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ABSTRACT 

 

Neuronal lesion or injury is a traditional approach to investigate neural circuit. Is any new neural pathway or 

new neurodegeneration related central nerve system injury? Spinal disc herniation can cause the spinal cord 

injury. However, the histological examination is still lack. It happened that a case of spinal disc herniation of 

a 10-year old dog was examined with NADPH diaphorase (N-d) histology. We did not find the N-d 

neurodegenerative aberrant in the tissue of the mid-rostral lumber segment besides the metamorphoses by the 

compression of the disc herniation. However, the severe neuropathological changes majorly occurred in the 

lumbosacral spinal cord. We found more diverse neurodegenerative alterations: the aging-related N-d body 

(ANB), megaloneurite and N-d homogeneous formazan globule in the lumbosacral spinal cord. We also found 

that a new circuit pathway (intermedial collateral pathway) showed by a megaloneurite between the lateral 

collateral pathway and the medial collateral pathway. The enormous notch caused by spinal disc herniation 

located at the mid-rostral lumber segments. The aging-related neurodegeneration occurred the specific 

lumbosacral segments. The homogeneous formazan globule was round or oval homogeneous N-d positivity 

which distributed in the gray matter and dorsal column. In the medulla oblongata, ANBs were revealed in the 

gracile nucleus, nucleus reticularis lateralis (ventrolateral spinal trigeminal nucleus) and middle of the spinal 

trigeminal nucleus.  

 

KEY WORDS: spinal disc herniation, dog, NADPH diaphorase, the aging-related NADPH diaphorase body, 

megaloneurite, homogeneous formazan globule, intermedial collateral pathway 
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INTRODUCTION 

 

Thoracolumbar intervertebral disc herniations are a common disease that cause spinal cord injury (SCI) [1-5]. 

Cerebrospinal fluid (CSF) tau protein is found to be used as a biomarker in severity of SCI in dogs with 

intervertebral disc herniation [6]. Spinal cord swelling is used as indication for prognosis in intervertebral disc 

disease of dogs[7]. An experimental model of epidural balloon compression is found to cause the spinal cord 

occlusion and severe hemorrhages as well as vacuolar formations[8]. However, the neuropathological changes 

of intervertebral disc herniations are scarcely reported. We have found a megaloneurites of NADPH diaphorase 

(N-d) in the sacral spinal cord of the aged dogs[9] and aged monkey[10]. Recently, a case of 10-year old dog 

of lumber disc herniations happened to be investigated with N-d staining. Besides the occurrence of N-d 

megaloneurites in the sacral spinal cord, we further found the aging-related N-d body (ANB) and round or oval 

homogeneous N-d positivity in the spinal cord with disc herniations. Homogeneous formazan globule was a 

new term that we will discuses in the discussion section.  

 

 

MATERIALS AND METHODS 

 

The tissue preparation 

Adult female dog (crossbreed dog Pekingese, 7.2kg) was legally obtained from Jinzhou Animal Facility for 

Department of Surgery (Jinzhou, China) and was breeding maintained in a temperature and humidity-

controlled room as well as fed libitum. This study and experimental protocol were approved by the Ethics 

Committee on the Use of Animals at Jinzhou Medical University.  

 

The animal was deeply anesthetized by intravenous injection of sodium pentobarbital (60 mg/kg body weight) 

and perfused through the aorta with physiological saline, followed by 4% paraformaldehyde in 0.1 M 

phosphate buffer (PB; pH 7.4) briefly according to the previous experiments[11]. The tissues of the brain and 

spinal cord were immersed in the same fixative as in the perfusion for 6 hrs. at 4°C, and transferred to 30% 

sucrose in 0.1 M PB (pH 7.4). Frozen sections were cut coronally at 40 µm on a cryostat. 

 

NADPH diaphorase histochemistry 

N-d enzyme histochemistry was performed in free-floating approach. In this procedure, 

Sections were incubated for 5 min in 100 mM sodium phosphate buffer(PBS, pH 7.4) followed by incubation 

in phosphate buffer (PB, pH 7.4) with 1 mM beta-NADPH, 0.5 mM NBT and 0.3% Triton X-100 at 37℃ for 

up to 3h. Sections were rinsed with PB, distilled water, dehydrated in a graded ethanol series, and were 

coverslipped with mounting medium.  

 

 

RESULTS 

 

We did not realize that the dog suffered spinal disc herniation. We found the disc herniation when we opened 

the vertebral lamina and took the spinal cord. The spinal disc herniation revealed at the L3 and S1. Before 

sacrifice of the dog, the locomotion of the dog seemed no clear dyskinesia when walk the dog. The dog could 

control excretion and defecation during outdoor walk. We presented example sections of the spinal cord related 

different segment for the spinal disc herniation as well as the medulla oblongata. The spinal disc herniation 

located in the ventral of the lumber spinal cord. The compression of the disc herniation caused a signification 

notch (Figure 1). There was an obvious notch in the ventral of the spinal cord. However, the disc herniation in 

situ did not cause noticeable neurodegeneration at the level of the notch. Figure 2 caudally located to segment 

of Figure 1. Vacuolar dendrites of the neurons in vicinity of the central gray matter.  
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In our previous study, the N-d positive thick neurite termed as megaloneurite is observed in the sacral spinal 

cord of the aged dog[9]. In the present study, megaloneurites were consistently observed in the dorsal horn of 

the caudal segments. Figure 3 showed an example of a section that giant megaloneurites occurred in one side 

dorsal horn while contrast with the same region in the other side. In the Figure 3 B, we pointed out that the 

megaloneurite (arrowhead) between the lateral collateral pathway [12] [12] and the medial collateral pathway 

(MCP) could be a new N-d pathway of the autonomic sensory circuit. Temporary, we termed the intermedial 

collateral pathway with abbreviation ICP. The diameter of the megaloneurite could be as large as 27μm. A 

tremendous N-d dystrophy and megaloneurites showed in the sacral spinal cord with the notch caused by disc 

herniation (Figure 4). Besides regular ANBs, we noticed that a massive of N-d spheroids revealed new profile 

criteria which we termed as homogeneous formazan globule. According to ANBs in aged rat, ANB shows more 

diversity from size, contour and intensity[13]. The homogeneous formazan globule revealed as round- or oval-

shaped non-soma formation and was not found in the normal aged dog[9]. Some of homogeneous formazan 

globule could also be described like droplet. In this segment, homogeneous formazan globules occurred not 

only in gray matter but also in the white matter distributed in the dorsal column, lateral funiculus and ventral 

funiculus. There was also occurrence of the similar variety of neurodystrophy in the intact sacral spinal cord 

of no herniated compression notch (Figure 5). In the sacral spinal cord distal to the disc herniation, the 

homogeneous formazan globules greatly reduced (Figure 6). The megaloneurite also reduced. The MCP 

showed in the figure and indicated the sensory input. The diameter of the megaloneurite also reduced compared 

with that in Figure 3.  

 

The aging-related N-d neurodegeneration occurred normally in the lumbosacral spinal cord of the aged dog[9, 

14]. In the thoracic segment rostral to the disc herniation, no megaloneurite and homogeneous formazan 

globules were detected besides occasional small size ANBs (Figure 7).  

 

The gracile nucleus receives the primary sensory input bellow the mid thoracic spinal cord[15, 16]. N-d 

dystrophy corelates to the lumbosacral spinal cord[17] and also occurs in the gracile nucleus of dog[18]. 

Consideration of the ANBs and the homogeneous formazan globules in the dorsal column, we further examined 

the gracile nucleus. In Figure 8, ANBs and lightly formazan profiles were detected in the gracile nucleus. Next, 

ANBs were also detected in the other structures of the medulla, such as in the medial lemniscus (ML), the 

hypoglossal nucleus (Figure 9) and the ventral lateral of the medulla as well as the spinal trigeminal nucleus 

(Figure 10). Taken together, the lumen of the central canal regionally collapsed at or near the spinal disc 

herniation. Away from the disc herniation, the cavity of the central canal was filling around.  

