Preprint
Article

A Simulation on Potential Secondary Spread of Novel Coronavirus in an Exported Country Using a Stochastic Epidemic SEIR Model

Altmetrics

Downloads

8489

Views

25606

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

12 February 2020

Posted:

14 February 2020

You are already at the latest version

Alerts
Abstract
Ongoing outbreak of pneumonia caused by novel coronavirus (2019-nCoV) began in December 2019 in Wuhan, China, and the number of new patients continues to increase. On the contrary to ongoing outbreak in China, however, there are limited secondary outbreaks caused by exported case outside the country. We here conducted simulations to estimate the impact of potential secondary outbreaks at a community outside China. Simulations using stochastic SEIR model was conducted, assuming one patient was imported to a community. Among 45 possible scenarios we prepared, the worst scenario resulted in total number of persons recovered or removed to be 997 (95% CrI 990-1,000) at day 100 and maximum number of symptomatic infectious patients per day of 335 (95% CrI 232-478). Calculated mean basic reproductive number (R0) was 6.5 (Interquartile range, IQR 5.6-7.2). However, with good case scenarios with different parameter led to no secondary case. Altering parameters, especially time to hospital visit could change the impact of secondary outbreak. With this multiple scenarios with different parameters, healthcare professionals might be able to prepare for this viral infection better.
Keywords: 
Subject: Medicine and Pharmacology  -   Epidemiology and Infectious Diseases
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated