Preprint
Article

Computational Models Using Multiple Machine Learning Algorithms for Predicting Drug Hepatotoxicity with the DILIrank Dataset

Altmetrics

Downloads

454

Views

334

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

12 February 2020

Posted:

14 February 2020

You are already at the latest version

Alerts
Abstract
Drug induced liver injury (DILI) remains one of the challenges in the safety profile of both authorized drugs and candidate drugs and predicting hepatotoxicity from the chemical structure of a substance remains a challenge worth pursuing, being also coherent with the current tendency for replacing non-clinical tests with in vitro or in silico alternatives. In 2016 a group of researchers from FDA published an improved annotated list of drugs with respect to their DILI risk, constituting “the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans”, DILIrank. This paper is one of the few attempting to predict liver toxicity using the DILIrank dataset. Molecular descriptors were computed with the Dragon 7.0 software, and a variety of feature selection and machine learning algorithms were implemented in the R computing environment. Nested (double) cross-validation was used to externally validate the models selected. A number of 78 models with reasonable performance have been selected and stacked through several approaches, including the building of multiple meta-models. The performance of the stacked models was slightly superior to other models published. The models were applied in a virtual screening exercise on over 100,000 compounds from the ZINC database and about 20% of them were predicted to be non-hepatotoxic.
Keywords: 
Subject: Medicine and Pharmacology  -   Pharmacology and Toxicology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated