu(t) = h(t), ted
U(to) = ByeR

if and only if it is a solution of the folloeing nonlinear integral equation
t) = ce Nar e_’\?/ Mo h(s)ds, teJ
) = e e [t (5

Atg
where ¢ = BypeT® is a constant.
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Theorem 3.5 Let the conditions (A1 — Ay) be held. Then the Non — HFIDE (4) has a solution u*
on J and the sequence {u,}°2 , the successive approzimations, defined by

u(t) = y(t),
= )‘t‘*a' e —Ma tie ol S, Up (S S& U S
wnt) = re [E oy (s, [ CF gt ©ic)as @

for all t in R, converges monotonically to u*.

Proof. From Lemma 3.4, the Non — HfIDE (4) is equivalent to the nonlinear integral equation

u(t) = ce o +e_)‘ﬁ/ t_s - 1@ aa'f(s,u(s),/t: (S;(if_lg(g,u(g))dg) s, teJ  (9)

Set E = C(J,R). Then, by Lemma 3.3 it follows that each compact chain in E has the property of

compatibility with respect to the order relation < and the norm ||.|| in E. We introduce the operator
T by
t a—1 s a—1
VR e ek M v (s—¢)
Tu(t) = ce ot fe @ / —————-e o f | s,u(s), | —=——g(&u())d ) ds, teJ (10)
to F(Oé) to F(Oé)

Since Tw is continuous, then Tu € E. That is, T maps F into itself. The Non — HFIDE (4) is
then equivalent to the operator equation

Tu(t) =u(t), teJ (11)

Through a series of steps, we must prove that the operator T fulfills all the conditions of Theorem 2.1.
Step I: Let T be increasing on E. Let u,v in E with u < v. Then, from (As), we get

Tu(t) = ce & +e” Aﬁ/ F(‘Z) (=97 s a'f(s,u(s),/t: (Sr(fa);lg(f,u({))dT> ds,

<o +ew°‘/t (F(Z)(;_le’\if(s,v(s),/ts (S;(i;_lg(&,v(é))dé) ds
= T(t) 0 O

for all ¢ in J. This proves that T is a increasing operator on FE.
Step II: Let T be partially continuous on E. {u,} is a chain points sequences C' in E such that
Uy, — u, Vn € N. Then, by the controlled convergence theorem,

lim Tu,(t) = lim (ce AT pemhE /tt “}(‘ﬁ_leki?f (s,un(s),/ts @;(éyg(g,un(g))dg) ds)

—a % s [ t}(‘?; o (i £ (st [ E Tt e ) as)

- o - S a 1 . S (g— a—1
= [ (st [T e uteae ) o
= Tu(t)

for every t in J. This proves that {T'u,} converges to T'u point-wise on J. Therefore, we prove that
{Tu,} is an equi-continuous sequence of functions in E. Let t1,t9in J with ¢; < t5. Then

t§ tS

| T (t2) — Tun (t)] < cle  ar — e Aar|

e [T (o, [T e e s
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o
Q

Q

e /t:l (hnz))”‘le)\ rf (s,un(s),/t: (‘Sr(i);lg(fyun(f))%) ds|

& g g ta — gl o s _ fa—1
< e e [T I o (s, [ C Tt @)e) ds

o [ ) A O (e (€ )
e / (0 1 (). [ B e (e ) s

o /tt “l;(jy))“‘lek oy (s,ws), /t (3;(2;_19(57%(5»%) ds|

N N e () A (2 B R Pt N CE I
HeTrar — e e |/t0 (o) et f <57Un(3),/t0 ws](&%(f)ﬂf) ds|

iy / I 0% (s [ L e @) s

_/: (tlr_‘(i))a_lekfsf (s,un(s),/s Wg(f,un(f))%) ds|

to

)\ti" Atg‘ )\tg )\t‘l"
<cle7tar —e” ?|—|—‘e_ ol — el

‘/to-&-a (ts — 5>a—;(_a§tl - s)a‘lex;i;f <S’U”(S)’/tj (‘S;(i);l_lg(f,un(ff))df:) ds‘

[T s (s, [ e e

3 ey
o 9 M to+a R
<o - M (en b [T - )@ < (- o)t )
F(Oé) to
My /tz —1 A5y
+ —(t1 —s)* et T |ds
F(Oé) t1

M;.eXtota)™™ ) N My

= ‘e—m - ﬂg"(” T(a) T(a) ‘(p(“) _p(“)‘

t a—1
t — ¢
where, p(t) = / Me’\?ds, teJ.

to I'(a)

Step III: Let T be a operator of partially compact on £ and C' is an arbitrary chain in E. Then
we prove that T(C) is a equi-continuous an uniformly bounded set in E. Firstly, we prove that T(C)
is uniformly bounded. We put u € C is arbitrary. Then,

a4

s [T e gt
rago)] < ee 5 e [0 (g, [T BT gt u(eie ) o

<| |+ aO‘Mf
o+ =———=r
- N(a+1)
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for every ¢ in J. We are taking the supremum over ¢, we get ||Tu||< r for every u € C. Thus T(C) < E

is a uniformly bounded. Therefore, we will prove that T(C') is an equicontinuous set in E. We put
t1,to € J is arbitrary with ¢; < t5. Then

Tu(ts) — Tu(t)] < ce_)‘thl! — e_’\%
|

e ! Me)‘% s,u(s Tls—9t u s
to F(Oé) f< ’ ( )7\/750 F(oz) g(f’ (5))d£) d |

s [T I o (st [T e uende)

< c|e_’\% — e_’\%|

& to _sa—l_ _sa—l o S (g— a—1
e F ey [ (t2 — s) Fa§“ ) e*a!f(s,u(s), / (Clnd s r8> g(é,U(f))d£>d8|
Y TN N L (R e )
e T ) ! ( ”’/to Moy Y& “”dg)d

_/tt (tl;(zé))ex o f (g,u(s),/t: (8;8;_19(5,1&(5))@) ds|

< c|e_’\% - e_A%| + |e_’\% - e_A%|

|/toto+a (ts — S)a;(_agtl — )t AT <5’u(s), /t: %Q(ﬁ,u(f))dﬁ) ds|

[T s (st [ ST s @) a

I tg M tota
<le e —ear|(c + I‘(o{)/t (ts — s)@D — (; — s)@! e ds)
0

Mf . a—1 )\
+F(OJ)/ (tl *S) ds

t1

iy 5 My [fore s M
< leher — et ﬁo{) /t (c(t2 =)V —(t; — s)”"l) eNaTds) + ﬁof)l(p(tl) = p(t2)]

where, p(t) :j;to(to—i—a—s)a LeXards, telJ.

Since the functions ¢ — (t — s)*~! and ¢t — p(¢) are uniformly continuous on compact J = [to,to + a]
we have that |Tu(tz) — Tu(t1)] — 0 as to — t1, uniformly for every u € C. This proves that T(C) is

an equi-continuous set in E. Thus T(C) < E is compact and consequently T is a operator of partially
compact on £ — F.

d0i:10.20944/preprints202002.0176.v1
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Step IV: 2 fulfills the operator inequality z < T'z.
from the supposition (A4) Achieves, y is a lower solution of Non — HFIDE (4) introduced on J. Thus

(D2)() + A=(t) < f (t,z(t), /t “‘Fﬁ

@ 9(s, z(s))ds) , (12)

and
Z(to) < By € R. (13)

for every ¢ in J. The integrating (12) from ¢y to ¢, we have

a o ¢ — a—1 s s (s—g)*—1
() < o5 o [ (a0, 1) SR (e ) Jds (19

for every ¢t in J. This prove that z is a lower solution of the operator equation u = Tu.

Thus T satisfies all the conditions of Theorem 2.1, and Remark 2.1 and we can deduce which the
operator equation Tu = u contain of a solution. Therefore, the integral equation and Non — H fIDE
(4) have a solution u* introduced in J. Moreover, the sequence {u,} of successive approximations
introduced by Eq. (8) converges monotonically to u*. Thus we have completed the proof.

Remark 3.2 The inference of theorem 3.5 also still true if we substitute condition (Ay4) with (By) The
Non — HfIDE (4) contain a upper solution v € C*(J, R).

Example 3.1 The interval J = [0,1] is a closed and bounded, we consider the Non — HFIDE

N|=

(D%u)(t) + u(t) = tan hu(t) + tanh/t ( sin hu(s)ds, (15)
0

s
(3)
u(0) = 1.
We applied the theorem 3.5, we get A = 1, ¢ = 1, g(¢,u) = sinhu and f(t,u,v) = tanhu + tanhwv.
Obviously, the functions f and g are continuous on J x R, and f achieves (A4;) with My = 2. Further-
more, g(t,u) is increasing in  for any ¢ in J, and f(¢, u,v) is increasing in v and v for any ¢ in J, thus

conditions (As) and (As) are achieved. Finally, the Non — HFIDE(15) has a lower solution z defined
by

1
—t2

0=l

on J. Hence, all the assumption of Theorem 2.1 are achieved, and thus Non — HFIDE(15) has a
solution w* introduced on J, and the sequence {u, }, introduced by

t
& t* t— s
Upt1(t) = 67?4-67?/ (S))Qea! tan huy, (s)ds
0

e LT I (Y AN CE LI
+e /0 ) et ta h</o ) s hun(f)d§> ds

for all ¢ € J and where I'(3) = %, converges monotonically to u*.
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3.2 Uniqueness theorem

In this section, we investigate a uniqueness theorem for the Non — H fIDE (4) by using the weaker
partially Lipschitz condition.

