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Abstract: Drug induced liver injury (DILI) remains one of the challenges in the safety profile of
both authorized drugs and candidate drugs and predicting hepatotoxicity from the chemical
structure of a substance remains a challenge worth pursuing, being also coherent with the current
tendency for replacing non-clinical tests with in vitro or in silico alternatives. In 2016 a group of
researchers from FDA published an improved annotated list of drugs with respect to their DILI risk,
constituting “the largest reference drug list ranked by the risk for developing drug-induced liver
injury in humans”, DILIrank. This paper is one of the few attempting to predict liver toxicity using
the DILIrank dataset. Molecular descriptors were computed with the Dragon 7.0 software, and a
variety of feature selection and machine learning algorithms were implemented in the R computing
environment. Nested (double) cross-validation was used to externally validate the models selected.
A number of 78 models with reasonable performance have been selected and stacked through
several approaches, including the building of multiple meta-models. The performance of the
stacked models was slightly superior to other models published. The models were applied in a
virtual screening exercise on over 100,000 compounds from the ZINC database and about 20% of
them were predicted to be non-hepatotoxic.

Keywords: DILIrank; DILI; drug hepatotoxicity; QSAR; nested cross-validation; virtual screening;
in silico;

1. Introduction

Drug induced liver injury (DILI) has been stated as being the most common single cause of
drug withdrawal or major regulatory action with respect to a medicinal product (such as a labeling
change, “black box” etc) [1,2]. Over 1100 products used by humans on a relatively frequent basis,
such as drugs, herbal and other natural products, minerals, “recreational” or illicit chemical
substances have been identified as potentially causing liver injuries, although the frequency for
some of them is low or very low [3]. The clinical image may be varied, from an increase in the level

of liver enzymes to hepatitis, cholestasis or liver cirrhosis, and the diagnosis may be very
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challenging [4]. Two distinct ways of DILI occurrence have been described: one direct, intrinsic, for
which the risk increases proportionally with the dose (e.g. paracetamol) and one idiosyncratic,
which only affects susceptible individuals, is not dose-dependent and is consequently not
predictable [5] (e.g. nonsteroidal antiinflammatory drugs [6]). Because of the important impact that
DILI may have on patient life, as well as of the regulatory impact it has on a drug, early detection of
DILI remains a key concern across all phases of a drug development and substantial efforts are
geared towards this goal [7].

The attempts to predict hepatotoxicity based on cell culture tests are prone to failure, because
many compounds that in vivo exert liver toxicity do not kill hepatocytes in vitro or if they do, they
cause their death only at unrealistically high concentrations, and this is related to the variability in
gene expression of different hepatocyte cell lines [8]. Non-clinical studies performed in animals also
have limitations that preclude certainty with respect to their ability to predict liver toxicity in
humans. The majority of compounds causing idiosyncratic liver injuries in humans could not be
detected as doing so in toxicology studies required by the regulatory framework for new drugs [9].
Current computational methods not only are able to provide at least similar performance to the cell
culture or animal methods, but they are considerably cheaper, faster and circumvent ethical issues
related to animal models. Moreover, using a computational approach coheres with the current
tendency for replacing non-clinical tests with in vitro or in silico alternatives, mandated by the
implementation of the “3R” principle[10], and they are actively encouraged by public authorities
such as the European Chemicals Agency (ECHA) or international organizations such as OECD [11].
Furthermore, the use of computational models allows rapid prediction of the activity of a large
number of substances in virtual screening exercises, a feat that even with the most sophisticated and
automated high-throughput technologies is simply only partially feasible and at huge costs,
considering the expensive targets and ligands necessary [12].

Although the number of computational models attempting to predict DILI published up to now
is impressive, many were not based on a reference drug list, and developing such a reference list is a
daunting task. In the absence of a “gold standard” defining the DILI risk, the different schema and
data sources used to compile previously published annotations has been declared by FDA
researchers as being “of concern”[13]. A first annotated data set on DILI originated at FDA and was
limited to a small number of 287 drugs; more recently (2016), a group of researchers from FDA
published an improved annotated list of drugs with respect to their DILI risk, constituting “the
largest reference drug list ranked by the risk for developing drug-induced liver injury in humans”,
DILIrank [13]. Few Quantitative Structure-Activity Relationship (QSAR) studies have focused
exclusively on the DILIrank data set up to date [14]; published studies either have used other data
sets [15], only a subset of the DILIrank [16] or have pooled DILIrank with other data sources [17], an
approach that may have advantages (increasing the data set and allowing the development of more
robust models), but also disadvantages (misclassification bias due to different criteria in annotating
drugs from different lists). We have developed a number of QSAR models using a variety of
descriptors and machine learning algorithms, and have assembled them to increase the performance.
While the majority of the models published up to date use only conventional cross-validation, we
have assessed the performance of our models using the state-of-the art method of nested (double)

cross-validation, which has better performance and better control of overfitting [18]. Finally, we
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have used the models to virtually screen over 100,000 compounds of the ZINC 15 database [19] (the
compounds having a name in ZINC) and examined bottom compounds (with the lowest probability

of being hepatotoxic) to explore the validity of the models on unknown chemical compounds.

2. Results

2.1. Data set analysis

The final data set included 694 organic molecules with a molecular weight varying from 76
(hydroxyurea) to 7055 Da (ecallantide), with a median value of 329.5 Da and 75% of the molecular
weight values less than 430 Da. The number of atoms per molecule varied between 9 and 934, the
median being 43. The number of ring system per molecule ranged between 0 (aliphatic molecules)
and maximum 12 (with a median of 2). Of the 694 molecules, only 99 satisfied the Lipinsky’s rule of
five, divided roughly equally between those of concern and those of no concern (50 and 49,
respectively). The variability of the data set by several simple constitutional descriptors or molecular

properties is illustrated in Figure 1.
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Figure 1. Variability of the data set illustrated by several simple constitutional descriptors or molecular

properties. Blue — compounds of no concern; red — compounds of hepatotoxicity concern.

To estimate the chemical diversity in the 694 drugs constituting the data set, a dissimilarity
matrix based was computed using the rescaled Gower distance (this metric being appropriate for a
combination of continuous and binary data), using 708 most relevant descriptors (obtained by
removing auto-correlated and quasi-constant features) (Figure 2). Most compounds have other
constituents from the same data set that they resemble (scaled distances under 0.25), but also that
they are quite unlike other compounds from the same data set (scaled distances larger than 0.55)
(Supplementary Figures S1-S3). The majority of median scaled distance values were about 0.2-0.3,
suggesting that the chemical diversity in the data set was somewhat limited (but since all the

substances in the data set are approved drugs, this should not be very surprising).
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Dissimilarity matrix
Figure 2. Dissimilarity matrix (based on
Gower distance) offering a synthetic image
of the chemical diversity in the data set.
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Figure 3. Performance of 165 QSAR models in terms of sensitivity.
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Figure 5. Performance of the 165 QSAR models in terms of positive predictive value.
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Figure 6. Performance of 165 QSAR models in terms of balanced accuracy.
2.2. Performances of models

A number of 267 different QSAR models were built, with different feature selection algorithms and
machine learning techniques, of which 79 were selected for assembling by stacking. The
performance of the majority of algorithms (in 165 models, each using 50 features for classification) in
terms of sensitivity, specificity and positive predictive values, in nested cross-validation, is shown in
Figures 3-6. Whereas certain algorithms (logistic regression, gradient boosting machine) did not
manage to model well the hepatotoxicity, many of the algorithms attempted were useful in building
models with a reasonable good performance.

The majority of those models had good or very good performance in terms of sensitivity, which was
in most cases over 80% and up to 95%; this good sensitivity, however, came at a cost in specificity,
which varied mostly around 50% and in best cases reached or slightly overpassed 60%. This means
that about half of the non-hepatotoxic substances are likely to be predicted as hepatotoxic, although
they are not so. However, we preferred to sacrifice to a certain extent specificity for sensitivity,
because our purpose was not to mislabel a hepatotoxic substance as innocuous, rather than the vice
versa; on the other hand, there is considerably high confidence that a substance is not hepatotoxic if
predicted not to be so. The positive predictive value (PPV) was reasonably good, for most models
around 77%. The balanced accuracy (BA) was also reasonably good, 79 models (those selected for
stacking and prediction use) having a BA higher than 70%, but in only six models was BA higher
than 72% and in all cases it was lower than 73%.

We first assembled the best models through a simple majority vote of binary predictions; this
ensured a balanced accuracy of 72.8%, a sensitivity of 89.0% and a specificity of 56.5%. Assembling
the models based on the mean probability of all models and a decision threshold of 50% resulted in a
balanced accuracy of 72.2%, a sensitivity of 88.3%, and a specificity of 56.1%. Using the same 50%
threshold and the median probability values slightly improved the performance, but it was not
better than that based on the majority vote (balanced accuracy 72.6%, sensitivity 88.8%, and
specificity 56.5%). Changing the probability threshold value to 0.67 (instead of 0.5) and using median
predicted probabilities leads to the best performance in terms of balanced accuracy (74.6%), with a

lower sensitivity (76.0%) and improved specificity (73.2%).
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The two best-performing meta-models built by applying the random forest classifier to the binary
predictions of 50 models (selected by applying the same feature selection algorithms) and the
maximum daily dose, had a balanced accuracy of 74.38% and 74.20%, respectively; both these two
meta-models had high sensitivity (89.68% and 89.71%) and thus low false negative rates (10.32% and
10.29%), being therefore particularly useful to ascertain whether an unknown compound is devoid
of liver toxicity properties. Assessing each of these meta-models with different random seed
numbers slightly decreased the performance for one of them and increased it for the other (mean
balanced accuracies for five repeated runs with different seed numbers were 73.56% and 74.27%,
respectively; standard deviations 0.47% and 0.44%). The inclusion of dose among the predictors in
the meta-models only slightly (if at all) increased the performance compared with the meta-models
built without the dose, but we preferred to include it on the basis of domain knowledge [20,21].
Meta-models built similarly with SVM, knn, IBk and naive Bayes algorithms had slightly lower
performance in terms of both balanced accuracy and sensitivity than those build with random
forests.

Using the predicted probabilities to build meta-models with random forests in a similar way with 50
models and the maximum daily dose as features did not improve the performance in terms of both
balanced accuracy and sensitivity, but the computing time increased about five times. Meta-models
built with naive Bayes on output probabilities had the highest balanced accuracy (mean of five runs
with different seeds 74.64%, standard deviation 0.20%), but lower sensitivity (83.0%) and higher
specificity (66.3%). Using other algorithms (knn, IBk, svm, ksvm, C5.0) for the construction of
meta-models had very similar results, with resembling performances for each selection algorithm
(70.69-74.83% balanced accuracy, 82.81-90.32% sensitivity, 54.90-64.47% specificity). Adding the
typical duration of treatment (in days) as an additional feature had a minimal effect on the
meta-model performance; the number of days up to the first occurrence of liver toxicity might be
more relevant, but we could not collect data for each drug substance in the data set for this variable.
The feature selection algorithms applied to the 72 models outputting probabilities identified as the
most important for prediction the following classification algorithms: ksvm, svm, Adabag Boosting,
kknn, IBk, random forest based on conditional inference trees, and ada, mostly as applied to the
subsets selected by the OneR association rule and the “randomForestSRC_var.select” of the

randomForestSRC package [22].
2.3. y-randomization test

The y-randomization test showed that in all cases the performance was considerably worse after the
scrambling of the response variable. In all cases the balanced accuracy was close to 50% in the case of
the scrambled data sets, whereas it was generally over 70% in the case of the genuine models (figure
54). The other parameters were also considerably worse when compared with the genuine models:
the AUC was close to 50%, whereas in many cases the true positive rate (TPR) and false positive rate
(FPR) were 100% (which means that all compounds were classified into a single class). The repeated
similar performance of the randomized data sets, for different classification algorithms and feature

selection algorithms confirms that our models are not the result of mere chance, but reflect a genuine
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relationship between the chemical structure as measured through the molecular descriptors used

and the degree of DILI concern.

2.4. Descriptors associated with hepatotoxicity

Although multiple QSAR models have been developed for DILI substances, often the articles
published were focused more on the performance of the models than on the discussion of the
descriptors that are associated with an increased or lower risk of liver toxicity. In order to
understand the most important features/descriptors associated with DILI, we examined the first five
descriptors identified by each selection algorithm. We therefore computed the frequency with which
descriptors occurred among the most important 5 features for each of the selection algorithm and
those that occurred at least twice are shown in Table 2. A higher mean atomic polarizability tended
to associate with a higher DILI concern; similarly, a lower percentage of hydrogen in the molecule
and a lower Geary autocorrelation of lag 1 weighted by mass tended to associate with a higher risk

of hepatotoxicity.

Table 2. The most important molecular descriptors associated with DILI by the 17 feature selection algorithms

used
Frequency occurring
Descriptor  block
Descriptor Interpretation among the first 5 most
(group) .
important features
mean atomic polarizability (scaled | Constitutional
Mp 12 (70.59%)
on Carbon atom) indices
Constitutional
H% percentage of H atoms 12 (70.59%)
indices
Geary autocorrelation of lag 1
GATSIm 2D autocorrelations | 12 (70.59%)
weighted by mass
normalized spectral positive sum
2D matrix-based
SpPosA_B(m) from Burden matrix weighted by 10 (58.82%)
descriptors
mass
Moriguchi octanol-water partition | Molecular
MLOGP 4 (23.53%)
coeff. (logP) properties
ratio of multiple path count over | Walk and path
PCR 3 (17.65%)
path count counts
Constitutional
totalcharge total charge 2 (11.76%)
indices
spectral moment of order 1 from | 2D  matrix-based
SM1_Dz.m. 2 (11.76%)
Barysz matrix weighted by mass descriptors
Structural Information Content index
SIC1 Information indices | 2 (11.76%)
(neighborhood symmetry of 1-order)
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2.5. Virtual screening

Besides using the nested cross-validation procedure, which offers considerably stronger safeguards
than merely using an external hold-out sample for external validation, we would have liked to test
our stacked models on an independent external data set. For reasons shown in the Discussion
section, this was an almost impossible mission; we therefore chose to apply the models in a virtual
screening exercise on 104,619 compounds from the ZINC database, so as to identify compounds
having a high probability of being devoid of liver toxicity properties. 19.92% of the whole data set
(20,835 substances) were predicted by the assemble of 72 models based on the mean probability to be
non-hepatotoxic and 20.08% (21,012 substances) were predicted by the 72 models based on the
median probability to be non-hepatotoxic. The false negative rate of the stacked models, using the
average probability of hepatotoxicity for the 72 models was 11.7%, whereas the negative predictive
value was 72.6%, which means that if the same proportions between hepatotoxic and
non-hepatotoxic compounds was present in the tested data set, one should expect that 72.63% of the
compounds predicted to be non-toxic should indeed be non-toxic. We show in Table S1 the first 2000
such compounds predicted to be devoid of liver toxicity, sorted by the predicted probability (i.e. the
first 2000 compounds with the lowest probabilities of being hepatotoxic). As discussed in the next
section, all or almost all of these 2000 compounds were in the applicability domain for at least a
fraction of the models used. A short look over these compounds shows that they include many oses,
polyols, short peptides, vitamins, various hydrosoluble compounds, and this makes credible those

predictions, at least for their majority.

2.6. Outliers, applicability domain and wrongly classified drugs

An outlier may be defined as “an observation in a data set which appears to be inconsistent with the
remainder of that set of data” [23]. Outliers may lead to wrongly specified models and wrong results,
but they may be as well carriers of important information [23], therefore a decision to remove them
should be based on well-founded reasons (e.g. obvious recording error), and not on the mere
intention of having well-performing models. A variety of model-dependent (parametric) and
model-independent (non-parametric) methods have been advanced in the literature, although the
comparative performance is difficult to estimate, and different benchmarking studies compared
different algorithms and sometimes with inconsistent results [24,25]. Because in one complex
benchmarking study [24] the isolation forest (IFOREST) and subspace outlier detection (SOD)
algorithms were among the best (IFOREST had the highest performance), we used the two
algorithms to examine the potential outliers and how well they were predicted by the models. The
IFOREST algorithm identified no obvious outlier (for this algorithm potential outliers have scores
close to 1, whereas for all observations of the data set the scores varied between 0.30 and 0.55). For
the SOD algorithm we used a 5% threshold for the definition of outliers (thus identifying 35 outliers),
and over three quarters of them (78.49% on average, s.d. 5.16%) were correctly classified by the
assemble of models selected.

The “applicability domain” (AD) is a tool used to assess whether a QSAR model may be employed
to predict in a valid manner the class label of a test compound; such a “prediction” is only valid if the
assumptions on which the model was built are still met for the test compound [26]. If the prediction

exercise involves an extrapolation from the feature space, the result of this exercise cannot be relied
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upon. Hence, evaluating the AD for a specific model is of key significance if that model is to be put to
use for prediction purposes, and a great variety of methods have been advanced in the literature in
this connection, each with its own strengths and shortcomings [27]. Our approach of normalization
and capping extreme values to two standard deviations was meant to ensure a broad AD for
untested substances and we assessed this on a subset consisting of the first 2000 substances from the
ZINC database, for which there is a high probability that they are not hepatotoxic (the first 2000
compounds with the lowest computed probabilities of being hepatotoxic). The method of F. Sahigara
et al. (2013), which uses different decision thresholds for each test compound, identified only a small
number of compounds that were out of AD, and only for a subset of the models. The application of
this method, therefore, led only to small changes in the average probability predicted for each
compound, with no change in the predicted label. The same was true for the use of the INFLO and
COF methods. Although leaving out the models that were outside of the AD did not change the
classification of any of the 2000 compounds analyzed, in some cases, particularly in the case of using
the COF method, leaving aside some of the models (that were outside AD) tended to slightly
increase the average probability of being hepatotoxic, but in no case did it reach the 50% so as to
change the classification.

We analyzed the hepatotoxic compounds from the DILIrank data set that were wrongly classified by
the majority of models and identified a number of 49 such substances out of 447 compounds with
different levels of hepatotoxicity concern (i.e. 10.96% false negative rate). Among these, ethambutol
was predicted wrongly by all models (as non-toxic, although it is labeled as of “most concern”); in
other words, all models predict ethambutol as non-hepatotoxic, although it has been categorized in
the DILI Rank data set as being of high concern. This is in line with some medical papers that
consider ethambutol as non-toxic [28]. According to LiverTox, despite over a half of century of use,
ethambutol has been connected to clinically evident liver injury in a very small number of case
reports, but some of these were convincing (re-occurrence by rechallenge) [29]. This prompts us to
hypothesize that such rare cases of confirmed hepatotoxicity might have been related to an impurity
present in the active substance or one of the excipients, although it may as well be possible that the
models were just unable to classify it correctly. Perhexiline, daptomycin, and amphetamine, were
correctly classified by a single model out of 79, terbutaline by two models, and acarbose by only
three. All other compounds misclassified by the majority of the models are shown in Table S2. Only
14 of these 49 compounds (28.57%) were detected as outliers for at least one of the models, a fact that
indicates that in the majority of cases the wrong classification is not the consequence of different

chemical features but rather of the model limitations.

3. Discussion

Predicting hepatotoxicity of chemical substances from their chemical structure is an intimidating
task, because the mechanisms by which different substances cause liver toxicity may be varied and
they are often not understood at all. Moreover, the hepatotoxic substances differs in their liver
toxicity profile with respect to the doses or duration needed for the toxic effect to get manifested, as
well as in the clinical severity of the hepatotoxicity (varying from slight increases in transaminase
levels to fulminant hepatitis requiring an emergency liver transplant). Dactinomycin, for instance,

may manifest its liver toxicity at total doses of about 1 mg/day (10 to 15 mcg/kg) [30], whereas
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4-aminosalicylic acid has been used at daily doses 12,000 higher [31]. Hepatic injury may be started
by paracetamol in 24 to 72 hour after a single overdose [32], in the case of allopurinol hepatitis
usually develops within the first month of treatment, whereas clinically symptomatic liver injury is
seen with perhexilin only after several months or years of treatment [33]. Drug-induced
hepatotoxicity may be predictable (dose-dependent, replicable in animal experiments, and with a
short onset), but in most cases it is idiosyncratic (non-predictable) [34]. The latter is often classified in
three main mechanistic patterns hepatocellular, cholestatic, and mixed [35]. Other mechanistic
classifications are considerably more nuanced, distinguishing between immune mediated and
non-immune mediated hepatitis, non-alcoholic steatohepatitis, immune and non-immune mediated
cholestatic injury, fibrosis/cirrhosis, granulomas (allergic in nature), microvesicular steatosis,
vascular lesions, phospholipidosis, and neoplasms [36]. Considering this diversity of doses, latencies
and mechanisms, the chemical diversity of the drugs currently used in therapy, as well as their
limited number, predicting hepatotoxicity from the structure alone is fraught with difficulties.
Multiple studies have concluded that the agreement between the results of animal liver toxicity
models and human outcomes is low, and this may contribute to a high number of cases where
hepatotoxic potential of a drug is only detected in the late stages of clinical development [37]. To
further complicate modeling, classifying a known drug as being hepatotoxic or not is not a simple
exercise, because for the majority of medicines the liver toxicity is idiosyncratic and if the toxic
events are relatively rare, they cannot be detected in clinical trials, but only through post-marketing
studies, helped by the spontaneous reporting pharmacovigilance systems, which in their turn tend
to suffer from underreporting [13]. Taking these factors into account, as well as the diversity of
clinical forms of DILI and the ambiguities affecting the causality assessment, the fact that data from
animal studies may not necessarily be relevant for the classification of a drug as hepatotoxic or not,
different sources may classify differently specific drugs (i.e. the same drug may be considered
hepatotoxic in one study/list, but non-hepatotoxic in another). For instance, leuprolide has been
classified as of “Less DILI concern” in DILIrank, whereas the LiverTox website (produced by the
National Institute of Diabetes and Digestive and Kidney Diseases, NIDDK) states that "Despite use
for several decades, leuprolide has not been linked to convincing cases of clinically apparent liver
injury. Routine monitoring of patients for liver test abnormalities is not recommended. Likelihood
score: E (unlikely cause of clinically apparent liver injury)" [38]. Morphine and codeine are listed by
DILIrank as of no DILI concern, whereas a recently published list of (mostly herbal) ingredients with
potential hepatotoxicity or hepatoprotection, labels both of them as a hepatotoxic [39]. The same list
labels lamivudine and metformin as hepatoprotective [39], whereas DILIrank classifies them as
hepatotoxic of less concern.

The DILIrank data set is based on a “refined annotation schema by weighing evidence of causality to
overcome inherent deficits in drug labeling and improve the accuracy of DILI annotation” [13].
When we finished the modeling exercise, it was still the best annotated list of drugs classified by
their hepatotoxic potential, based on clinical considerations, that was publicly available. When we
were in the final stages of drafting this paper, an improved version with a larger number of drugs
was just published by the same group of FDA-affiliated authors, under the name DILIst [37].
Predicting liver toxicity from chemical structure has been a preoccupation of over two decades, first

starting somewhat timidly with local models [40,41], to move later also to global models [42,43].
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Many of the previous models used relatively small size datasets (less than 400 compounds) [44,45];
studies based on a data sets larger than DILIrank have also been published [11,17,46-48], but the
authors of DILIrank used a methodology that in theory at least, was superior and more consistent
with the totality of available clinical data. The total DILIrank data set includes 1036 compounds, but
254 were classified as of “ambiguous DILI-concern”, because the causality evidence was limited;
besides, it took great care in defining DILI negatives, which varied among four large sources
previously studied, labeling some previously compounds considered of no DILI concern as of less
DILI concern. Thus, although somewhat smaller than other published DILI datasets, the DILIrank
had a smaller probability of misclassification, and this prompted us to prefer it to other larger data
sets available in the literature.

All or almost all studies published up to date have used a training and a testing data set, and most
often also a holdout (external validation) data set, in most cases quite small. None of the previously
published studies have used a nested-cross validation approach. It has been the tradition, in the field
of machine learning, to divide the whole data set in a training subset (about 70-80%) and a test set
(about 20-30%); the models were developed, hyperparameters tuned and performance evaluated on
the training subset, and the selected model was then tested on the test set (holdout). In this approach,
it is still possible to have a model with good performance on the holdout test by mere chance. The
nested cross-validation actually splits the data set in training and testing sets multiple times, each
time the best model being tested on an external data set that has not been contaminated by the
training samples. The main difference is that whereas in the traditional approach a single holdout
test was kept for assessment, in the nested CV the process is repeated multiple time (in our case 10
times). The performance on the training data set is of little interest, because it is known that the
available algorithms can overfit and have apparent very high performances. The performance on the
test data sets should also be of little interest, because it is also quite common for the algorithms used
to get good performance on the test set by mere chance. The performance as measured on external
validation data sets is the most important, and it is interesting that whereas models published up to
now have reported good and very good performances on the training or test subsets, the
performance on external data sets was much lower. A review found in 2014 that in models published
up to that time point the external validation data sets had been “quite small” (20-50 drugs), and that
for the larger external data sets the model performance seemed to be “less favorable” [49]. One of the
best performing ensemble models recently published used three external validation data sets and
had a pooled balanced accuracy of 71.60% [17]. Although based on a different data set (DILIrank),
our models compares favourably, with a balanced accuracy in the nested cross-validation (i.e.
average of 10 external data sets) slightly superior for several meta-models attempted, higher than 74%
(as shown in the results section).

We were interested to compare our results with those of the PROTOX II
(http://tox.charite.de/protox_lI/index.php?site=scompound_input), but such a comparison proved
not to be realistic. Our predictions were all as part of an external data set (we used the predictions in
the outer test set of the nested cross-validation loop), whereas in the case of PROTOXII, based on a
training set of 850 compounds and an external data set of 95 compounds [50], the majority of
compounds are likely to be part of the training set, not really predictions. Moreover, the labels used

in the training set of PROTOX II seems to be very different from those used in the DILIrank; whereas
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there is a large agreement between our results and the PROTOXII for the compounds classified as of
most concern by DILIrank, the large majority of compounds labeled by DILIrank as of less concern,
are “predicted” by the PROTOX II to be “inactive”. This is obviously not due to a failure of the
PROTOX 1II in prediction, but rather in the different labels used in its training dataset. Purely for
information purposes we show the results of the PROTOX II in comparison with our predictions in
the external loop in Table S2.

Among the most important chemical descriptors associated with liver toxicity in our study
were the mean atomic polarizability (Mp), the percentage of hydrogen atoms (H%), the Geary
autocorrelation of lag 1 weighted by mass (GATSIm), normalized spectral positive sum from
Burden matrix weighted by mass (SpPosA_B(m)), and Moriguchi octanol-water partition coefficient
(MLOGP). Atomic polarizability, identified as important by the majority of selection algorithms
used, was previously shown to associate with renal toxicity of drugs [51], but it was also used in
other liver toxicity models, as was logP [17,52], the latter measuring lipophilicity, which was shown
to correlate with DILI [21]. GATS1m is less intuitive than the constitutional descriptors, but it has
also been reported in a different publication as an important descriptor for the liver toxicity of drugs
[53]. SpPosA_B(m) is also less easily interpretable, and we did not find any previous use in other
QSAR models of hepatotoxicity.

Many papers have developed QSAR DILI models, but very few if any applied those models to a
large number of substances in a virtual screening exercise, so as to estimate the chances of finding
substances devoid of hepatotoxicity. Our virtual screening of over 100,000 substances from the ZINC
database found that about 20% of the substances from this data set have a high probability of being
devoid of any liver toxicity. Because our models tended to have a relatively high rate of false
positives, and the specificity was only about 56%, the proportion of non-hepatotoxic substances is
probably much higher in the data set than 20%.

The DILIrank data set is very limited (after excluding non-modelable entities, such as those
with ambiguous DILI concern, mixtures or inorganic compounds, only 694 chemical structures), and
this leads to small chemical diversity and small learning power for the machine learning algorithms.
The very recent publication of the DILIst [37] opens up the possibility of using a larger data set,
which is expected to allow better performance of QSAR models built with its help. Our preliminary
data show that including the daily dose and duration of therapy may slightly increase the
performance of the models, and we intend in the future not only to use the larger DILIst data set, but
also attempt the improvement of the models by using such variables as dose and duration of
treatment, because it is obvious that they influence the liver toxicity of a product (if paracetamol is
used at low doses it is very unlikely to be hepatotoxic, as it is if perhexilin were to be only used for a
few days). Albeit using only chemical descriptors for model building in the case of a defined
molecular target makes full sense, in the case of a heterogeneous and more or less black box effect
such as liver toxicity, it stands to reason that additional considerations related to the context of use

(dose, duration) should also be taken into account and explored in future research.

4. Materials and Methods

Dataset
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The  dataset  (Table  SI) was downloaded  from the FDA = website

(https://www.fda.gov/science-research/liver-toxicity-knowled ge-base-ltkb/drug-induced-liver-injur

y-rank-dilirank-dataset) and included 1036 drugs, classified in four groups: 192 labeled as
“Most-DILI-concern”, 287 “Less-DILI-concern”, 312 ”No-DILI-concern”, and 254

“Ambiguous-DILI-concern”. Because “ambiguous” is not an actual outcome, but rather a category

for which there is uncertainty on their DILI-inducing potential, this last category was excluded from
our analysis, leaving the size of the data set to 791. Biological medicines (e.g. abatacept, abciximab
etc), drugs that are not definite chemical entities (mixtures — e.g. divalproex sodium, which is a
coordination compound of sodium valproate and valproic acid, polymers — e.g. polyethylene glycol
3350), and a small number of simple compounds (e.g. “sterile water”, “calcium acetate”, “cisplatin”)
were also eliminated, remaining a final dataset of 694 chemical compounds, of which 179 of most
DILI concern, 268 of less DILI concern, and 247 of no concern. We collapsed the most DILI concern
and less DILI concern in a single category (of DILI concern), so as to apply binary classification
algorithms. The corresponding smiles were included in the data set provided by FDA; we converted
them to 2D chemical structures (sdf) using Discovery Studio Visualizer v16.1.0.15350 (Dassault
Systemes BIOVIA, San Diego, CA, USA). We checked the correctness of the resulted formulas with
the Chemaxon Structure Checker v. 18.8.0 (ChemAxon, Budapest, Hungary) (no errors found) and

used the Chemaxon Standardizer v. 18.8.0 to neutralize, tautomerize, aromatize, and clean 2D the

formulas (in this order).

Descriptors

Dragon 7 software (version 7.0, https://chm.kode-solutions.net; Kode SRL, Milano, Italy) was

used to compute 3839 molecular descriptors (2D), based on the sdf structures of the chemical
compounds in the data set. 19 blocks of molecular descriptors were computed: constitutional
descriptors (n=47), ring descriptors (n=32), topological indices (n=75), walk and path counts (n=46),
connectivity indices (n=37), information indices (n=50), 2D matrix-based descriptors (n=607),
2D-autocorrelations (n=213), Burden eigenvalues (n=96), P-VSA-like descriptors (n=55), ETA indices
(n=23), edge adjacency indices (n=324), functional groups count (153), atom-centred fragments
(n=115), atom-type E-state indices (n=172), CATS 2D (n=150), 2D atom pairs (n=1596), molecular
properties (n=20), and drug-like indices (n=28).

Feature selection

High dimensions of the data (and “high” may refer to billions of observations, but even 691 x
3891 data points is not exceedingly small), pose a challenge for data analysis, because it is likely that
—in our cases - among the several thousand of descriptors not all are correlated with the activity and
there is likely much noise or redundancy that should be removed in order to build parsimonious
models that are not overfitted and are useful for prediction purposes [54]. Many if not most machine
learning algorithms have actually been developed for a fairly low number of variables, and using a
very large number of features will likely result in overfitting [55]. It is therefore a requirement to
remove noisy and redundant features with the help of one or more feature selection algorithms [56].
A variety of such algorithms have been published, but few comparative performance data with

respect to these algorithms are available.
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We removed the constant and quasi-constant features (those with less than 1% variation from
the statistical mode value) and auto-correlated features (correlation coefficient > 0.9). On the data set
thus reduced we have applied 17 distinct feature selection approaches. Some of these are available
through the R “mlr” package [57] directly: “anova.test” (based on ANOVA), “auc” (based on the
area under the curve), “kruskal.test” (based on a Kruskal-Wallis test rank sum test), and
“permutation.importance” (based on the aggregate difference between predictions performed with
the unmodified and permuted features), “univariate.model.score” (based on resampling a
recursive partitioning learner with each separate feature), and a simple test based on variance.
Others are available through the FSelector R package [58]: “FSelector_chi.squared” (uses a
chi-squared test of independence between each variable and the outcome), “FSelector_gain.ratio”,
“FSelector_information.gain”, and “FSelector_symmetrical.uncertainty (entropy-based filters),
FSelector_oneR (applies the OneR algorithm), “FSelector_relief” (based on the RELIEF algorithm as
updated by Kononenko et al). Other feature selection algorithms included
“party_cforest.importance” (permutation importance implemented in the “party” package [59]),
“ranger_permutation” (permutation importance implemented in the “ranger” package [60]),
“ranger_impurity” (based on ranger impurity importance), and three selection algorithms based on
random forests (implemented in the “randomForest” [61] and “randomForestSRC* packages [22]).

Although it is a frequent practice to remove outliers when building QSAR/QSPR models, based
on the wrong prediction by the majority of models [17] or other approaches [62], we preferred to
eliminate no value, because although this practice might be justified, it might also lead to
overestimation of the performance of the models, because the fact that the majority of models are not
able to correctly classify an observations does not necessarily imply “outlierness” for that value. We
prefer to identify and discuss outliers but to build models being aware of their presence and the

limitations they bring upon the models in terms of performance.

Classification algorithms

We have applied the following algorithms to build classification models for the DILIrank
dataset: binomial regression; regularized regression; C5.0 decision trees and rule-based models;
random forests, regularized random forests, and random forests based on conditional inference trees;
rotation forests; extremely randomized trees; Bayesian additive regression trees; support vector
machines, clustered support vector machines and divided-conquer support vector machines; Ada
boosting; regularized and shrinkage discriminant analysis; neural networks (in three different
implementations). All algorithms were applied in the computing and programming environment R,
v. 3.6.1 [63], under the unified interface provided by the “mlr” R package [57] coupled with
"parallelMap" [64] for parallel computing. For data pre-processing the “caret” package [65] was
also used.

Binomial regression (logistic regression), is a fairly simple classification algorithm that models the
probability that a certain instance belongs to one of two classes in a linear manner [66]. In essence,
logistic regression estimates the probability P=1/(1+et), where t= a0 + aix1 +axxz + ... + anxa [67].
Regularized regression is a slightly more sophisticated form of conventional regression, where the loss
function besides minimizing the sum of squares uses a penalty term, and depending on its value, the

regularized regression takes three different shapes (variants): ridge regression, lasso regression, and
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elastic net regression, each with its own strengths and weaknesses [68]. We implemented different
forms of regularized regression using the “glmnet” R package [69].

C5.0 decision trees and rule-based models have been first advanced by R. Quinlan in 1992, under the
name “C4.5”, which was an extension of a previous algorithm called Iterative Dichotomizer 3 (ID3);
C4.5 was later improved into the new C5.0 classifier, which has superior efficiency [70]. C5.0
decision trees are versatile, swift and easy to use, and their use for QSAR modeling is seen as a
reasonable option [71]. In R, the C5.0 algorithm is implemented in the C50 R package [72].

Random forests (RF) are a widespread classification algorithm in a variety of fields, including
QSAR [73,74]. They assemble a large number of decision trees with the help of a simple majority vote
to resolve the most probable class for each data point. The trees are built using random subsets of
both the instances from the training set and of the features in building the individual trees [75]. We
applied the algorithm as implemented in the “randomForest” R package [61]. Regularized random
forests are an adjustment of the conventional random forests geared towards improving the feature
selection process by penalizing the introduction of new features in comparison with the previous
trees, and thus adding new features only if they provide substantially new information
gain/predictive information [76]. It is implemented in R by the original author (H. Deng) in the “RRF”
R package [77]. A particular types of trees assembled in random forests are the conditional inference
trees, that are developed within a so-called “conditional inference framework”. Shortly, a global test
of independence between response and features is applied, and if the null hypothesis is rejected the
variable with the strongest association with the response is selected, a binary split is performed in
that variable and the process is repeated recursively [78]. It is implemented in R by its author, T.
Hothorn, in the R package “party” [59]. Rotation forests are a more sophisticated form of random
forests, where feature extraction (e.g. principal component analysis) is applied to subsets of features
in an attempt to build “accurate and diverse classifiers” [79]. It is implemented in the R package
“rotationForest” [80]. Extremely randomized trees (ERT) algorithm is similar to the RF but tends to
lessen the variance of the model by the use of a more pronounced randomization component; it
differs from RF in two main aspects: each tree is built with all training sample (instead of random
subsets) but each node split is chosen randomly in building each tree, instead of using the best split
[81]. ERTs are implemented in the R package “extraTrees” [82].

First proposed by H.A. Chipmann et al. in 2010 [83], the Bayesian additive regression trees (BART)
represent a form offlexible Bayesian non-linear regression which has been shown to have a similar
level of performance with other machine learning approaches, for instance with random forests [84].
It is regarded as a successful blend of the advantages of the Bayesian approach with the efficiency of
random forests [85]. BART algorithm was used in the R implementation of the package
“bartMachine” [86]. The naive Bayes classifier uses the Bayes theorem to compute probabilities and
assumes the independence of all variables conditioned on the class; this assumption rarely holds
true in the real life (justifying the “naive” label), but the performance of the algorithm may be
surprisingly good in a wide range of classification tasks [87]. In this paper we have used the naive
Bayes classifier only in the building of meta-models, as implemented in the “e1071” R package [88].

The support vector machines (SVM) algorithm employs a range of kernel functions (e.g. linear,
polynomial, radial etc) to maximize the decision boundary between classes and to define a
hyperplane able to best discriminate the classes [89]. It is an algorithm apt of dealing with a large

number of features and has been used with good results to solve a diverse range of classification and
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regression tasks, including QSAR investigations [90,91]. We used the implementation of the
algorithm in the R package “kernlab”[88]. Clustered support vector machines (clusteredSVM) is an
algorithm proposed in 2013 by Quanquan Gu and Jiawei Han, as a solution for nonlinear data, with
“considerably lower time complexity than nonlinear classifiers”[92]. Briefly, it first partitions the
data in clusters (e.g. by k-means), and in each cluster is trained a linear SVM, and a global
regularization is applied to prevent over-fitting; the authors reported superiority over linear SVM
and similar or superior performance over kernel SVM with better computational efficiency [92].
Although SVM has been described as “probably the most widely used classifier”, the kernel SVM
has difficulties when the sample size becomes very large because of the huge computational costs
[93]. The divide-and-conquer SVM (DC-SVM) approach, proposed in 2014 by C.J. Hsie et al.
manages to break through the sample size barrier, ensuring faster computation speeds and
prediction accuracy superior to the approximate solvers used by the conventional kernel SVM
algorithms [93]. We used both clusterSVM and DC-SVM as implemented in the R package
“SwarmSVM” [94].

Boosting is a concept developed gradually in the field of machine learning. After Kearns and
Vazirani were the first to ask whether a “weak” classifier (one performing only marginally better
than random) may be “boosted” into a successful, “strong” classification model, Robert E. Schapire
developed the first such working algorithm in 1989, whereas his colleague Yoav Freund proposed a
more efficient one in 1990 [95]. Adaboost was put forward by the two researchers in 1995; it iterates
the application of a weak (base) algorithm, at each iteration adjusting the weights of the wrongly
classified instances, thus “forcing” the algorithm to correctly classify those instances [95]. We
applied the algorithm in two implementations, one from the R package “ada”[96], the other from the
RWeka package [97].

Regularized discriminant analysis (RDA) is an improvement of the linear discriminant analysis
(LDA), the first statistical classifier, which was proposed by R.A. Fisher in 1936 [98]. LDA uses a
simple discriminant function to classify instances of the sample and its essence consists in
maximizing the between classes sum of squares (SSbetween) and minimizing the within class SS
(SSwithin) [99]. RDA ensures better performance (at least in certain cases in which the LDA and
quadratic discriminant analysis fail) by using two regularization parameters in the discriminant
function [100]. We have use the algorithm as implemented in the R package “klaR” [101].

Artificial neural networks (ANNSs) are computational tools used in the prediction of continuous
variables or in classification, inspired by the functioning of neurons in the human brain [102]. W. S.
McCulloch and W. Pitts are the first who, in 1943, have described an algorithmic neuron, today
known after their name (the McCulloch and Pitts neuron). Several years later F. Rosenblatt described
another algorithm inspired by the neuron functioning, the perceptron, which automatically “learns”
optimal weighting coefficients, which are multiplied by the input variables to decide on the emission
(or not) of an output by the neuron [103]. ANNs are particularly apt to model complex and
non-linear relationships, as are often those found in chemistry, and thus they are seen as perfectly
suitable for QSAR modeling [104]. We have used neural networks in three different R
implementations: “neuralnet” [105], “nnet” [106], and “deepnet”[107].

k nearest neighbor (kNN) is one of the simplest and efficient classification algorithms, being
based on the idea of assigning an unknown sample to the class to which belong the k most similar

compounds (k nearest neighbors); the similarity is assessed through the distance between each data
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point of the training sample and the unknown sample [108]. It has often been used successfully in
QSAR applications [103, 104]. We have used two R implementations of the algorithm: kknn [111]
and the RWeka version (IBk) [97].

Performance evaluation

To assess the performance of the models used in the study we applied nested cross-validation
with 5 folds in the inner loop and 10 folds in the outer one; in the case of BART models, which took
long times for computing, we used 5 folds for both loops. Cross-validation has a number of strengths
that makes it superior to hold-out external validation [112], and nested cross-validation (also known
as double cross-validation) is superior to the conventional, simple cross-validation, extending the
concept of external validation to the whole data set [113]. Nested cross-validation is therefore
considered the state-of-the art approach for the validation of computational models such as QSAR
[112], although up to date only a very small number of published studies have used it (e.g. using
“nested cross validation QSAR” as keywords in Medline returns only seven papers).

The following metrics were computed and assessed by nested cross-validation: balanced
accuracy (BA), mean misclassification error (MMCE), sensitivity (true positive rate, TPR), specificity
(true negative rate, TNR), positive predictive value (PPV), and area under the Receiver Operating
Characteristics curve (AUC) with their widely known definitions and equations [114,115]. We were
interested in predicting whether a particular substance may induce DILI, therefore we were focused
on increasing the balanced accuracy, as well as PPV. For this reason, we selected only those models
that had both PPV and BA higher than 70%.

Y-randomization test. To examine to what extent models are the result of mere chance we applied
a typical y-scrambling test [116] by permuting the toxicity concern label of the drugs from the data
set and re-developing the models following the same procedure as the one used for the selected
models. We applied the process ten times, each time with different permutations and a different
classification algorithm, the models thus build being were evaluated for their performance using the
same metrics as for the ones selected. If the models selected for use are not a mere gambling result,
the performance of the models built with the permuted data should be (considerably) worse than

that of the performance of the selected models.

Virtual screening
In order to explore the way in which the models selected perform on real-world data we
assembled the 79 selected QSAR models and applied them to predict the DILI potential of a data set
of 104619 compounds of the ZINC database (all compounds having names in the said database
[117]). The 79 models were stacked in three different ways:
a) By a majority vote applied to the classification performed by each model;
b) By computing the average of the probabilities outputted by each model and then applying
the 50% threshold to classify the compound as being of concern or of no concern (only 72
models outputted probabilities, 6 only made binary predictions); and
c) By developing meta-models using the predictions of the best 50 models (selected with the
help of the same selection algorithms as for the building of the individual models) as

independent variables for the final classification. We evaluated models based exclusively
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on the 50 best-performing individual models, as well as models that additionally included
the dose and duration of treatment as supplementary features for the improvement of the

performance.

Outliers and applicability domain

For the detection and analysis of outliers in the DILIrank data set we applied the isolation forest
(IFOREST) and subspace outlier detection (SOD) algorithms, as implemented in the “solitude”[118]
and “HighDimOut” R packages [119]. The applicability domain was assessed by three different
methods, as detailed elsewhere [120].
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AD Applicability Domain

ANNs Artificial Neural Networks

AUC Area Under the Receiver Operating Characteristics Curve
BA Balanced Accuracy

BART Bayesian Additive Regression Trees

(@)% Cross-Validation

DC-SVM  Divide-and-Conquer SVM

DILI Drug induced liver injury

ECHA European Chemicals Agency

ERT Extremely Randomized Trees

FPR False Positive Rate

IBk an RWeka implementation of the knn algorithm
IFOREST Isolation Forest

knn k-nearest neighbours

LDA Linear Discriminant Analysis

MMCE Mean MisClassification Error
NIDDK National Institute of Diabetes and Digestive and Kidney Diseases

OECD The Organisation for Economic Co-operation and Development
PPV Positive Predictive Value

QSAR Quantitative Structure-Activity Relationship

RDA Regularized Discriminant Analysis

RF Random Forests

SOD Subspace Outlier Detection

SVM Support Vector Machines
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TNR True Negative Rate
TPR True Positive Rate
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