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Abstract: Optical conductivity of an interacting polaron gas is calculated within an extended random 
phase approximation which takes into account mixing of collective excitations of the electron gas 
with LO phonons. This mixing is important for the optical response of strongly polar crystals where 
the static dielectric constant is rather high, as in the case of strontium titanate. The present calculation 
sheds light on unexplained features of experimentally observed optical conductivity spectra in 
n-doped SrTiO3. These features appear to be due to dynamic screening of the electron-electron 
interaction by polar optical phonons and hence do not require additional mechanisms for their 
explanation.
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1. Introduction

Polaron manifestations in the optical response of polar crystals, such as complex oxides and
high-Tc superconductors are the subject of intense investigations [1–7] (for a review, see also [8,9]).
Several features in the infrared optical absorption spectra of complex oxides have been associated
with large polarons [10] or with a mixture of large and small polarons [11]. The analysis in those
papers was performed using a single-polaron model, so that the concentration dependence of the
optical-absorption spectra could not properly take into account many-polaron effects.

The many-body theory of the optical absorption of a gas of interacting polarons [12,13] allows one
to study the density dependence of the optical-absorption spectra. The calculation [12] was performed
in the single-branch approximation for LO phonons. In Ref. [13], the optical conductivity of n-doped
SrTiO3 was calculated accounting for the electron-phonon interaction with multiple LO-phonon
branches. The calculations of the optical conductivity of a weak-coupling polaron gas [12,13] compare
fairly well with the experimental data [1,2] and therefore confirm the contribution of large polarons
in the optical response. Strontium titanate represents an especially interesting case due to its unique
features, particularly a high static dielectric constant at low temperatures and essentially nonparabolic
shape of the conduction band which consists of three subbands. This requires a treatment of the optical
conductivity beyond the frequently used lowest-order perturbation approximation.

The first-principle methods are powerful for the theoretical study of both equilibrium and response
properties of polarons. At present, ab initio calculations of the polaron band energies are developed, for
example, in Refs. [14–18]. In the present work, we consider a complementary semianalytic approach,
which has its own advantages. First, it is much less time- and memory-consuming for computation.
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Second, more important, it allows sometimes a clear physical interpretation of features of obtained
spectra, as they follow from a used model.

The present work is focused on the many-polaron optical response in strongly polar crystals
like SrTiO3. The strong polarity means that the ratio of the static and high-frequency dielectric
constant is large: ε0/ε∞ � 1. This does not necessarily lead to a high electron-phonon coupling
constant: in strontium titanate the effective coupling constant α ≈ 2 as determined in [13]. Even
in this moderate-coupling case, electron collective excitations (attributed to plasmons only in the
long-wavelength limit) are substantially mixed with LO phonons [19] and therefore can result in a
non-trivial spectrum of the optical conductivity. Therefore, in this paper, we determine the optical
conductivity of a many polaron gas taking into account mixing of phonons and electron collective
excitations in the total dielectric function of the electron-phonon system, and taking also into account
the multi-subband structure of the conductivity band. The method is applied to n-doped strontium
titanate.

2. Many-polaron optical conductivity

We consider an electron-phonon system with the following Hamiltonian in the momentum
representation:

H = ∑
λ

∑
k

ελ (k) ∑
σ=±1/2

a†
k,σ,λak,σ,λ + ∑

q,j
h̄ωq,j

(
b†

q,jbq,j +
1
2

)
+ ∑

q,j
Vq,j

(
bq,j + b†

−q,j

)
∑
λ

∑
k

∑
σ=±1/2

a†
k+q,σ,λak,σ,λ, (1)

where ελ (k) is the electron energy with the momentum h̄k in the λ-th subband of the conduction band,
a†

k,σ,λ and ak,σ,λ are, respectively, creation and annihilation fermionic operators for an electron with the
spin projection σ, ωq,j is the phonon frequency for the momentum h̄q and the phonon branch j, b†

q,j
and bq,j are, respectively, phonon creation and annihilation operators. The electron-phonon interaction
amplitudes Vq,j are used here neglecting their possible dependence on the electron momentum and
the subband number. This dependence can only be non-negligible when high-energy electrons bring
an important contribution to the many-polaron response, which is not believed to be the case for
strontium titanate.

For the many-polaron optical response, we start from the Kubo formula,

σxx (Ω) =
1

Vz

[
1
h̄

∫ ∞

0
dt eizt 〈[Jx (t) , Jx (0)]〉+ iZ

]
(2)(

β =
1

kBT
, z = Ω + iδ, δ→ +0

)
where V is the system volume, e is the electronic charge, and the constant Z is determined by the
current-current correlator:

Z =
1
h̄

∫ h̄β

0
dτ 〈Jx (τ) Jx (0)〉 , (3)

and Jx is the current operator determined by:

Jx = −evx = − e
h̄ ∑

λ
∑
k

∑
σ=±1/2

∂ελ (k)
∂kx

a†
k,σ,λak,σ,λ. (4)

The constant Z can be calculated explicitly. Substituting (4) to (3) and applying commutation relations
for second quantization operators, we arrive at the result,

Z =
e2

h̄2 ∑
λ

∑
k

∑
σ

∂2ελ (k)
∂k2

x
fk,σ,λ (5)
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with the distribution function of the electrons, 

fk,σ =
〈

a†
k,σ,λak,σ,λ

〉
. (6)

Next, we perform twice the integration by parts in the integral over time in (2) and introduce the force
operator,

∂Jx (t)
∂t

≡ eFx (t) . (7)

which is explicitly given by the expression:

Fx =
i
h̄ ∑

q,j
Vq,j

(
bq,j + b†

−q,j

)
B̂q, (8)

with

B̂q ≡
1
h̄ ∑

λ
∑
k

∑
σ

(
∂ελ (k + q)

∂kx
− ∂ελ (k)

∂kx

)
a†

k,σ,λak,σ,λ (9)

After these two integrations by parts, the Kubo formula is equivalently rewritten through the force-force
correlation function,

σxx (Ω) =
e2

h̄V (Ω + iδ)3

∫ ∞

0
dt e−δt

(
eiΩt − 1

)
〈[Fx (t) ,Fx (0)]〉+

i
V
Z

Ω + iδ
. (10)

Next, we consider the weak-coupling regime. The weak-coupling optical conductivity can be
expressed in the memory-function form, as, e. g., in Refs. [20,21]:

σxx (Ω) =
i
V

Z
Ω + iδ− χ (Ω) / (Ω + iδ)

. (11)

where the memory function χ (Ω) is:

χ (Ω) = − i
Z

e2

h̄

∫ ∞

0
dt e−δt

(
eiΩt − 1

)
〈[Fx (t) ,Fx (0)]〉0 . (12)

Here, the averaging 〈. . .〉0 is performed with the Hamiltonian of interacting electrons neglecting the
electron-phonon interaction.

We can transform the memory function in an explicitly tractable expression substituting (8) and
(9) in (12). Thus we obtain the resulting memory function:

χ (Ω) =
2e2

h̄3Z ∑
q,j

∣∣Vq,j
∣∣2 ∫ ∞

0
dt e−δt

(
eiΩt − 1

)
Im
[

T∗
(
ωq,j, t

) 〈
B̂q (t) B̂†

q

〉
0

]
. (13)

where T
(
ωq,j, t

)
is the phonon Green’s function:

T
(
ωq,j, t

)
=
(
1 + n̄q,j

)
eiωq,jt + n̄q,je

−iωq,jt. (14)

and n̄q,j is the Bose distribution of phonons:

n̄q,j =
1

eβh̄ωq,j − 1
. (15)

The f -sum rule for the optical conductivity reads:∫ ∞

−∞
Re σxx (Ω) dΩ =

π

2
Z
V

. (16)
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In the general case the constant Z can be different from the value e2 Ne
mb

obtained in Ref. [22], which
follows from (5) for a quadratic dispersion.

3. Semianalytic approximations

The optical conductivity of an interacting polaron gas is calculated here within the extended
random phase approximation (RPA), as described below. The memory function χ (Ω) can be expressed
through the polarization function of the electron gas for sufficiently small q. Thus the RPA can be
applied under the assumption that the long-wavelength phonons bring the dominant contribution to
the polaron optical response. In this approximation, the band energy ελ (k) which enters the operator
B̂q is expanded in powers of the momentum as ελ (k) = h̄2k2/2mb,λ + O (k)4. In SrTiO3, the band
mass obtained within the tight-binding analytic fit as described in Appendix A appears isotropic with
the same value mb ≈ 0.72me (where me is the electron mass in vacuum) for all three subbands of the
conduction band. Thus the memory function for the optical conductivity is approximated by the
expression:

χ (Ω) =
2e2

3h̄m2
bZ

∑
q,j

∣∣Vq,j
∣∣2 q2

∫ ∞

0
dt e−δt

(
eiΩt − 1

)
Im
[

T∗
(
ωq,j, t

) 〈
ρq (t) ρ†

q

〉
0

]
, (17)

where ρq = ∑k,σ,λ a†
k+q,σ,λak,σ,λ is the Fourier component of the electron density. Note that below,

when calculating the density-density correlation function, we do not perform this expansion.
Here, we use the Fröhlich interaction amplitudes with the partial coupling constants αj for the

j-th phonon branch:

Vq,j =
h̄ωL,j

q

(
4παj

V

)1/2
(

h̄
2mbωL,j

)1/4

. (18)

In terms of Green’s functions, the memory function (17) takes the form:

χ (Ω) = ∑
j

αj h̄ω2
L,je

2

6π2m2
bZ

(
h̄

2mbωL,j

)1/2

×
∫

dq
{
G
(
q, Ω−ωL,j

)
+ G∗

(
q,−Ω−ωL,j

)
− G

(
q,−ωL,j

)
− G∗

(
q,−ωL,j

)
+

1

eβh̄ωL,j − 1

[
GR (q, Ω−ωL,j

)
+
(

GR (q,−Ω−ωL,j
))∗

−GR (q,−ωL,j
)
−
(

GR (q,−ωL,j
))∗]}

. (19)

with

G (q, Ω) ≡ −i
∫ ∞

0
eiΩt 〈ρq (t) ρ−q (0)

〉
0 dt, (20)

GR (q, Ω) ≡ −i
∫ ∞

0
eiΩt 〈[ρq (t) , ρ−q (0)

]〉
0 dt. (21)

In Ref. [13], the Green’s functions were calculated within the RPA for an electron gas. Here, we apply
the RPA extended for an interacting electron-phonon system, which leads to a formula structurally
similar to that obtained within RPA, but with a different (momentum and frequency dependent)
electron-electron interaction matrix element:

4πe2

ε∞q2 →
4πe2

εL (q, ω) q2 , (22)
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with the dielectric function of the lattice εL (q, ω), which describes the dynamic lattice polarization. In
the present calculation, we use the model of independent oscillators [23,24] which correspond to the
LO and TO phonon modes:

εL (q, Ω) = ε∞

n

∏
j=1

(
Ω2 −ω2

L,j (q)

Ω2 −ω2
T,j (q)

)
. (23)

The extended RPA thus takes into account the dynamic screening of the Coulomb electron-electron
interaction by the lattice polarization. The resulting retarded density-density Green’s function is:

GR (q, Ω) =
h̄VP(1) (q, Ω)

1− 4πe2

εL(q,Ω)q2 P(1) (q, Ω)
, (24)

where P(1) (q, Ω) is the Lindhard polarization function,

P(1) (q, Ω) =
1
V ∑

k,σ,λ

fF (ελ (k + q)− µλ)− fF (ελ (k)− µλ)

h̄Ω + ελ (k + q)− ελ (k) + i0+
(25)

with the Fermi distribution function fF (ε):

fF (ε) =
1

eβ(ε−µ) + 1
. (26)

The function G (q, Ω) is obtained from GR (q, Ω) using the analytic identity,(
1− e−βh̄Ω

)
ImG (q, Ω) = Im GR (q, Ω) , (27)

and then the Kramers-Kronig dispersion relation for ReG (q, Ω).
For a comparison with experiment, the Green’s functions are calculated here accounting for

damping within the Mermin-Lindhard approach [25–28] (where the damping is introduced in
such a way to conserve the local electron number). This leads to the modification of the retarded
density-density Green’s function as follows:

GR (q, Ω)→ GR
M (q, Ω, γ) = GR (q, Ω + iγ)

Ω + iγ

Ω + iγ GR(q,Ω+iγ)
GR(q,0)

. (28)

where γ is the phenomenological damping factor. The values of γ found in the literature are of the
order of the Fermi energy of electrons [29,30]. Here, γ is a fitting parameter of the same order of
magnitude (the only fitting parameter which is in fact used here). The calculation is performed with
the values γ = 1.2εF,1 for T = 7 K and γ = 2εF,1 for T = 300 K. It should be noted that the results
appear to be only slightly sensitive to chosen values of γ.

The calculation of the Green’s functions for non-parabolic bands requires knowledge of overlap
integrals [31] for the Coulomb and electron-phonon interactions, which is not yet reliably known and
needs a microscopic calculation. In order to simplify the computation keeping main features of the
non-parabolic band dispersion, we perform two approximations.

First, we apply the density-of-states approach already successfully used in Ref. [32]. The
approximation consists in the replacement of the true band energy ελ (k) by the model isotropic
band energy ελ (k) which provides the same density of states as that for the true band energy ελ (k). The
density of states νλ (E) in the λ-th subband of the conductivity band is determined using the carrier
density:

nλ =
1

4π3

∫
dk f (ελ (k)− µ) =

∫ ελ,max

ελ,min

f (E− µλ) νλ (E) dE. (29)
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where ελ,min = ελ (k)|k=0. The model isotropic band energy dispersion is determined through the
function

kλ (E) =
(

3π2
∫ E

ελ,min

νλ (ε) dε

)1/3

, (30)

so that ελ (k) is the inverse function to this kλ (E).
Second, ελ (k) appears to be approximately parabolic in a rather wide range of the momentum.

Therefore we assume the parabolic conduction band for the calculation of Green’s functions but with
the density-of-states effective masses mλ determined through the density of states from the condition
that the low-momentum expansion of the polarization function P(1) (q, Ω) with the dispersion ελ (k)
coincides with that for a parabolic band dispersion with the mass mλ. This gives us the expression:

mλ = 3π4nλ

(∫ ελ,max

ελ,min

βeβ(E−µ)(
eβ(E−µ) + 1

)2
k4

λ (E)
νλ (E)

dE

)−1

. (31)

In the zero-temperature limit, mλ is analytically expressed through the density of states at the Fermi
energy εF,λ:

mλ = π2 νλ (εF,λ)

kF,λ
. (32)

As mentioned above, this approximation is not a series expansion of the band energy near the band
bottom, and hence the density-of-states mass mλ does not coincide with the band effective mass mb.
An approach which involves the effective band mass and the density-of-states band mass has been
used also in Ref. [13]. Here, the density-of-states band mass is determined in a more rigorous way,
effectively accounting for the realistic band structure of a crystal, electron density and temperature, as
can be seen from (31).

4. Application to SrTiO3

The approach described above is focused mainly on crystals with a high ratio ε0/ε∞ like strontium
titanate, where it can reveal specific features related to the high polarizability. In the previous treatment
of the many-polaron optical conductivity in doped SrTiO3 [13], the pronounced peak for h̄Ω ∼ 130
meV at a relatively low temperature remains unexplained. It was suggested in [13] that it might be
provided by other (non-polaron) mechanisms, for example, the small-polaron and mixed-polaron [33]
channels for the optical response. As we show below, additional mechanisms are not necessary for the
explanation of this 130-meV feature.

The numeric results for the many-polaron optical conductivity are shown in Fig. 1. In the
computation, the following set of electron band and phonon material parameters is used. The
conduction band shape is simulated by the analytic tight-binding fit as described in Ref. [34] and here
in Appendix A. The optimal values for this analytic approximation are the diagonal matrix elements
tδ, tπ corresponding to the recent results of the microscopic calculation [35] using the GW method
[36]: tδ = 54.2 meV, tπ = 490.9 meV, and the band splitting parameters from Ref. [34] ξ = 18.8 meV,
D = 2.2 meV. The optical-phonon energies at the Brillouin zone center of SrTiO3 are taken from the
experimental data of Ref. [2], the same as described in Ref. [13]. Also the direct TO-phonon optical
response has been included in the figure in the same way as in Ref. [13]. It is represented by sharp
peaks in the low-energy part of the optical conductivity spectrum.

The calculated many-polaron optical conductivity in SrTiO3 is compared with the experimental
data of Ref. [2] for two temperatures: T = 7 K and T = 300 K and for several values of the carrier
concentration. Also the earlier calculation the optical conductivity [13] is reproduced in the figure.
As can be seen from the low-temperature results shown in the left-hand panels of the figure, the
130-meV peak and the dip at h̄Ω ∼ 200 meV (corresponding to twice the highest-energy LO phonon
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Figure 1. Many-polaron optical conductivity of n-doped SrTiO3 in the mid-infrared frequency range
for several values of the doping x and two temperatures (the parameters are indicated in the figure),
corresponding to the experimental conditions of Ref. [2]. The calculated spectra (solid curves) are
compared with the experimental data (dashed curves). Dotted curves show the results of Ref. [13].

mode ion strontium titanate) experimentally observed at the low temperature and at relatively low
concentrations are fairly well revealed in the calculated spectra of the optical conductivity.