  

 

DISCUSSION  

 

The case study was completed in a 10-year-old dog accompanied by spinal disc herniation. We have already 

reported the megaloneurite in the sacral spinal cord of aged dog[9, 14]. In this study, the N-d positive 

megaloneurite occurred conformally in the sacral spinal cord. We further found that numerous ANBs and 

enormous homogeneous formazan globules revealed in the gray matter and dorsal column. The homogeneous 

formazan globule was a novel type of neuropathological profile according to current morphological criteria. In 

general, megaloneurite and ANB occurred in the dorsal of the gray matter, for example, dorsal horn, Lissauer’s 

tract, dorsal commissural nucleus and intermediolateral nucleus as well as the mediolateral funiculus. We found 

that the distribution of homogeneous formazan globules occurred not only in the dorsal of the gray matter but 

also in the ventral horn. The enormous notch caused by spinal disc herniation located at the mid-rostral lumber 

segments. We did not find the other N-d neurodegenerative aberrant in the tissue of the mid-rostral lumber 

segment besides the metamorphoses by the compression of the disc herniation. It seemed that the compression 
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did not cause compression dependent N-d neurodegeneration in situ segment. However, the severe 

neuropathological changes majorly occurred in the caudal sacral spinal cord. More occurrence of ANB revealed 

than that of normal aging changes[9]. We supposed that the compression of disc herniation may cause to spread 

neuropathology from the dorsal part to the ventral area of spinal cord. We should emphasis that the aging-

related changes implicated sacral dependent specific mechanism, because the no substantial N-d injury in situ 

disc herniation and N-d degeneration occurred in distal to disc herniation. The homogeneous formazan globules 

featured as decellularized extracellular matrix. In the medulla oblongata, ANBs were revealed in the gracile 

nucleus, nucleus reticularis lateralis (ventrolateral to spinal trigeminal nucleus) and middle of the spinal 

trigeminal nucleus. In the other species, the similar irregular profiles of the homogeneous formazan globules 

are detected in the gracile nucleus of aged rats[17]. In the present study, the homogeneous formazan globules 

were a relative regular profile of the round and oval shape in the sacral spinal cord. Compared with the normal 

aging alterations in the sacral spinal cord and or the gracile of rat[13, 17], dog[9] and monkey[10] as well as 

pigeon[19], the homogeneous formazan globules was a novel neurodegenerative formation. 

   

The degenerated intervertebral disk reveal in the spinal disc herniation [20]. Extruded disk herniation is 

relevant to cell senescence of disc degeneration[21]. The neuropathology of spinal disc herniation is lack in 

the aging animals. Rat model of lumber disc herniation are used to investigate of the dorsal root ganglia (DRG) 

and spinal cord[22-26]. Chronic compression of the DRG ipsilaterally induce upregulation of nNOS neurons 

within the superficial dorsal horn of spinal cord [27]. Basically, nNOS positivity is corelated with N-d 

expression in the central nervous system[28, 29]. However, some previous investigations demonstrate that N-

d is not completely identical to nNOS [13, 30-32]. In our previous study, megaloneurite still identified by the 

nNOS immunochemistry[14]. Some of N-d dystrophic spheroids in the gracile nucleus also reveal partially 

colocalization with nNOS immunochemistry[17]. It demonstrates that the N-d neurodegeneration shows 

diverse properties. Compared with strong stained ANB of sharp boundary, homogeneous formazan globule 

may be the swollen axons[33] or the deposit of N-d caused by the axonal leakage[34]. ANB is the abbreviation 

for aging-related N-d body. We thought that the homogeneous formazan globule was compression-related 

change. 