Theorem 3.6 A suppose that conditions (A4) — (Ag) achieve. Then the Non— H fIDE (4) contain of
an unique solution u* introduced on J, and the sequence {u,} of successive approximations introduced
by the Eq. (8) converges monotonically to u*.

Proof. Set E = C(J, R). Obviously, E is a lattice with respect to the order relation < and thus upper
and lower bounds there is for all pair of elements in E. We introduce the operator T by (10). Then,
the Non — HfIDE (4) is equivalent to the operator equation (11). We must prove that T fulfills all
the conditions of Theorem 2.1.

Obviously, T is a increasing operator from F — E. We want to prove that the operator T is a partially
nonlinear D—contraction on E, thus let u,v € E with u > v. Then, by (A45) and (Ag)

« t —g)e—1l . S (g— )1
[Ta(t) - To(o)] < e N [ LA g (s,u<s>, / (Fiz)g@,u(s»dg) ds

Y / t “;(‘ﬁlekif (s,v(8)7 / j Wg(ﬁ,v(ﬁ))df) s

i [ (st [T ate uteee)
<1 (5000, [ R ateonac) o

<ot /t ot e (6t - vy + & (c/t(s;(i) 91 u(ENdE ~ g(6,(6)) ) )

<ot / Und Lt (6uts) — ot + 2 / (s}f)aluu(s) - ol ) ds

(a) a)
i ¢ 750‘716% o go w— v L allu — v <
< T(a) /t0 (t =) (t ) <§1(|| () +§2F(a+ 1>L I ||> d
<&u—of (16)

for every ¢ € J, where £(r) = F(Ziil) (51(7") + 52(Lar)> <r, r>0.

Taking the supremum over ¢, we get
[Tu — To||< &(|lu—v])

for every w,v € E, with u > v. Consequently, T is a partially nonlinear D—contraction in E. In
addition, as in the proof of Theorem 3.5, we can show that the function z given in condition (A4)
achieves the inequality of the operator z < Tz in J. Now, we apply direction of Theorem 2.1 gives that
the Non — HfIDEFE (4) has a unique solution u*, and the sequence {u,} of successive approximations
introduced by Eq.(10) converges monotonically to u*.

Remark 3.3 The inference of theorem 3.6, also still true if we substitute condition (A4) with (By).

Example 3.2 The interval J = [0,1] is a closed and bounded, we consider the HFIDE

(D%u)(t) +z(t) = % (tan_l u(t) 4+ tan~! /t (tF_(;))2 g(s, u(s))ds) (17)
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u(0) =1
where g : J X R — R is the function introduced by

1 if uw<0
9(’5’“>—{1+11u if u>0

Hence, A\ =1,c=1, f(t,u,v) = % (tarf1 u+ tan™! v). Obviously, the functions f and g are continuous
onJ x R x R and J x R, consecutively. The function f achieves (A;) with M; = 7 and it is easy to
prove that g achieves (As) with L = 1. Further, f(¢,u,v) is increasing in w and v for any ¢ in J. To
prove that f fulfills (Ag) on J x R x R, let uy,us,v1,v2 € R be such that u; > v; and ug > ve. Then,

1
0 < f(t,ur,uz) — f(t,v1,v2) < 5 (tarf1 u; —tan "t vy + tan " uy — tan~! v2)
1U1 — U1 1U2 — V2
2140 21413
< Er(ur —v1) + Ea(ug — v2)

for all ¢ € J and for some u; > 71 > vy and ug > 1y > vy, where Z; and =, are D—functions introduced

by
r r
Zi(r) = , and Z(r) =
1) =1 =13
for 0 < n1, m2 < r. Furthermore,
L (@) + Ealar) = oy <
2T(a+1) " =2 T 142
where n = min{n,n2}.
1
—t2
In the end, the Non — HFIDE (4) has a lower solution z(t) = ) (ew%) — 1) introduced on J.
2

Thus, all the supposition of Theorem 3.6 are fulfilled and thus we conclude that the Non — HFIDE
(17) has a unique solution u* introduced on J. Moreover, the sequence {u, }, introduced by

uo(t) = 2(t)
Tny1(t) = e*%+%e*%/0 @_Fg;eﬁmnlun(s)ds
le_% ti(t_s)a_le% an™! 87(8_5)‘1_1 u S
syt [t ([T g nac)as a9

for every ¢ in J, converges monotonically to u*.

