
Article

Data Processing and Information Classification: an
In-Memory Approach

M. Andrighetti1, G. Turvani1 *, G. Santoro1, M. Vacca1 , A. Marchesin1, F. Ottati1, M. Ruo
Roch1 ,M. Graziano2 , M. Zamboni1

1 Department of electronics and telecommunication (DET), Politecnico di Torino; Corso Castelfidardo 39,
10129 Torino, Italy

2 Department of Applied Science and Technology (DISAT), Politecnico di Torino; Corso Castelfidardo 39,
10129 Torino, Italy

* Correspondence: giovanna.turvani@polito.it (G.T.);

Abstract: To live in the information society means to be surrounded by billions of electronic devices
full of sensors that constantly acquire data. This enormous amount of data must be processed
and classified. A solution commonly adopted is to send these data to server farms to be remotely
elaborated. The drawback is a huge battery drain due to high amount of information that must be
exchanged. To compensate this problem data must be processed locally, near the sensor itself. But
this solution requires huge computational capabilities. While microprocessors, even mobile ones,
nowadays have enough computational power, their performance are severely limited by the Memory
Wall problem. Memories are too slow, so microprocessors cannot fetch enough data from them,
greatly limiting their performance. A solution is the Processing-In-Memory (PIM) approach. New
memories are designed that are able to elaborate data inside them eliminating the Memory Wall
problem. In this work we present an example of such system, using as a case of study the Bitmap
Indexing algorithm. Such algorithm is used to classify data coming from many sources in parallel.
We propose an hardware accelerator designed around the Processing-In-Memory approach, that is
capable of implementing this algorithm and that can also be reconfigured to do other tasks or to work
as standard memory. The architecture has been synthesized using CMOS technology. The results that
we have obtained highlights that, not only it is possible to process and classify huge amount of data
locally, but also that it is possible to obtain this result with a very low power consumption.

Keywords: Bitmap Indexing, Processing In Memory, Memory wall, Big Data, Internet Of Things

1. Introduction

Nowadays many applications used everyday, defined as data-intensive, require a lot of data to
process. Examples are the databases manipulation and image processing. This requirement is the
effect of the fast improvement of CMOS technology, that has lead to the creation of very powerful and
flexible portable devices. These devices are full of sensors that continuously acquire data. Data can be
elaborated remotely by powerful servers, but sending a lot of information through electromagnetic
waves requires a huge amount of energy, severely impacting the battery life of mobile devices. The
only solution is to elaborate data locally, on the mobile device itself.

Thanks to the scaling of transistors size, mobile microprocessors are now theoretically capable of
such computation. Unfortunately, memory scaling has been following a different path, resulting still in
slow accesses compared to processors computing speed. This discrepancy in performance harms the
computing abilities of the CPU, since the memory cannot provide data as quickly as required by the
CPU. This problem is called Von Neumann bottleneck or Memory Wall. The idea that took form to solve

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2020 doi:10.20944/preprints202002.0294.v1

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Sensors 2020, 20, 1681; doi:10.3390/s20061681

http://www.mdpi.com
https://orcid.org/0000-0002-8520-906X
https://orcid.org/0000-0003-2920-3357
https://orcid.org/0000-0001-7313-8017
https://orcid.org/0000-0002-8721-9990
https://orcid.org/0000-0001-8179-5973
http://www.mdpi.com/journal/notspecified
https://doi.org/10.20944/preprints202002.0294.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s20061681

2 of 13

this problem is to null the distance between processor and memory, removing the cost of data transfer
and create a unit which is capable of storing information and of performing operation on them. This
idea takes the name of Processing-in-Memory.

Many in literature have approached the "in-memory" idea. Some narrowing the physical distance
between memory and computation unit by creating and stacking different layers together. But
even if the two units are moved very close to each other, they are still distinct components. Others
exploited intrinsic functionality of the memory array or slightly modified peripheral circuitry to
perform computation.

Among the many example provided by literature, one of the best fitting representative of the PIM
concept is presented in [1]. In this work the proposed architecture is a memory array in which the cell
itself is capable of performing logical operations aimed at solving Convolutional Neural Networks
(CNN). In this paper, our main goal is to introduce a proper example of Processing-in-Memory,
choosing Bitmap Indexing as an application around which the architecture is shaped. This algorithm
has been chosen because it is used for data classification. This is one of the most important task that
must be performed by such mobile devices. Being able to classify data allows to understand which
data must be sent to remote servers and which not, greatly reducing the overall power consumption.
The presented architecture is a memory array in which each cell is both capable of storing information
and to perform simple logical operation on them. A characteristic of our architecture is its modularity.
The architecture is divided in independent memory banks. A memory bank can work both on its
own or interacting with other banks. Moreover it is possible to build the array with as many banks
as needed. This feature lead to great flexibility and high degree of parallelism. The structure was
eventually synthesized for analysis purposes, in a 8.5KB square array, using CMOS 45nm and 28nm.
The evaluation showed great results, achieving a maximum throughput of 2.45Gop/s and 9.2Gop/s
respectively for the two technologies used. This paper is the extended version of the work presented
in the conference Applications in Electronics Pervading Industry, Environment and Society (ApplePie)
2019 [2]. In the conference paper the general idea was introduced. Here we greatly expand the
architecture, moving from the idea to the real implementation.

2. Background

The Processing-in-Memory paradigm was born to solve the Von Neumann bottleneck, which is
characterized by the gap in performance between memory and processor. Processing-in-Memory thus
tries to reduce the disparity by merging together storage and processing units. Processing-in-Memory
(PIM) can be approached in different ways, depending on the architecture or the technologies to use.
A lot of examples can be found in literature, some of them will be depicted in the following, grouped
in categories.

2.1. Magnet-based

Magnetic Random Access Memory (MRAM) is a non-volatile memory that uses Magneto-Tunnel
Junctions as its basic storage element. Thanks to their dual storage-logic properties, MTJs are suitable
to implement hybrid logic circuits with CMOS technology suited to implement the PIM principle.
In [3] is presented a MTJ-CMOS Full Adder, which compared to a standard only-CMOS solution
showed better results. In [4] the authors proposed an MTJ-based TCAM, in which the logic part and
the storage element are merged together, and an MTJ-based Non-Volatile FPGA exploiting MTJs and
combinatorial blocks. Both structures resulted in a more compact solution with respect to conventional
ones.

In [5] it is proposed a different way to implement Nano Magnetic Logic exploiting the MRAM
structure. Since the basic concept of the NML technology is the transmission of information through
magnetodynamic interaction between neighbouring magnets, the MRAM structure has been modified
so that MTJs could interact with each other. Another example is represented by PISOTM [6], an

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2020 doi:10.20944/preprints202002.0294.v1

Peer-reviewed version available at Sensors 2020, 20, 1681; doi:10.3390/s20061681

https://doi.org/10.20944/preprints202002.0294.v1
https://doi.org/10.3390/s20061681

3 of 13

architecture based on SOT-RAM. It is a reconfigurable architecture in which the main advantage is that
the storage and logic element result identical and for this reason technology conflict is avoided.

2.2. 3D-Stacking

According to the 3D-Stacking approach multiple layers of DRAM memory are stacked together
with a logic layer that can be application-specific ([7],[8]) or general purpose [9]. In [7] the XNOR-POP
architecture was designed to accelerate CNNs for mobile devices. It is composed of Wide-IO2
DRAM memory with the logic layer modified according to the XNOR-Net requirements. In [8]
it is proposed an architecture for data intensive applications, where a PIM layer made of memory
and application-specific logic is sandwiched between DRAM dies connected together using TSVs. An
example of general purpose 3D-stacking is 3D-MAPS in [9]. A multi-core structure is used, and every
core is composed of a memory layer and a computing layer.

2.3. ReRAM-based

Resistive RAM is a non-volatile memory that uses a metal-insulator-metal element as storage
component. The information is represented by the resistance of the device that can be either high
(HRS) or low (LRS). To switch between states the appropriate voltage has to be applied to the cell. The
common structure of a ReRAM array is a crossbar, a structure used in matrix-vector multiplication,
commonly found in neural networks applications. PRIME [10], an architecture aimed at accelerating
Artificial Neural Networks is an example of this kind of implementations. PRIME is compliant with
the in-memory principle, since the computation is performed directly into the memory array with few
modifications to the peripheral circuitry. Memory banks are divided intro three sub-arrays each with a
specific role in the architecture. In [11] is proposed a 3D-ReCAM based architecture to accelerate the
BLAST algorithm for DNA sequence alignment. The architecture, named RADAR, aims to move the
operations in memory, this way there is no need to transfer the DNA database. In [12] is presented a
non-volatile intelligent processor built on a 150 nm CMOS process with HfO RRAM . The structure is
capable of both general computing and the acceleration of neural networks, in fact it is provided with
a FCNN Turbo Unit, enhanced with low-power MVM engines to perform FCNN tasks.

Another application that is limited by the Memory Wall problem is Graph Processing. In [13] is
proposed a ReRAM-based in-memory architecture as a possible solution. The structure is composed
of multiple ReRAM banks, divided into 2 types: graph banks that are used to map the graph and
to store its adjacency list and a master bank which stores metadata of the graph banks. This allows
to process the graphs that are stored inside the memory. In [14] is presented PLiM, a programmable
system composed of a PIM controller and a multi-bank ReRAM which can work both as a standard
memory and as a computational unit, according to the controller signals. PLiM implemented only
serial operation to keep the controller as simple as possible. In [15] the authors presented ReVAMP, an
architecture composed of two ReRAM crossbars, supporting parallel computations and VLIW-like
instructions. To perform logic operations ReVAMP exploits the native properties of ReRAM cells that
implement a majority voting logic function.

2.4. PIM

In [16] the authors presented TOP-PIM, a system composed of an host processor surrounded by
several units characterized by 3D-stacked memories with an in-memory processor embedded on the
logic die. In [17] is proposed DIVA, a system in which multiple PIM chips serve as smart-memory
co-processors to a standard microprocessor aimed at improving bandwidth performance for
data intensive applications executing computation directly in memory and enabling a dedicated
communication line between the PIM chips. In [18] is presented Terasys, a massively parallel PIM
array. The goal of Terasys was to embed an SIMD PIM array very close to an host processor in order
for it to be seen both as a processor array and conventional memory. As solution for large-scale graph
processing performance bottleneck, in [19] the authors proposed Tesseract, a PIM architecture used

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2020 doi:10.20944/preprints202002.0294.v1

Peer-reviewed version available at Sensors 2020, 20, 1681; doi:10.3390/s20061681

https://doi.org/10.20944/preprints202002.0294.v1
https://doi.org/10.3390/s20061681

4 of 13

as an accelerator for an host processor. Each element of Tesseract has a single-issue in-order core to
execute operations, moreover, the host processor has access to the entire Tesseract’s memory whilst
each core of Tesseract can interact only with its own. Tesseract does not depend on a particular memory
organization, but it was analyzed exploiting Hybrid Memory Cube (HMC) as baseline. Such a structure
proved to perform better than traditional approaches thanks to the fact that Tesseract was able to use
more of the available bandwidth. In [20] is presented Prometheus, a PIM-based framework, which
proposes the approach of distributing data across different vaults in HMC-based systems with the
purpose of reducing energy consumption, improving performance and exploiting the high intra-vault
memory bandwidth.

In [21] is proposed a solution to accelerate Bulk Bitwise Operations. PINATUBO is an architecture
based on resistive cell memories, such as ReRAMs. The structure is composed of multiple banks
which are also subdivided into mats. Pinatubo is able to eliminate the movement of data, since
computation is performed directly inside memory, executing operations between banks, mats and
subarrays. This way PINATUBO interacts with CPU only for row addresses and control commands.
Another example of PIM architecture to accelerate bulk bitwise operations was conceived by the
authors in [22], who presented Ambit, an in-memory accelerator which exploits DRAM technology to
achieve total usage of the available bandwidth. The DRAM array is slightly modified to perform AND,
OR and NOT operations. Moreover, the CPU can access Ambit directly, this way it is not necessary to
transfer data between CPU memory and the accelerator. In [23] is proposed APIM, an Approximate
Processing-in-Memory architecture which aims to achieve better performance despite a decrease in
accuracy. It is based on emerging non-volatile memories, such as ReRAM and it is composed of a
cross-bar structure grouped in blocks. All the blocks are structurally identical but divided into data
and processing blocks. They are linked together through configurable interconnections. Furthermore
APIM is able to configure computation precision dynamically, so that it is possible to tune the accuracy
runtime.

In [24] is presented ApproxPIM, an HMC-based system in which each vault is independent from
one another and communication with the host processor is based on a parcel transmission protocol.
This results in energy and speedup improvements with respect to the used baselines. In [25] the
authors presented MISK, a proposal to reduce the gap between memory and processor. Since data
movement imply a great energy cost, MISK is intended to reduce it by implementing a monolithic
structure, avoiding physical separation between memory and CPU. In fact, MISK is to be integrated
into the cache and it is not conceived to work on its own, but embedded in the CPU. This way it is
possible to achieve great results in terms of energy-per-cycle and execution time. In [26] is introduced
Gilgamesh, a system based on distributed and shared memory. It is characterized by a multitude of
chips, called MIND chips, which are connected together through a global interconnection network.
Each chip is a general purpose unit equipped with multiple DRAM bank and processing logic. In [27]
Smart Memory Cube is presented, a PIM processor built near the memory, in particular HMC, which
is connected to an host processor. HMC vault controls are modified to perform atomic operations. The
PIM processor interacts with the host processor so that smaller tasks are executed directly side by side
the memory.

In [28,29] the authors presented in-memory architectures on which the Advanced Encryption
Standard (AES) algorithm was mapped, showing great result in speed and energy saving compared
to other solutions. In [1] the authors presented an architecture based on the in-memory paradigm
aimed at Convolutional Neural Networks (CNN). The structure is a memory array in which each cell is
provided with both storage and computation properties and with the support of an additional weight
memory is designed to support CNN data flow and computation inside the array. This structure
showed great result compared with a conventional CNN accelerator in terms of memory accesses and
clock cycles.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2020 doi:10.20944/preprints202002.0294.v1

Peer-reviewed version available at Sensors 2020, 20, 1681; doi:10.3390/s20061681

https://doi.org/10.20944/preprints202002.0294.v1
https://doi.org/10.3390/s20061681

5 of 13

C)

B)

NAME

Jane

Harry

Alan

GENDER

F

M

M

STATUS

MARRIED

SINGLE

MARRIED

CAR

SPORT

SPORT

MVP

M

0

1

1

F

1

0

0

MVP

0

0

1

SPORT

1

1

0

BIKE

0

0

0

SPORT

1

1

0

BIKE

0

0

0

M

0

1

1

ANSWER

0

1

0

AND OR =

0

1

0

0

0

1

1

1

0

0

1

0

BIKE

SPORT

M

ANSWER

A)

Figure 1. A) Given a table, bitmap indexing transforms each column in as many bitmap as the number
of possible key-values for that column B) In order to answer a query logic bitwise operations are to be
performed C) Practical scheme of the execution of the query

3. The Algorithm

The Processing-in-Memory principle requires that the storage and logic components are merged
together. In order to implement an architecture compliant with such a requirement it was necessary
to firstly shape it according to a suitable application. For this purpose Bitmap indexing was selected.
Bitmap indexes are often used in database management systems.

Taking as an example the simple database in figure 1.A, each column of the database represents
a particular characteristic of the profile of the entry described in one row. Suppose a search on the
database is to be performed to create a statistic on how many men possess a sport car or a motorbike.
Such a query would imply looking for all the men and then excluding the ones that do not own the
specified vehicles. If the database is big this operation would require a long response time. Bitmap
indexing[30] was introduced to solve this issue. Bitmap indexing transforms each column of a table in
as many indexes as the number of distinct key-values that particular column can have.

A bitmap index is a bit array in which the i-th bit is set to 1 if the value in the i-th row of the
column is equal to the value represented by the index, otherwise it is set to 0 (figure 1.A). Thus,
bitmap indexing allows to fragment search queries in simple logic bitwise operations (figure 1.B).
This way it is not necessary to analyze the whole database discarding unwanted data, but only to

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2020 doi:10.20944/preprints202002.0294.v1

Peer-reviewed version available at Sensors 2020, 20, 1681; doi:10.3390/s20061681

https://doi.org/10.20944/preprints202002.0294.v1
https://doi.org/10.3390/s20061681

6 of 13

NAME

GENDER

STATUS

CAR

MARRIED SINGLE MARRIED

Jane Harry Alan

F M M

SPORT SPORT MPV

F

M

1

0

0

1

0

1

Figure 2. Column-oriented memory organization

operate on selected indexes. Bitmap indexing can provide great results in response time and in storage
requirements since it can be compressed. Bitmap indexing is suited for entries with a number of
possible values smaller than the depth of the whole table. This technique is most functional for queries
regarding the identification of the position of specific features, for this reason to answer an "how many"
query it is necessary to insert a component that counts the hits obtained. Summing up, a query can
be decomposed in simple logic operations which are performed between indexes, processing bits
belonging to the same position in the array(figure 1.C) .

Clearly, Bitmap indexing results compatible with the Processing-in-Memory paradigm, since
it is characterized by simple logic bitwise operations and its data format make it easy to embed in
memory. However, bitmap indexing involves operations between columns of a table. If we consider
memory organization and imagine to maintain the column-row distribution of the table in memory,
this would imply to access multiple rows and then discard all the data that do not belong to the desired
indexes. This approach would be too costly. For this reason for our implementation a column-oriented
organization[31] was preferred, which means that the entire table is stored transposed, so that now,
applying bitmap indexing, indexes lie on rows (figure 2).

Thanks to this method, to access an index it is only necessary to access a row and consequently
operations between indexes result in operations between memory rows. In this implementation we
thus consider the indexes distributed on rows in a memory array. We also take into account two types
of query, simple and composed. A simple query is composed of only one operation (e.g "Who is female
and married?") whilst a composed one is characterized by intertwined operations (e.g. figure 1.B).
Considering the composed query depicted in figure 1.B the operations to perform would be:

1. Access the first operand;
2. Access the second operand;
3. Execute bitwise operation between the two operands;
4. Read result;
5. Execute bitwise operation between computed result and third index;
6. Count the hits obtained;
7. Read final result;

While to answer a simple query only steps 1-4 are needed. The goal is then to implement the just
introduced algorithm directly inside a memory array.

4. The Architecture

The architecture proposed in this paper present a possible solution for the Von Neumann
bottleneck implementing a proper in-memory architecture, where logic functions are implemented
directly inside each memory cell, in contrast with the near-memory approach seen in some
state-of-the-art implementations, where logic operations are performed with logic circuits located
on the border of the memory array. Moreover, this architecture was intended to overcome
the limits provided by specific technologies by keeping the development of the architecture
technology-independent, in order to implement a configurable architecture with the highest degree of
parallelism achievable.

A memory array is composed of many storage units, each of which is made of multiple memory
cells. Cells are the basic element of the memory itself. Therefore, in order to implement an entire
memory array aimed at executing the Bitmap indexing algorithm, firstly it is necessary to define the

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2020 doi:10.20944/preprints202002.0294.v1

Peer-reviewed version available at Sensors 2020, 20, 1681; doi:10.3390/s20061681

https://doi.org/10.20944/preprints202002.0294.v1
https://doi.org/10.3390/s20061681

7 of 13

DATA...