 

The dystrophic formation in gracile nucleus is aging dependent and has been termed as neuroaxonal dystrophy 

(NAD)[35-37]. The N-d gracile dystrophy has been reported in the aged rat[36, 38]. We find that N-d neuritic 

dystrophy occurs in both of the gracile nucleus and cuneatus nucleus of the dorsal column nuclei as well as the 

spinal trigeminal nucleus[17]. The N-d neuritic dystrophy is pathognomonic morphologic change[17]. In the 

previous study, the N-d dystrophy is not frequently detected in the aged dog. In the present study, the N-d 

dystrophy distinctly distributed in the gracile nucleus and several other nuclei.  

 

The medial of dorsal horn of the MCP and the lateral dorsal horn of the LCP are function region for a certain 

condition [39]. In general anatomy of the thoracolumbar and sacral spinal cord in the dog, N-d positive LCP 

tracks to the dorsal commissural gray and [40]. In our present study, the megaloneurite in Figure 3 occurrent 

located lamina Ⅲ-Ⅳ between the LCP and the MCP. The positive labeling of the neuronal tracing of LCP and 

the dorsal lateral funiculus tracks extending into laminae V-VII in the dorsal commissural gray and vicinity of 

the parasympathetic nucleus[41]. The immunoactivity of substance P and not VIP distributed in the dorsal horn 

between the LCP and MCP [42] or no notable evidence demonstrates the confirmation about the fiber 

connection[43]. In this study, substance P immunoactivity does not show megaloneurite-like profile. 

Megaloneurite is colocalization with VIP[9, 10]. We thought that the immunoactivity without evidence of 

projecting fiber may not make a conclusion because the medial portion of the substance P immunoactivity 

turns to the dorsal commissural region[44]. The two ends of megaloneurite in figure 3 provided clear 

orientation between the LCP and the MCP. The LCP and MCP are important for urogenital circuit [45] and 

also for neuropathological condition[46].  The neurons of medial dorsal horn and lateral dorsal horn can be 
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activated for a physiological function [47]. There was a missing link of notable megaloneurite in the MCP in 

the Figure 3. Actually, the N-d MCPs were verifiably presented in the Figure 6-1. We also report that 

megaloneurites locate in the medial dorsal horn of N-d positivity[9] and the VIP positive MCP[14] in aged dog. 

We postulated that the megaloneurite formed a specific anatomy-oriented functional circuit. As mentioned in 

results, we already named it a temporary term: intermedial collateral pathway (ICP). We should re-examine 

the normal spinal cord to verify the neuronal anatomical structure in future.  

   

In summary, the megaloneurite provided a specific anatomy-oriented morphology to reveal a certain circuit in 

the lumbosacral spinal cord. To our best knowledge, we first time to report the triple morphological alterations 

of N-d positivity in spinal disc herniation of aged dog. The homogeneous formazan globule was novel 

neurodegeneration that may implicate the specification of the vulnerable aging deterioration in the sacral spinal 

cord. We also found that a new circuit pathway: intermedial collateral pathway (ICP) showed by giant 

megaloneurite between the LCP and the MCP. In the medulla oblongata, ANBs were revealed in the gracile 

nucleus, nucleus reticularis lateralis (ventrolateral spinal trigeminal nucleus) and middle of the spinal 

trigeminal nucleus. 
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FIGURE LEGENDS： 

 

Figure 1. Montaged image of the coronal transverse section at the spinal disc herniation. Arrow indicated 

neuron. Open arrow: slightly stained motoneuron. Arrowhead: enlarged transverse fiber. Open arrowhead: fiber. 

 

Figure 2. Vacuolar dendrites in the lumber spinal cord of caudal to the spinal disc herniation. A-E showed 

vacuolar dendrites with serial magnifications in C-D from the same field A. F showed thick dendrite of diverse 

staining. Bar in A =200μm, B- =100μm, C= 50μm, and D-F and inset =20μm. 

 

Figure 3. Giant megaloneurite in the circuit pathway of the dorsal horn. A: Montaged photography at no 

noticeable level of the lumber spinal cord. B: The megaloneurite occurred in the pathway of the Lissauer’s 

tract and lateral dorsal horn, lateral collateral pathway, circuit pathway (arrowheads) between the MCP and the 

LCP. C magnification from small rectangle in A and showed ANBs of strong staining (curved open arrow) and 

diverse staining (open arrow). D and E showed megaloneurite (arrowhead), neurons (arrow) and thin fiber 

(open arrowhead). F and G showed the same location of the left and right side of the LCP (circle double arrow). 

Three size diameter fibers: megaloneurite (F), thick fiber (arrowhead) and thin fiber (open arrowhead). Bar in 

A = 200μm, B =100 μm, C, E, F and G =20μm, and D =50μm. 

 

Figure 4-1.  Diverse N-d dystrophy and megaloneurite cross the dorsal commissural gray in the sacral spinal 

cord. The notches (large open arrow) were corelated disc herniation. Some neuro-dystrophic spheroids 

distributed in the white matter around the anterior horn. Arrow indicated a neuron. Arrowhead indicated the 

megaloneurite. Open arrow indicated homogeneous formazan globule. Thin arrow indicated strong stained 

ANB in the Lissauer’s tract. Curved arrow indicated spheroid in the dorsal column (DC). Curved thin arrow 

indicated the transverse megaloneurite in the lateral funiculus (LF). cc：central canal. Bar =200μm. 

 

Figure 4-2. A showed megaloneurite (arrowhead). B showed homogeneous formazan globule (open arrow) 

distributed both in the lateral funiculus (LF) and the gray matter. Dash line indicated boundary. C showed 

dystrophy (curved arrow) between the ependymal cells. D: magnification from C showed various fibers and 

megaloneurite as well as homogeneous formazan globule (open arrow). D further showed ANB (curved arrow), 

megaloneurite (circle double arrows), an example of thin fiber (open arrowhead). Bar in A =100μm, B, D and 

E =20μm, C = 50μm. 

 

Figure 4-3. A: The distribution of N-d dystrophy including homogeneous formazan globules in the dorsal 

lateral region. B-E were magnification from A. B: The megaloneurites and their segments distributed in the 

Lissauer’s tract (LT) and the lateral collateral pathway [12](arrowhead). Magnification in D. Curved thin arrow 

indicated an example of transverse megaloneurite. E showed transverse megaloneurite (curved thin arrow) in 

the lateral funiculus (LF). F showed the other side of the LT. Bar in A =100μm, B, C and E =50μm, D and F = 

20μm. 

 

Figure 5. The sacral spinal cord of no herniated notch. A: no disc herniation notch. Insets showed the transverse 

thick fiber in the lateral funiculus, megaloneurites in the Lissauer’s tract and neurons in the anterior horn 

respectively. B showed various N-d passivity of homogeneous formazan globules (open arrow), megaloneurite 

(arrowhead), thin fiber (open arrowhead) and irregular ANB. Bar in A =200μm, bar in inset and B =50μm. 

 

Figure 6-1. The MCP in the sacral spinal cord caudal to Figure 5.A-E showed the MCP. Arrow: neuron, 

arrowhead： megaloneurite in the MCP. Open arrowhead: thin fiber in the MCP and curved open arrow: ANB. 

White litter for Figure 6-2. Bar in A=200μm, B= 100μm, C=50μm, D and F = 20μm. 
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Figure 6-2. Present the white letters in Figure 6-1A. Bar =50μm. 

 

Figure 7. The intact thoracic spinal cord. A: The transverse spinal cord of no herniated notch. B: No 

megaloneurite and homogeneous formazan globules. C and D showed the intermediolateral nucleus (IML). 

Inset showed ANBs. Arrow indicated neurons. E: Magnification from D. F: showed the anterior horn and 

motoneurons (arrow). Bar in A = 200μm, B= 100μm, C, D and F =50μm and E =20μm. 

 

Figure 8. ANB and lightly formazan profile detected in the gracile nucleus. All figure showed here from the 

same section. A: low magnification view of the gracile nucleus. B: magnification from A. Arrow indicated 

neuron consistent in I. C: Several ANBs showed. Arrowhead indicated strong stained ANB. Thin arrow 

indicated fibers. Open arrowhead indicated. D: Lightly stained ANB and strong stained Two rectangles (E and 

F). E showed weak N-d spheroid (open arrow) and N-d positivity of blurred boundary(asterisk). F showed 

ANBs compared small size spheroids (open arrowhead) with fibers (thin arrow). G showed cloudy prion-like 

staining and puncta (open arrowhead) compared with fibers (thin arrow). H and I showed similar examples of 

neuro-dystrophy. Curved open arrow indicated a vacuolar neuro-dystrophy (H). Arrow indicated a neuron (I). 

Bar in A = 200μm, B =100μm, C, G, H and I =20μm, D, E and F = 50μm. 

 

Figure 9. ANB detected in the other structures of the medulla. A and B indicated ANBs (open arrow) in the 

medial lemniscus (ML). C and D showed swelling (arrowhead) in the root of nerve XII (asterisk). Arrow 

indicated a multiple neuron with thick vacuolized proximal dendrites. E and F showed cloudy neuro-dystrophy 

in the hypoglossal nucleus (dash line). Bar in A, C and E =100μm. Bar in B, D and F =20μm. 

 

Figure 10. ANB detected in the other structures of the medulla. A, B and C showed ANBs in the ventral lateral 

of the medulla. Open arrows in B indicated ANBs. D, E and F showed the ANBs in the spinal trigeminal 

nucleus. Bar in A and D = 200μm, in B and E 100μm and in C and F = 20μm. 

 

 

 

Figure 1. Montaged photograph of the coronal transverse section at the level of spinal disc herniation. The 

compression of the disc herniation caused a big notch ventral to the anterior median fissure. Arrow indicated 

neuron. Open arrow: slightly stained motoneuron. Arrowhead: enlarged transverse fiber. Open arrowhead: fiber. 

Bar =200μm.    

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 February 2020                   doi:10.20944/preprints202002.0280.v1

https://doi.org/10.20944/preprints202002.0280.v1


 

 

Figure 2. Vacuolar dendrites in the lumber spinal cord of caudal to the spinal disc herniation. A-E showed 

vacuolar dendrites with serial magnifications in C-D from the same field A. F showed thick dendrite of diverse 

staining. Bar in A =200μm, B- =100μm, C= 50μm, and D-F and inset =20μm. 
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Figure 3. Giant megaloneurite in the circuit pathway of the dorsal horn. A: Montaged photography at no 

noticeable level of the lumber spinal cord. B: The megaloneurite occurred in the pathway of the Lissauer’s 

tract and lateral dorsal horn, lateral collateral pathway, circuit pathway (arrowheads) between the MCP and the 

LCP. C magnification from small rectangle in A and showed ANBs of strong staining (curved open arrow) and 

diverse staining (open arrow). D and E showed megaloneurite (arrowhead), neurons (arrow) and thin fiber 

(open arrowhead). F and G showed the same location of the left and right side of the LCP (circle double arrow). 

Three size diameter fibers: megaloneurite (F), thick fiber (arrowhead) and thin fiber (open arrowhead). Bar in 

A = 200μm, B =100μm, C, E, F and G =20μm, and D =50μm.   
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Figure 4-2. A showed megaloneurite (arrowhead). B showed homogeneous formazan globule (open arrow) 

distributed both in the lateral funiculus (LF) and the gray matter. Dash line indicated boundary. C showed 

dystrophy (curved arrow) between the ependymal cells. D: magnification from C showed various fibers and 
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megaloneurite as well as homogeneous formazan globule (open arrow). D further showed ANB (curved arrow), 

megaloneurite (circle double arrows), an example of thin fiber (open arrowhead). Bar in A =100μm, B, D and 

E =20μm, C = 50μm. 

