Preprint
Article

Which Attributes Matter the Most for Loan Origination? A Neural Attention Approach

This version is not peer-reviewed.

Submitted:

12 February 2020

Posted:

14 February 2020

You are already at the latest version

Abstract
In this paper we address the understanding of the problem, of why a deep learning model decides that an individual is eligible for a loan or not. Here we propose a novel approach for inferring, which attributes matter the most, for making a decision in each specific individual case. Specifically we leverage concepts from neural attention to devise a novel feature wise attention mechanism. As we show, using real world datasets, our approach offers unique insights into the importance of various features, by producing a decision explanation for each specific loan case. At the same time, we observe that our novel mechanism, generates decisions which are much closer to the decisions generated by human experts, compared to the existent competitors.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

326

Views

181

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated