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Abstract: Our primary objective is to construct a plausible unified model of inflation, dark energy 
and dark matter from a fundamental Lagrangian action first p rinciple, w here a ll fundamental 
ingredients are systematically dynamically generated starting from a very simple model of modified 
gravity interacting with a single scalar field employing the formalism of non-Riemannian spacetime 
volume-elements. The non-Riemannian volume element in the initial scalar field action leads to a 
hidden nonlinear Noether symmetry which produces energy-momentum tensor identified as a sum 
of a dynamically generated cosmological constant and a dust-like dark matter. The non-Riemannian 
volume-element in the initial Einstein-Hilbert action upon passage to the physical Einstein-frame 
creates dynamically a second scalar field w ith a  n on-trivial i nflationary po tential an d wi th an 
additional interaction with the dynamically generated dark matter. The resulting Einstein-frame 
action describes a fully dynamically generated inflationary model coupled to dark matter. Numerical 
results for observables such as the scalar power spectral index and the tensor-to-scalar ratio conform 
to the latest 2018 PLANCK data.
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1. Introduction

In the last decade or so a groundbreaking concept emerged about the intrinsic necessity to
modify (extend) gravity theories beyond the framework of standard Einstein’s general relativity. The
main motivation for these developments is to overcome the limitations of the latter coming from:
(i) Cosmology – for solving the problems of dark energy and dark matter and explaining the large
scale structure of the Universe [1–3]; (ii) Quantum field theory in curved spacetime – because of the
non-renormalizabilty of ultraviolet divergences in higher loops [4–9]; (iii) Modern string theory –
because of the natural appearance of higher-order curvature invariants and scalar-tensor couplings in
low-energy effective field theories [10–14].

Another parallel crucial development is the emergence of the theoretical framework based on the
concept of “inflation”, which is a necessary part of the standard model of cosmology, since it provides
the solution to the fundamental puzzles of the old Big Bang theory, such as the horizon, the flatness,
and the monopole problems [15–22]. It can be achieved through various mechanisms, for instance
through the introduction of primordial scalar field(s) [23–76], or through correction terms into the
modified gravitational action [77–122].

Additionally, inflation was proved crucial in providing a framework for the generation of
primordial density perturbations [123,124]. Since these perturbations affect the Cosmic Background
Radiation (CMB), the inflationary effect on observations can be investigated through the prediction for
the scalar spectral index of the curvature perturbations and its running, for the tensor spectral index,
and for the tensor-to-scalar ratio.
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Various classes of modified gravity theories have been employed to construct viable inflationary
models: f (R)-gravity; scalar-tensor gravity; Gauss-Bonnet gravity (see [125,126] for a detailed
accounts); recently also based on non-local gravity ([127] and references therein) or based on
brane-world scenarios ([128] and references therein). The first early successful cosmological model
based on the extended f (R) = R + R2-gravity produces the classical Starobinsky inflationary scalar
field potential [16].

Dynamically generated models of inflation from modified/extended gravity such as the
Starobinsky model [18,126,129,130] still remain viable and produce some of the best fits to existing
observational data compared to other inflationary models [131].

Unification of inflation with dark energy and dark matter have been widely discussed [79,81,
132–142]. It is indeed challenging to describe both phases of acceleration using a single scalar field
minimally couple to gravity, without affecting the thermal history of the universe which has been
verified to a good accuracy. In order to enable slow-roll behavior, the scalar field potential should
exhibit shallow behaviour at early times followed by a steep region for most of the universe history
turning shallow once again at late times. Although a simple exponential potential does not comply with
the above picture, here we present a simple modified gravity model naturally providing a dynamically
generated scalar potential, whose inflationary dynamics is compatible with the recent observational
data. On the other hand, the task of describing particle creation will be discussed in our future work.

Another specific broad class of modified (extended) gravitational theories is based on the
formalism of non-Riemannian spacetime volume-elements. It was originally proposed in [143–147], with
a subsequent concise geometric formulation in [148–150]. This formalism was used as a basis for
constructing a series of extended gravity-matter models describing unified dark energy and dark matter
scenario [151,152], quintessential cosmological models with gravity-assisted and inflaton-assisted
dynamical suppression (in the “early” universe) or dynamical generation (in the post-inflationary
universe) of electroweak spontaneous symmetry breaking and charge confinement [153,154], as well
as a novel mechanism for dynamical supersymmetric Brout-Englert-Higgs effect in supergravity [148].

In the present paper our principal aim is to construct a plausible unified model, i.e., describing
(most of the) principal physical manifestations of a unification of inflation and dark energy interacting
with dark matter, where the formalism of the non-Riemannian spacetime volume-elements will play a
fundamental role. To this end we will consider a simple modified gravity interacting with a single
scalar field where the Einstein-Hilbert part and the scalar field part of the action are constructed within
the formalism of the non-Riemannian volume-elements – alternatives to the canonical Riemannian
one
√−g. The non-Riemannian volume element in the initial scalar field action leads to a hidden

nonlinear Noether symmetry which produces energy-momentum tensor identified as a sum of a
dynamically generated cosmological constant and a dynamically generated dust-like dark matter. The
non-Riemannian volume-element in the initial Einstein-Hilbert action upon passage to the physical
Einstein-frame creates dynamically a second scalar field with a non-trivial inflationary potential
and with an additional interaction with the dynamically generated dark matter. The resulting
Einstein-frame action describes a fully dynamically generated unified model of inflation, dark energy
and dark matter. Numerical results for observables such as the scalar power spectral index and the
tensor-to-scalar ratio conform to the latest 2018 PLANCK data.

Let us briefly recall the essence of the non-Riemannian volume-form (volume-element) formalism.
In integrals over differentiable manifolds (not necessarily Riemannian one, so no metric is needed)
volume-forms are given by nonsingular maximal rank differential forms ω:∫

M
ω
(
. . .
)
=
∫
M

dxD Ω
(
. . .
)

, (1)

where
ω =

1
D!

ωµ1 ...µD dxµ1 ∧ . . . ∧ dxµD , ωµ1 ...µD = −εµ1 ...µD Ω . (2)
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Our conventions for the alternating symbols εµ1,...,µD and εµ1,...,µD are: ε01...D−1 = 1 and ε01...D−1 = −1).
The volume element Ω transforms as scalar density under general coordinate reparametrizations.

In Riemannian D-dimensional spacetime manifolds a standard generally-covariant volume-form
is defined through the “D-bein” (frame-bundle) canonical one-forms eA = eA

µ dxµ (A = 0, . . . , D− 1):

ω = e0 ∧ . . . ∧ eD−1 = det ‖eA
µ ‖ dxµ1 ∧ . . . ∧ dxµD , (3)

yields:

Ω = det ‖eA
µ ‖ =

√
−det ‖gµν‖ . (4)

To construct modified gravitational theories as alternatives to ordinary standard theories in Einstein’s
general relativity, instead of

√−g we can employ one or more alternative non-Riemannian volume
element(s) as in (1) given by non-singular exact D-forms ω = dA where:

A =
1

(D− 1)!
Aµ1 ...µD−1 dxµ1 ∧ . . . ∧ dxµ−1 (5)

so that the non-Riemannian volume element reads:

Ω ≡ Φ(A) =
1

(D− 1)!
εµ1 ...µD ∂µ1 Aµ2 ...µD . (6)

Thus, a non-Riemannian volume element is defined in terms of the (scalar density of the) dual
field-strength of an auxiliary rank D− 1 tensor gauge field Aµ1 ...µD−1 .

The modified gravity Lagrangain actions based on the non-Riemannian volume-elements
formalism are of the following generic form (here and in what follows we will use units with
16πGNewton = 1):

S =
∫

d4x Φ1(B)
(

R + L1
)
+
∫

d4x Φ0(A)L0 +
∫

d4x
√
−gL2 , (7)

where Φ0(A) and Φ1(B) are of the form (6) (for D = 4), R is the scalar curvature, and the Lagrangian
densities L0,1,2 contain the matter fields (and possibly higher curvature terms, e.g. R2).

A basic property of the class of actions (7) is that the equations of motion w.r.t. auxiliary gauge
fields, defining the non-Riemannian volume-elements Φ0(A) and Φ1(B) as in (6), produce dynamically
generated free integration constants M1, M0:

∂µ

(
R + L1

)
= 0 → R + L1 = −M1

∂µL0 = 0 → L0 = −2M0 ,
(8)

(cf. Eqs.(15) and (28) below) whose appearance will play an instrumental role in the sequel.
Further, let us stress on the following important characteric feature of the modified gravity-matter

actions (7). When considering the gravity part in the first order (Palatini) framework (i.e., R =

gµνRµν(Γ) with a priori indepedent metric gµν and affine connection Γλ
µν), then the auxiliary rank 3

tensor gauge fields defining the non-Riemannian volume-elements in (7) are almost pure-gauge degrees
of freedom, i.e. they do not introduce any additional propagating gravitational degrees of freedom
when passing to the physical Einstein-frame except for few discrete degrees of freedom with conserved
canonical momenta appearing as arbitrary integration constants. This has been explicitly shown within
the canonical Hamiltonian treatment [149,153].
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On the other hand, when we treat (7) in the second order (metric) formalism (the affine
connection Γλ

µν is the canonical Levi-Civitta connection in terms of gµν), while passing to the physical
Einstein-frame via conformal transformation (cf. Eq.(30) below):

gµν → ḡµν = χ1 gµν, χ1 ≡
Φ1(A)√−g

, (9)

the first non-Riemannian volume element Φ1(A) in (7) is not any more (almost) “pure gauge”, but
creates a new dynamical canonical scalar field u via χ1 = exp u√

3
, which will play the role both of an

inflaton field at early times, as well as driving late-time de Sitter expansion (see Section 3 below).
In Section 2 we briefly review our construction in [152] of a simple gravity-scalar-field model –

specific member of the class of modified gravitational models (7) of the form (10) below, which yields
an explicit dynamical generation of independent (non-interacting among each other) dark energy
and dark matter components in an unified description as a manifestation of a single material entity
(“darkon” scalar field) – a simplest realization of a ΛCDM model.

In section 3 we extend the previous construction to dynamically generate, apart from dark matter,
also early-time inflation and late-time de Sitter expansion – via dynamical creation of an additional
canonical scalar field u (“inflaton”) out of a non-Riemannian volume-element with the following
properties: (i) u aquires dynamically a non-trivial inflationary type scalar field potential driving
inflation at early times of the universe’ evolution; (ii) At late times the same evolving u flows towards
a stable critical point of the pertinent dynamical system describing the cosmological evolution, driving
a late-time de Sitter expansion in a dark energy dominated epoch; (iii) In this case the field u, induces a
specific interaction between the dark energy and dark matter.

In Section 4 we study the cosmological implications of the latter dynamically generated
inflationary model with interacting dark energy and dark matter. In Section 5 several plots of the
numerical solutions for the evolution of the dynamical inflationary field and for the behavior of the
relevant inflationary slow-roll parameters and the corresponding observables are presented. Section 6
contains our conclusions and outlook.

2. A Simple Model of Unification of Dark Energy and Dark Matter

In [152] we started with the following non-conventional gravity-scalar-field action – a simple
particular case of the class (7) – containing one metric-independent non-Riemannian volume-element
alongside with the standard Riemannian one:

S =
∫

d4x
√
−g R(g) +

∫
d4x
(√
−g + Φ0(A)

)
L(ϕ, X) , (10)

with the following notations:

• The first term in (10) is the standard Einstein-Hilbert action with R(g) denoting the scalar
curvature w.r.t. metric gµν in the second order (metric) formalism;

• Φ0(A) is particular representative of a D = 4 non-Riemannian volume-element density (6):

Φ0(A) =
1
3!

εµνκλ∂µ Aνκλ . (11)

• L(ϕ, X) is general-coordinate invariant Lagrangian of a single scalar field ϕ(x):

L(ϕ, X) = X−V(ϕ), X ≡ −1
2

gµν∂µ ϕ∂ν ϕ . (12)
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Varying (10) w.r.t. gµν, ϕ and Aµνλ yield the following equations of motion, respectively:

Rµν(g)− 1
2

gµνR(g) =
1
2

Tµν , Tµν = gµνL(ϕ, X) +
(

1 +
Φ0(A)√−g

)
∂µ ϕ ∂ν ϕ ; (13)

− ∂V
∂ϕ

+
(
Φ0(A) +

√
−g
)−1

∂µ

[(
Φ0(A) +

√
−g
)

gµν∂ν ϕ
]
= 0 ; (14)

∂µL(ϕ, X) = 0 −→ L(ϕ, X) ≡ X−V(ϕ) = −2M0 = const , (15)

where M0 is arbitrary integration constant (the factor 2 is for later convenience).
As stressed in [152], the scalar field dynamics is determined entirely by the first-order differential

equation – the dynamical constraint Eq.(15). The usual second order differential equation (14) for ϕ is
in fact a consequence of (15) together with the energy-momentum conservation:

∇µTµν = 0. (16)

Also, as exhibited in [152], the specific form of the scalar field potential V(ϕ) does not affect the
dynamics of the system (10), see the remark below following (18). The same phenomenon occurs in
the extension of (10) to the model (24) in Section 3 and 4 below.

The canonical Hamiltonian analysis in [152] of the action (10) reveals that the auxiliary gauge field
Aµνλ is in fact an almost pure-gauge, i.e., it is a non-propagating field-theoretic degree of freedom with
the integration constant (−2M0) identified with the conserved Dirac-constrained canonical momentum
conjugated to the “pure gauge” “magnetic” component of Aµνλ. For a general canonical Hamiltonian
treatment of Lagrangian action with one or more non-Riemannian volume-elements, we refer to [155].

A crucial property of the model (10) is the existence of a hidden nonlinear Noether symmetry
revealed in [152]. Indeed, both Eqs.(14)-(15) can be equivalently rewritten in the following
current-conservation law form:

∇µ Jµ = 0 , Jµ ≡
(

1 +
Φ0(A)√−g

)√
2Xgµν∂ν ϕ . (17)

The covariantly conserved current Jµ (17) is the Noether current corresponding to the invariance
(modulo total derivative) of the action (10) w.r.t following hidden nonlinear symmetry transformations:

δε ϕ = ε
√

X , δεgµν = 0 , δεAµ = −ε
1

2
√

X
gµν∂ν ϕ

(
Φ0(A) +

√
−g
)

, (18)

with Aµ =
(
A0 ≡ 1

3! ε
mkl Amkl ,Ai ≡ − 1

2 εikl A0kl
)

– “dual” components of the auxiliary gauge field
Aµνλ (11).

Remark. We notice that the existence of the hidden nonlinear symmetry (18) of the action (10)
does not depend on the specific form of the scalar field potential V(ϕ).

The next important step is to rewrite Tµν (13) and Jµ (17) in the relativistic hydrodynamical form
(again taking into account (15)):

Tµν = ρ0uµuν − 2M0gµν , Jµ = ρ0uµ . (19)

Here the integration constant M0 appears as dynamically generated cosmological constant and:

ρ0 ≡
(

1 +
Φ0(A)√−g

)
2X, uµ ≡ −

∂µ ϕ
√

2X
(note uµuµ = −1 ) . (20)
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We now find that the covariant conservation laws for the energy-momentum tensor (19) ∇µTµν = 0
and the J-current (17) acquire the form:

∇µ
(
ρ0uµuν

)
= 0 , ∇µ

(
ρ0uµ

)
= 0 . (21)

Eqs.(21) imply in turn the geodesic equation for the “fluid” 4-velocity uµ:

uµ∇µuν = 0 . (22)

Therefore, comparing (19) with the standard expression for a perfect fluid stress-energy tensor
Tµν =

(
ρ + p)uµuν + pgµν, we see that Tµν (19) consists of two additive parts which have the following

interpretation according to the standard Λ-CDM model [156–163] (using notations p = pDM + pDE

and ρ = ρDM + ρDE):

• Dynamically generated dark energy part given by the second cosmological constant term in Tµν (19)
due to (15), where pDE = −2M , ρDE = 2M;

• Dynamically generated dark matter part given by the first term in (19), where pDM = 0 , ρDM = ρ0

with ρ0 as in (20), which in fact according to (21) and (22) describes a dust fluid with fluid density
ρ0 flowing along geodesics. Thus, we will call the ϕ scalar field by the alias “darkon”.

The conservation laws (21) due to the hidden nonlinear Noether symmetry (18) imply that in the
model (10) there is no interaction between dark energy and dark matter – they are separately conserved.

3. Inflation and Unified Dark Energy and Dark Matter

Now we will extend the simple model (10) of unified dark energy and dark matter by introducing
another metric-independent non-Riemannian volume-element:

Φ1(B) =
1
3!

εµνκλ∂µBνκλ (23)

inside the gravity (Einstein-Hilbert) part of the action (using again units with 16πGNewton = 1):

S =
∫

d4x
{

Φ1(B)
[

R(g)− 2Λ0
Φ1(B)√−g

]
+
(√
−g + Φ0(A)

)[
−1

2
gµν∂µ ϕ∂ν ϕ−V(ϕ)

]}
. (24)

Here Λ0 is a dimensionful parameter to be identified later on as energy scale of the inflationary
universe’ epoch.

The specific form of the action (24) may be justified by the requirement about global Weyl-scale
invariance under the transformations:

gµν → λgµν , Aµνκ → λ2 Aµνκ , Bµνκ → λBµνκ , ϕ→ λ−
1
2 ϕ , (25)

and provided we choose V(ϕ) = ϕ4. Concerning global Weyl-scale invariance let us note that it played
an important role already since the first original papers on the non-canonical volume-form formalism
[146]. In particular, models with spontaneously broken dilatation symmetry have been constructed
along these lines, which are free of the Fifth Force Problem [147].

The equations of motion of the action (24) w.r.t. ϕ and Aµνλ are the same as in (14)-(15), therefore
once again (24) is invariant under the hidden nonlinear Noether symmetry (18) with the associated
Noether conserved current (17), which we rewrite here for later convenience taking into account (15):

∇µ Jµ = 0 , Jµ =
(
1 + χ0

)√
2
(
V(ϕ)− 2M0

)
gµν∂ν ϕ , χ0 ≡

Φ0(A)√−g
. (26)
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On the other hand, the equations of motion w.r.t. gµν and Bµνλ now read:

Rµν(g) +
1

χ1

(
gµν�χ1 −∇µ∇νχ1

)
−Λ0χ1gµν =

1
2χ1

Tµν , (27)

R(g)− 4Λ0χ1 = −M1 , χ1 ≡
Φ1(B)√−g

, (28)

where Tµν is the same energy-momentum tensor as in (13) or (19), which taking into account (15) and
using short-hand notation χ0 in (26)) reads Tµν = −2M0gµν +

(
1+ χ0

)
∂µ ϕ∂ν ϕ , and M1 is another free

integration constant similar to M0 in (15). Taking trace of (27) together with (28) imply a dynamical
equation for χ1 (χ0 and χ1 as defined in (26) and (28), respectively):

�χ1 −
1
3

M1χ1 −
1
6

T = 0 , T ≡ gµνTµν = −8M0 − 2(1 + χ0)
(
V(ϕ)− 2M0

)
, (29)

The passage to the Einstein-frame is accomplished via the conformal transformation:

gµν −→ ḡµν = χ1gµν , (30)

on Eqs.(27) and (29), and upon using the known formulae for conformal transformations of Ricci
curvature tensor and covariant Dalambertian (see e.g. [164]; bars indicate magnitudes in the ḡµν-frame):

Rµν(g) = Rµν(ḡ)− 3
ḡµν

χ1
ḡκλ∂κχ1/2

1 ∂λχ1/2
1 + χ−1/2

1
(
∇̄µ∇̄νχ1/2

1 + ḡµν�̄χ1/2
1
)

, (31)

�χ1 = χ1

(
�̄χ1 − 2ḡµν ∂µχ1/2

1 ∂νχ1

χ1/2
1

)
. (32)

In the process we introduce the field redefinition χ1 → u:

χ1 = exp
{ u√

3

}
, (33)

so that u appears as a canonical scalar field in the Einstein-frame transformed equations (27), (29) and
(15):

R̄µν −
1
2

ḡµνR̄ =
1
2

T̄µν ,

T̄µν = ∂µu ∂νu + ḡµν

[
−1

2
ḡκλ∂κu ∂λu−Ueff(u)

]
+ e−u/

√
3(1 + χ0)∂µ ϕ ∂ν ϕ , (34)

�̄u− ∂Ueff(u)
∂u

+ e−2u/
√

3(1 + χ0)
(
V(ϕ)− 2M0

)
= 0 , (35)

1
2

ḡµν∂µ ϕ∂ν ϕ + e−u/
√

3(V(ϕ)− 2M0
)
= 0 , (36)

and most importantly u acquires a non-trivial dynamically denerated potential:

Ueff(u) = 2Λ0 −M1e−u/
√

3 + 2M0e−2u/
√

3 (37)

due to the appearance of the free integration constants from the equations of motion of the
original-frame non-Riemannian spacetime volume-elements. The hidden nonlinear Noether symmetry
current conservation (17), equivalent to the ϕ-equation of motion, becomes in the Einstein-frame:

∇̄µ J̄µ = 0 , J̄µ = (1 + χ0)e−u/
√

3
√

V(ϕ)− 2M0 ḡµν∂ν ϕ . (38)
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Thus, the Einstein-frame Lagrangian action producing the Einstein-frame equations of motion
(34)-(38) reads:

SEF =
∫

d4x
√
−ḡ
[

R̄− 1
2

ḡµν∂µu ∂νu−Ueff(u)
]

+
∫

d4x
√
−ḡ
(
1 + χ0

)
e−u/

√
3
[
−1

2
ḡµν∂µ ϕ ∂ν ϕ− e−u/

√
3(V(ϕ)− 2M0

)]
, (39)

with Ueff(u) as in (37) and where now χ0 (from (26)) becomes a simple Lagrange multiplier.
The upper line in SEF (39) represents an inflationary Lagrangian action with dynamically generated

inflationary potential Ueff(u) (37) obtained in [107] from a pure gravity initial action (without any
matter fields) in terms of non-Riemannian volume-elements:

S0 =
∫

d4x
{

Φ1(B)
[

R(g)− 2Λ0Φ1(B)/
√
−g
]
+
(
Φ0(A)

)2/
√
−g
}

(40)

which is graphically depicted on Fig.1, is a generalization of the classic Starobinsky inflationary
potential [16]. In fact, the latter is a special case of (37) for the particular values of the parameters:
Λ0 = M0 = 1

4 M1.

Inflation - Slow roll

Dark Energy

0 5 10
0.0

0.5

1.0

1.5

2.0

2.5

u

U
ef
f(
10

-
8
M
p
4
)

Figure 1. Shape of the effective potential Ueff(u) in the Einstein-frame (37). The physical unit for u is
MPl/

√
2.

Ueff(u) (37) possesses two main features relevant for cosmological applications:

• (i) Ueff(u) (37) has an almost flat region for large positive u: Ueff(u) ' 2Λ0 for large u. This
almost flat region correspond to “early” universe’ inflationary evolution with energy scale 2Λ0 as
it will be evident from the autonomous dynamical system analysis of the cosmological dynamics
in Section 4;

• (ii) Ueff(u) (37) has has a stable minimum for a small finite value u = u∗:
∂Ueff

∂u = 0 for u ≡ u∗,
where:

exp
(
− u∗√

3

)
=

M1

4M0
,

∂2Ueff

∂u2

∣∣∣∣
u=u∗

=
M2

1
12M0

> 0 . (41)

• (iii) As it will be explicitly exhibited in the dynamical system analysis in Section 4, the region of
u around the stable minimum at u = u∗ (41) correspond to late-time de Sitter expansion of the
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universe with slightly varied late-time Hubble parameter (dark energy dominated epoch), where
the minimum value of the potential:

Ueff(u∗) = 2Λ0 −
M2

1
8M0

≡ 2ΛDE (42)

is the asymptotic value at t→ ∞ of the dynamical dark energy density [165,166].

The lower line in SEF (39) represents the interaction between the dynamical inflaton field u and
the “darkon” field ϕ, in other words here we have unification of inflation, dark energy and dark-matter.
This is reflected in the structure of the Einstein-frame energy-momentum tensor T̄µν (34) – the first two
terms being the stress-energy tensor of u and the last term being the “darkon” stress-energy tensor
coupled to u.

4. Cosmological Implications

Let us now consider reduction of the Einstein-frame action (39) to the
Friedmann-Lemaitre-Robertson-Walker (FLRW) framework with metric ds2 = −N2dt2 + a(t)2d~x2,
where u = u(t) and ϕ = ϕ(t):

SFLRW =
∫

d4x
{
−6

a
.
a2

N
+ Na3

[1
2

.
u2

N2 + M1e−u/
√

3 − 2M0e−2u/
√

3 − 2Λ0

]
+(1 + χ0)e−u/

√
3
[1

2

.
ϕ

2

N2 − e−u/
√

3(V(ϕ)− 2M0
)]}

. (43)

The equations of motion w.r.t. χ0 and ϕ from (43) are equivalent to the FLRW reduction of the
dynamical constraint (36) and of the Noether current conservation (38), respectively:

.
ϕ

2
= 2e−u/

√
3(V(ϕ)− 2M0

)
,

d
dt

[
a3(1 + χ0)e−u/

√
3
√

V(ϕ)− 2M0
.
ϕ
]
= 0 , (44)

which imply the relation:

(1 + χ0)e−u/
√

3(V(ϕ)− 2M0
)
=

c0

a3 eu/2
√

3 , (45)

with c0 a free integration constant. Taking into account (45), the FLRW reduction of the Einstein-frame
energy-momentum tensor (34) becomes:

T̄00 ≡ ρ , T̄ij ≡ a2δij p , T̄0i = 0 , (46)

ρ =
1
2

.
u2

+Ueff(u) + 2
c0

a3 e−u/2
√

3 , p =
1
2

.
u2 −Ueff(u) . (47)

Relations (47) explicitly show that the last term in ρ:

ρDM ≡ 2
c0

a3 e−u/2
√

3 (48)

represents the “dust” dark matter part of the total energy denisty – it is “dust” because of absence ot
corresponding contribution for the pressure p in (47).

The equation of motion from (43) w.r.t. u is (H =
.
a /a being the Hubble parameter):

..
u +3H

.
u +

∂Ueff
∂u
− 1√

3
c0

a3 e−u/2
√

3 = 0 (49)
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and, finally, the two Friedmann equations (varying (43) w.r.t lapse N and a) read:

6H2 =
1
2

.
u2

+Ueff(u) + 2
c0

a3 e−u/2
√

3 , (50)

.
H= −1

4

( .
u2

+2
c0

a3 e−u/2
√

3
)

. (51)

Remark. We observe that due to the hidden nonlinear Noether symmetry current conservation
(45), the FLRW dynamics given by (49)-(51) does not depend on the explicit form the “darkon” part of
the FLRW action (43) – the only trace of the “darkon” is embodied in the integration constant c0.

It is instructive to analyze the system FLRW equations (49)-(51) as an automous dynamical system.
To this end it is useful to rewrite the system (49)-(51) in terms of a set of dimensionless coordinates
(following the approach in [167]):

x :=
u̇√
12H

, y :=

√
Ueff(u)− 2ΛDE√

6H
, z :=

√
ΛDE + ρDM√

3H
, (52)

with LDE as in (42) and ρDM as in (48). In these coordinates the system defines a closed orbit:

x2 + y2 + z2 = 1 , (53)

which is equivalent to the first Friedmann equation (50). Then Eqs.(49) and (51) can be represented as
a 3-dimensional autonomous dynamical system for the (x, y, H variables (cf. (52)):

x′ =
3
2

x
[

x2 − 1− y2 − ΛDE

3H2

]
+

1
2

(
1− x2 − y2 − ΛDE

3H2

)
−2y

H

√
M0

3

( M1

4M0
−

√
3

M0
Hy
)

, (54)

y′ =
2x
H

√
M0

3

( M1

4M0
−

√
3

M0
Hy
)
+

3
2

y
[
1 + x2 − y2 − ΛDE

3H2

]
, (55)

H′ = −3
2

H
[
1 + x2 − y2 − ΛDE

3H2

]
, (56)

where the primes indicate derivatives w.r.t. number of e-folds N = log(a) (meaning d
dN = 1

H
d
dt ).

The dynamical system (54)-(56) possesses two critical points:

• (A) Stable critical point:

x∗ = 0 , y∗ = 0 , H∗ =

√
ΛDE

3
, (57)

where all three eigenvalues of the stability matrix are negative or with negative real parts

(λ1 = −3 , λ2,3 = 1
2

[
−3 +

√
9− M2

1
M0ΛDE

]
). The stable critical point (57) corresponds to the

late-time asymptotics of the universe’ evolution where according to the definitions (52) u(t)→ u∗
– the stable minimum of the effective potential Ueff(u) (37), so that Ueff(u) → 2ΛDE, the dark
matter energy density (48) ρDM → 0, and

.
H→ 0 accordin to (56), i.e., late-time accelerated

expansion with H∗ =
√

ΛDE
3 .

• (B) Unstable critical point:

x∗∗ = 0 , y∗∗ =

√
1− ΛDE

Λ0
=

M1

4
√

M0Λ0
, H∗∗ =

√
Λ0

3
, (58)

where one of the three eigenvalues of the stability matrix is zero (λ1 = 0 , λ2 = −3 , λ3 =

−3(1−ΛDE/Λ0) = −
3M2

1
16M0Λ0

). According to the definitions (52), in the vicinity of the unstable
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critical point (58) u(t) is very large positive (u → ∞), so that Ueff(u) ' 2Λ0, ρDM is vanishing
ρDM ≈ 0, and we have there a slow-roll inflationary evolution with inflationary scale Λ0 where
the standard slow-roll parameters are very small:

ε = −
.

H
H2 ≈

 ∂Ueff
∂u −

1
2
√

3
ρDM

Ueff + ρDM

2

+
3
2

ρDM

Ueff + ρDM
, (59)

η = −
.

H
H2 −

..
H

2H
.

H
≈ −2

∂2Ueff
∂u2 + 1

12 ρDM

Ueff + ρDM
+ O(ρDM) . (60)

5. Numerical Solutions

Going back to the system of equations (49)-(51) we can use (50) to replace the term ρDM ≡
2 c0

a3 e−u/2
√

3 in (49) and (51) so that we will obtain a closed system of two coupled nonlinear diffential
equations for

(
u(t), H(t)

)
of second and first order, respectively:

..
u +3H

.
u +

∂Ueff
∂u
− 1

2
√

3

[
6H2 − 1

2
.
u2 −Ueff(u)

]
= 0 , (61)

.
H= −1

4

[
6H2 +

1
2

.
u2 −Ueff(u)

]
, (62)

where Ueff(u) is given by (37): Ueff(u) = 2Λ0 −M1e−u/
√

3 + 2M0e−2u/
√

3.
Below we present several plots qualitatively illustrating the evolutionary behavior of the

numerical solution of the system (61)-(62) with initial conditions conforming to the unstable critical
point B (58):

.
u (0) = 0 , H(0) =

√
Λ0/3 and u(0) – some large inital value. As a numerical example,

for the purpose of graphical illustration, we will take the following numerical values of the paramaters
(the physical units would be 10−9M4

Pl):

Λ0 = 50 , M1 = 20 , M0 = 0.501 −→ ΛDE = 0.1 (63)

according to (42) (in reality ΛDE is much smaller than 1/500 part of Λ0: Λ0 ∼ 10−8M4
Pl [168,169] and

ΛDE ∼ 10−122M4
Pl , cf. [170]).

On Fig.2 below the plot represents the overall evolution of u(t), whereas on Fig.3 are the plots for
the slow-roll parameters ε = −

.
H
H2 and η = −

.
H
H2 −

..
H

2H
.

H
clearly indicating the end of inflation where

their sharp grow-up starts.

0 100 200 300 400 500 600 700
-5

0

5

10

t [10-35sec]

u[
t]

Figure 2. Numerical shape of the evolution of u(t). The physical unit for u is MPl/
√

2.
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Figure 3. Slow-roll parameters ε and η before and around end of inflation. When ε = 1 the inflation
ends.

Fig.4 represents the plot of the evolution of the Hubble parameter H(t) with a clear indication of

the two (quasi-)de Sitter epochs – during early-times inflation with much higher value of H '
√

Λ0
3 ,

and in late-times with much smaller value of H '
√

ΛDE
3 .

570 580 590 600 610
0.0

0.2

0.4

0.6

0.8

1.0

1.2

t [10-35sec]

H
[t]
/H

**

Figure 4. Numerical shape of the evolution of H(t). Here H∗∗ ≡
√

Λ0/3 as in (58).

The plots on Fig.5 depict the oscillations of u(t) and
.
u (t) occuring after the end of inflation.

Fig.6 contains the plots of the evolution of w = p/ρ – the parameter of the equation of state with
a clear indication of a short time epoch of matter domination after end of inflation.

To obtain plausible values for the observables – the scalar power spectral index ns and the tensor
to scalar ratio r [53,105,171]. we need the functional dependence of the slow-roll parameters ε and η

w.r.t. N = log(a) – number of e-folds. More specifically, in N f is the number of e-folds at the end of
inflation defined as ε(N f ) ≈ 1, then we need the values ε(Ni) and η(Ni) at Ni – e-folds at the start of
inflation, where it is assumed that N f −Ni ∼ 60. Then, according to [53,105]:

r ≈ 16ε(Ni) , ns ≈ 1− 6ε(Ni) + 2η(Ni), (64)

where the corresponding slow roll parameter read:

ε(Ni) = −
H′(Ni)

H(Ni)
, η(Ni) = −

H′(Ni)

H(Ni)
− H′′(Ni)

2H(Ni)H′(Ni)
, (65)

and where H = H(N ) is the functional dependence of Hubble parameter w.r.t. the number of e-folds.
To this end we employ numerical simulation of the autonomous dynamical system equations (54)-(56).
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Figure 5. On the left panel – blown-up portion of the plot on Fig.2 around and after end of inflation
depicting the oscillations of u(t) after end of inflation. On the right panel – oscillations of

.
u (t) after

end of inflation.
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Figure 6. Evolution of w parameter of the equation of state with sharp growth above w ≈ −1 for a
short time interval after end of inflation – matter domination.

From the inflationary scenario we know that the observed value of the inflationary scale Λ0 ∼
10−8M4

Pl is way larger than the current value (∼ 10−122M4
Pl) of the cosmological constant ΛDE (42). So,

as in the numerical example above for the numerical solution of the system for u(t), H(t) (61)-(62), we
will take again the values for the parameters according to (63) meaning that we set the initial condition

for the Hubble parameter to be according to (58) Hinitial =
√

Λ0
3 =

√
50
3 . With those numerical values

we obtain for the observables (64) to be:

r ≈ 0.003683 , ns ≈ 0.9638 , (66)

which are well inside the last PLANCK observed constraints [131]:

0.95 < ns < 0.97 , r < 0.064 . (67)

In order to see the pattern of the general behavior depending on the initial conditions, we employ
here Monte Carlo simulation with 104 samples for the initial conditions using a normal distribution:
Λ0 = 50± 10, M1 = 20± 10, while the error bar is taken to be 1 σ.

Fig.7 shows how different values of initial conditions yield different number of e-folds until end
of inflation (where ε = 1) and, accordingly, different values for the observables r and ns, whereas
Fig.8 depicts the corresponding relation between r and ns. Nevertheless, all the values of the latter fall
within the constraint (67).
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Figure 7. The scalar to tensor ratio r and the scalar spectral index ns vs. the number of e-folds for
different values of the initial conditions. The sampling of the latter is done with a normal distribution
Λ0 = 50± 10, M1 = 20± 10.

6. Conclusions and Outlook

In the present paper, starting from the basic first principle of Lagrangian field-theoretic actions
combined with a non-canonical modification of gravity via employing non-Riemannian spacetime
volume forms as alternatives to the standard Riemannian one given by

√−g, we have constructed a
unified model of dynamically generated inflation with dark energy and dark matter coupled among
themselves. Upon passage to the physical Einstein frame our model captures the main properties of
the slow-roll inflationary epoch in early times, short period of matter domination after end of inflation
and late-time epoch of de Sitter expansion all driven by a dynamically created scalar inflaton field. The
numerical results for the observables (scalar power spectral index and tensor to scalar ratio) conform
to the 2018 PLANCK constraints.

In the present model dark matter in the form of a dust-like fluid is created already in the early
universe inflationary epoch without a significant impact on the inflationary dynamics. After end of
inflation the dust-like dark matter apart from a short period of matter domination still does not exert a
sufficient impact, which means that one has to further extend the present formulation in order to take
properly into account the full dark matter contribution to the evolution.

One subject that has to be addressed is the “reheating of the universe”, since of course we need
temperature in the early universe to account for processes like Bing Bang Nucleosynthesis. There are
many way to achieve this, due to the oscillating nature of inflaton solutions near the minimum of
the inflaton potential, which leads in general to particle creation. For example, one possible way to
complement the modified gravity-scalar field model (24) in order to incorporate the effect of radiation
after end of inflation is to include a coupling to the “topological” density of a electromagnetic field Aµ

with field strength Fµν = ∂µAν − ∂νAµ in the following way:

S̃ =
∫

d4x
{

Φ1(B)
[

R(g)− 2Λ0
Φ1(B)√−g

]
−
√−g
Φ1(B)

εµνκλFµνFκλ

+
(√
−g + Φ0(A)

)[
−1

2
gµν∂µ ϕ∂ν ϕ−V(ϕ)

]}
. (68)
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Figure 8. The relation between the scalar to tensor ratio r and the scalar spectral index ns via sampled
initial conditions with a normal distribution Λ0 = 50± 10, M1 = 20± 10. All of the sampled values
fall well inside the Planck data constraint (67).

Upon passage to the Einstein-frame via the conformal transformation (30) the action (68) becomes (cf.
(39)):

S̃EF =
∫

d4x
√
−ḡ
[

R̄− 1
2

ḡµν∂µu ∂νu−Ueff(u)− e−u/
√

3εµνκλFµνFκλ

]
+
∫

d4x
√
−ḡ
(
1 + χ0

)
e−u/

√
3
[
−1

2
ḡµν∂µ ϕ ∂ν ϕ− e−u/

√
3(V(ϕ)− 2M0

)]
. (69)

The coupling term e−u/
√

3εµνκλFµνFκλ is suppressed in the inflationary stage where the derivative of u
is small (because of the slow roll regime), whereas after end of inflation it may produce pairs of photons
out of u due to the appreciable time-derivative of u resulting from the oscillations near the minimum
of the effective potential. Of course, many other possible interaction terms can be introduced.

Finally, in the reheating stage many particles can be produced, some of them could be no
standard-model particles. If those are stable, they could provide additional “dark matter” apart
from the “darkon” dust-like dark matter discussed here. Of course, if all created particles beyond
those of the standard models turn out to be unstable, then we will be left with the “darkon” as the
unique source of dark matter.
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