The obtained expression (24) for the retarded density-density Green’s function gives us a
transparent explanation of the shape of the optical conductivity spectrum, which is more complicated
than in the absence of the dynamic screening. The Green’s functions enter the memory function (19)
with the arguments

(
±Ω−ωL,j

)
. Therefore the dynamically screened electron-electron interaction

matrix element (22) contains poles, in particular, at Ω = 2ωL,j (q), which result in dips of the optical
conductivity at these frequencies. The most significant contribution to the dips comes from the highest
LO phonon energy h̄ωL,3|q=0 ≈ 98 meV. This feature is visible in both the measured and calculated
optical conductivity spectra. The part of the spectrum below 2ωL,3 constitutes the aforesaid 130-meV
peak. The other part of the spectrum, above 2ωL,3, contains the “plasmon-phonon” peak provided by
the response due to undamped plasmons [12,13].

5. Conclusions

In the present work, we revisit the optical response of a polaron gas in complex polar crystals
using the random phase approximation extended for an interacting electron-phonon system. This
extension results in a modified many-polaron optical conductivity with an effective electron-electron
interaction accounting for the dynamic screening by LO phonons. For a more realistic calculation
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relevant for comparison with experiment for strontium titanate, the phonon dielectric function contains
several optical phonon modes that have been identified in SrTiO3.

A distinctive low-frequency peak of the many-polaron optical conductivity in a polar medium
appears when a crystal is highly polar, ε0/ε∞ � 1, which is realized in strontium titanate. As can
be seen from the obtained spectra of the optical conductivity, the dynamic screening leads to an
appearance of this peak which is close to the experimental “130-meV feature”, except for the highest
available density. Moreover, its width and shape asymmetry are remarkably similar to those of the
experimental peak, including even fine details such a small kink at the shoulder above the maximum.
Also the whole shape of the spectrum at least for the two lower densities is similar to the experimental
results, containing both the low-frequency peak and the “plasmon-phonon” peak due to undamped
plasmons. This similarity makes the dynamic screening mechanism for the low-frequency peak
convincing. As can be seen from the comparison of the results [13] obtained without account of
dynamic screening with those of the present work, we have achieved now much better agreement with
the experiment remaining completely within a single physical mechanism exploited for the theoretical
interpretation of the many-polaron optical response.

There is also a remarkable agreement between the present theory and the experimental results
[2] in what concerns the high-frequency dependence of the optical conductivity (in the range h̄Ω ∼
1 eV), achieved without adjustment, using reliable material parameters known from literature. This
agreement is in line with experimentally substantiated conclusion [37] that polarons in SrTiO3 are
large rather than small.

Acknowledgments: We thank D. van der Marel for the experimental data on the optical absorption of SrTiO3.
This work has been supported by the joint FWO-FWF project POLOX (Grant No. I 2460-N36).

Appendix A. Analytic model for the conductivity band in SrTiO3

For the calculation of the many-polaron response, it is useful to simulate numerical data for the
band structure by an analytic expression. Here, we treat the tight-binding expression similarly to Refs.
[2,13]. In these works, the matrix Hamiltonian is used for an analytic fit of the band dispersion law:

H = 4

 ε1 (k) 0 0
0 ε2 (k) 0
0 0 ε3 (k)

+
1
2

W, (A1)

with the energies

ε1 = tδ sin2
(

a0kx

2

)
+ tπ sin2

(
a0ky

2

)
+ tπ sin2

(
a0kz

2

)
,

ε2 = tπ sin2
(

a0kx

2

)
+ tδ sin2

(
a0ky

2

)
+ tπ sin2

(
a0kz

2

)
,

ε3 = tπ sin2
(

a0kx

2

)
+ tπ sin2

(
a0ky

2

)
+ tδ sin2

(
a0kz

2

)
, (A2)

where a0 is the lattice constant. The matrix W describes the mixing of subbands within the conductivity
band. For the cubic phase of SrTiO3, counting the band energy from the G point (i. e., dropping a
uniform shift of the whole band), W is given by:

W =

 0 ξ ξ

ξ 0 ξ

ξ ξ 0

 . (A3)
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For the tetragonal phase as reported in Ref. [34], the matrix W is:

W =

 2D ξ ξ

ξ 2D ξ

ξ ξ −4D

 . (A4)
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