 

  

 

Figure 4-3. A: The distribution of N-d dystrophy including homogeneous formazan globules in the dorsal 

lateral region. B-E were magnification from A. B: The megaloneurites and their segments distributed in the 

Lissauer’s tract (LT) and the lateral collateral pathway [12](arrowhead). Magnification in D. Curved thin arrow 

indicated an example of transverse megaloneurite. E showed transverse megaloneurite (Curved thin arrow) in 

the lateral funiculus (LF). F showed the other side of the LT. Bar in A =100μm, B, C and E =50μm, D and F = 

20μm. 
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Figure 5. The sacral spinal cord of no herniated notch. A: no disc herniation notch. Insets showed the transverse 

thick fiber in the lateral funiculus, megaloneurites in the Lissauer’s tract and neurons in the anterior horn 
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respectively. B showed various N-d passivity of homogeneous formazan globules (open arrow), megaloneurite 

(arrowhead), thin fiber (open arrowhead) and irregular ANB. Bar in A =200μm, bar in inset and B =50μm. 

  

 

Figure 6-1. The MCP in the sacral spinal cord caudal to Figure 5.A-E showed the MCP. Arrow: neuron, 
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arrowhead： megaloneurite in the MCP. Open arrowhead: thin fiber in the MCP and curved open arrow: ANB. 

White litter for Figure 6-2. Bar in A=200μm, B= 100μm, C=50μm, D and F = 20μm. 

  

 

 

Figure 6-2. Present the white letters in Figure 6-1A. Bar =50μm. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 February 2020                   doi:10.20944/preprints202002.0280.v1

https://doi.org/10.20944/preprints202002.0280.v1


 

 

Figure 7. The intact thoracic spinal cord. A: The transverse spinal cord of no herniated notch. B: No 

megaloneurite and homogeneous formazan globules. C and D showed the intermediolateral nucleus (IML). 

Inset showed ANBs. Arrow indicated neurons. E: Magnification from D. F: showed the anterior horn and 

motoneurons (arrow). Bar in A = 200μm, B= 100μm, C, D and F =50μm and E =20μm. 
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Figure 8. ANB and lightly formazan profile detected in the gracile nucleus. All figure showed here from the 

same section. A: low magnification view of the gracile nucleus. B: magnification from A. Arrow indicated 

neuron consistent in I. C: Several ANBs showed. Arrowhead indicated strong stained ANB. Thin arrow 

indicated fibers. Open arrowhead indicated. D: Lightly stained ANB and strong stained Two rectangles (E and 

F). E showed weak N-d spheroid (open arrow) and N-d positivity of blurred boundary(asterisk). F showed 
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ANBs compared small size spheroids (open arrowhead) with fibers (thin arrow). G showed cloudy prion-like 

staining and puncta (open arrowhead) compared with fibers (thin arrow). H and I showed similar examples of 

neuro-dystrophy. Curved open arrow indicated a vacuolar neuro-dystrophy (H). Arrow indicated a neuron (I). 

Bar in A = 200μm, B =100μm, C, G, H and I =20μm, D, E and F = 50μm. 

 

 

Figure 9. ANB detected in the other structures of the medulla. A and B indicated ANBs (open arrow) in the 

medial lemniscus (ML). C and D showed swelling (arrowhead) in the root of nerve XII (asterisk). Arrow 

indicated a multiple neuron with thick vacuolized proximal dendrites. E and F showed cloudy neuro-dystrophy 

in the hypoglossal nucleus (dash line). Bar in A, C and E =100μm. Bar in B, D and F =20μm. 
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Figure 10. ANB detected in the other structures of the medulla. A, B and C showed ANBs in the ventral lateral 

of the medulla. Open arrows in B indicated ANBs. D, E and F showed the ANBs in the spinal trigeminal 

nucleus. Bar in A and D = 200μm, in B and E 100μm and in C and F = 20μm. 
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