3.3 The first type linear perturbations

At times, it is conceivable that the non-linearity of those involved in Non — HFIDE (1) does not
fulfill either the supposition of theorem 3.5 or the supposition of theorem 3.6. In spite of, from incising
the functions f; and fs of f in the form f = f; + fo fulfill the conditions of Theorems (3.5 and 3.6).
Consecutively. in Dhage’s terminology [1], the resulting equation is said to be the hybrid integro-
differential equation with the first type linear disturbance. The objective of this section is to get an
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existence result for such an equation.
Given above notations in the sections, we consider the nonlinear hybrid Non — HFIDFE

Du(t) + Mu(t) = fl(t,u(t),/t (t;(‘?;_

+/2 (tvu(t)v /tt (tn(,?é;tlg(s,u(s))ds)

0

u(to) = B, (19)

for every ¢t in J, where f1,fo: J X Rx R— R and ¢g: J x R — R are continuous functions.

g(s,u(s)) ) ds

From a solution of the Non — HFIDE (19), we denote a function u € C1(J,R) that fulfills
equation (19), where C''(J, R) is the habitual space of continuously differentiable real-valued functions
introduced on on J.

The Non — HFIDE (19) is called the hybrid fractional integrodifferential equation with a the first
type linear perturbation [12, 16].

The Non— HFIDE (19) is well recognized in the literature and discussed of the existence and other
properties. herein, we prove that existence of solutions by using partially compactness type conditions
and the mixed partially Lipschitz.

Theorem 3.7 Assume that (A1) — (A3) fulfilled with f and replaced by fa, and further let (A1), (As),
and (Ag) fulfilled with f and replaced by fi. If (A7) satisfied, then the Non — HFIDE (19) has a
solution u* introduced on J and the sequence {u,} of successive approzimations, introduced by

U]_(t) = Z(t)a
) = e [ (t_r<2> S OO e e NG B
e /to I'(a) f2< n(s), /to T(a) 9(&; n(f))df)d, (20)

fort € J, converges monotonically to u*.

Proof. Set E = C(J, R). Then, from Lemma 3.4 it follows that each compact chain C in E has the
property of compatibility with respect to the order relation < and the norm ||.|| in E.
According to Lemma 3.4, the Non — HFIDEFE (19) is equivalent to the nonlinear integral equation

alt) =¥ 5 [ (st [T e ateae) o

peit [ (st [T e utenie) as vea g2

Set F = C(J, R) and introduce the operators A and B on E by

tu(t) =5 [ g (s, [ U gl u@nie) as, e 2

and

t—s) |

o s S — a—1
Bu(t) = ce AT +e*>‘t07/t (F@é)e at fy <s,u(s),/t (F(fa))g(f,u(f))df> ds, teJ (23)

Obviously, A, B : E — E. In addition, Non — HFIDE (19) is equivalent to the operator equation

Au(t) + Bu(t) = u(t), teJ. (24)
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Following similar arguments to those used in the proofs of Theorems 3.5 and 3.6, we can show that
operator A is a nonlinear Dcontraction and partially bounded and B is a partially compact operator
and partially continuous in E. From the direct application of Theorem 2.2 gives that the operator
equation u < Au+ Bu has a solution v*. Thus, Non — HFIDE (19) has a sequence {uy}5,, and the
solution u* introduced by (20) monotonic converges to u*. This completes the proof.

The inference of Theorem 3.7 residues true if we substitute (A7) with (B;). The Non — HFIDE (19)
has a upper solution y € C1(J, R).

Example 3.3 The interval J = [0,1] is closed and bounded, we consider the Non — HFIDE,

D%u(t) +u(t) = tan"t u(t) + tanh(/o (t;(s))z sin hu(s)ds), (25)

u(0)=1.

We applied the Theorem 3.7, we get A = 1, ¢ = 1, f1(t,u,v) = tan"tu, fo(t,u,v) = tanhv and
g(t,v) = sinhwv. Therefore the function f; fulfills (A;) with My = 7 and also fulfills (Ag) with
Ei(r) = 7@, 0 < & < rand Zz(r) = 0. Now f; fulfills (A1) with My, = 1 and it is increasing
in v, thus (Ap) fulfills. Likewise, g fulfills (A3). In the end, z(t) = 3(e™t — 1), for every t € J,
is a lower solution of the Non — HFIDE (25) on J, and thus (A7) is fulfilled. Next, by Theo-
rem 3.7, the Non— HFIDE (25) possesses a solution u* on J, and the sequence {uy, }° ;, introduced by

Il
w
—~
g
L
|
—_
~—

U1 (t)

& & ¢ (t — S)ail s 1
Upt1(t) = e of —I—ea!/to We? tan™" u,(s)ds

o t _ )a— a S
+e*f>7/0 %62! tanh (/0 sinhun(f)d§> ds, (26)

for ¢t € J, converges monotonically to x*.

Remark 3.4 We observe that if the Non—HFIDE ((1) or (19)) have a upper y solution, in addition
to a lower solution z such thaty > z, then the congruous solutions u, and u* of the Non—HFIDE((1)
or(19) ) fulfills u. < u*, and these are the mazimum and minimum solutions in the vector segment [z, y]

of the Banach space E = C(J, R). In fact, the order relation =< introduced by Eq. (5) is equivalent to
the order relation introduced by the order etcher

K={u€c(J,R)|u(t) >0, for every teJ}

that is a closed set in C(J, R).

References

[1] Dhage, Bapurao C. and Dhage, Shyam B. and Graef, John R.(2016). Dhage iteration method for initial
value problems for nonlinear first order hybrid integrodifferential equations, Journal of Fixed Point Theory
and Applications, 18(2) 309-326.

[2] Guo, Boling and Pu, Xueke and Huang, Fenghui (2015). Fractional partial differential equations and their
numerical solutions, World Scientific.

[3] Diethelm, Kai(2010). The analysis of fractional differential equations: An application-oriented exposition
using differential operators of Caputo type. Springer Science and Business Media.

[4] Kih¢gman, Adem and Damag, F.H.M (2018).Some Solution of the Fractional Iterative Integro-Differential
Equations. Malaysia Journal of Mathematical Sciences, 12(1).121-141.

12


https://doi.org/10.20944/preprints202002.0176.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 February 2020 d0i:10.20944/preprints202002.0176.v1

[5] Kreyszig, Erwin (1978). Introductory functional analysis with applications. wiley New York. 1.

[6] Damag, F., Kiligman, A., Dutta, H., and Ibrahim, R. (2019). A Note on the Lower and Upper So-
lutions of Hybrid-Type Iterative Fractional Differential Equations. National Academy Science Letters.
10.1007/s40009-019-00863-5.

[7] Zeidler, Eberhard (2013).Nonlinear Functional Analysis and Its Applications: II/B: Nonlinear Monotone
Operators. Springer Science & Business Media.

[8] Damag, Faten Hasan Mohammed(2017). Existences and uniqueness of solutions for some Classesof Iterative
Fractional Functional Integral Differential Equations, psasir.upm.edu.my.

[9] Lakshmikantham, V and Vatsala, AS (2008). Basic theory of fractional differential equations. Elsevier,
69(8), 2677-2682.

[10] Podlubny, Igor (1998). Fractional differential equations: an introduction to fractional derivatives, fractional
differential equations, to methods of their solution and some of their applications, Elsevier

[11] Lakshmikantham, V. (2017). Monotone Iterative Techniques for Discontinuous Nonlinear Differential
Equations. Routledge.

[12] Dhage, Bapurao Ci(2013). Hybrid fixed point theory in partially ordered normed linear spaces and appli-
cations to fractional integral equations. Differ. Equ. Appl.5(2) 155-184.

[13] Dhage, Bapurao Chandrabahan (2014). Partially condensing mappings in partially ordered normed linar
spaces and applications to functional integral equations.Tamkang Journal of Mathematics, 4(45),397-426.

[14] Dhage, BC (2015). Operator theoretic techniques in the theory of nonlinear hybrid differential equations.
Nonlinear Anal. Forum, 20, 15-31.

[15] Dhage, Shyam B (2015). Approximating solutions of nonlinear first order ordinary differential equations.
Global Journal of Mathematical Sciences (GIJMS),2(2).

[16] Dhage, Bapurao C. and Dhage, Shyam B. (2014). Global attractivity and stability results for comparable
solutions of nonlinear fractional integral equations. Nonlinear Studies, 2(21).

13


https://doi.org/10.20944/preprints202002.0176.v1