BANK

BANK

1s COUNTER

ROQ

CONTROL...

BREAKER

LIM ARRAY

A
D

D
R

. R
F

IN
S

T
R

. M
E

M
.

O
P.

 D
IS

P
A

T
C

H
E

R

0...

0...

QUERIES

DATA_IN

Result of Query

DELAY

A)

OPERATION DECODER

GHOST ROW

LIM ROW

A
D

D
R

E
S

S
 D

E
C

.

LIM CELL

BANK

BREAKER

CELL

MEM CONFIG...

data_in

data_out

from_mem

from_ext
logic_result

C)

B)

Figure 3. A) Overview of the complete architecture. B) Structure of the duo Bank-Breaker C) Insight of
the PIM cell

structure of the memory cell. According to the specifications required by the Bitmap indexing, the
cell has to be able to perform simple logic operations interacting with other cells in the array. This
means that our cell should have both storage and logic properties. Indeed, the basic cell of the PIM
array is provided with an element that store information and a configurable logic element which
performs AND, OR, XOR operations with all the combinations of input (e.g A, A), between the stored
information and the one coming from another cell (figure 3).

Other than standard memory features the PIM cell can interact with other cells, according to its
control input. As every single cell in the array has the ability to perform computation, it is necessary to
choose which cell will be executing the operation and which will be read. In order to implement it, the
designated passive cell is read and the stored data travels to the operative cell. To avoid interference
between inactive cells, the output lines of cells that are not used are interrupted. To implement the
bitwise feature each cell of a row has its input and output line common to any other cell belonging to
the same column of different rows.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2020 doi:10.20944/preprints202002.0294.v1

Peer-reviewed version available at Sensors 2020, 20, 1681; doi:10.3390/s20061681

https://doi.org/10.20944/preprints202002.0294.v1
https://doi.org/10.3390/s20061681

8 of 13

In figure 3 the whole structure is depicted. Noticeably, other than the array, the architecture is
composed of a control unit and some additional components, such as the counter (for counting ones)
and register files. Focusing on the array, like any standard memory, it was divided into multiple
banks. Each bank is associated with a breaker that manages data flow from and to the bank. A
bank represents the smallest degree of parallelism of the architecture. This means that in a bank it
is possible to execute one operation at a time. Thanks to the breakers, each bank is able to work
independently executing operations between its rows or can work with other banks, making interact
rows belonging to different banks, while other banks work on different operations in parallel. As
consequence, supposing each bank in the array works on a different operation by itself, the maximum
degree of parallelism achievable is equal to the number of banks in the array. The Bidirectional Breaker
is in charge of managing relations between its bank and the rest of the array. According to the control
input, the breaker can be passive, i.e. letting data pass through without disturbing its bank so that the
bank can work on its own or be silent. The breaker can also be active and diverting data to or from its
bank.

A bank is composed of multiple PIM rows and one Ghost row which is provided only with
memory properties used to store temporary operation results. The Ghost row has the input line
connected to the logic result output line of the PIM rows, whilst its output line is common with the
PIM rows. This way it is possible to read the Ghost row or use its content for further computation.
As in standard memories, each row is fragmented in multiple words. This means that operations are
actually performed between words belonging to different rows. The result is then temporary saved in
the Ghost word corresponding to the same word address of the word which executed the operation.
This was implemented to avoid the need to manage a third address. To handle all the configuration
signals needed to manage the correct execution, two decoders were needed inside each bank. One
that sets the configuration for the logic operation to execute, sending it to the right row. The second
was implemented to control addresses, data flow inside the bank and to distinguish between standard
memory mode and PIM operation mode.

In figure 3 it is highlighted that, other than the array, there are some additional components which
are used to guarantee the correct functioning of the entire structure.

The Instruction Memory is used to collect the queries to execute. It consists in a register file, having
as many registers as the number of banks, with an input parallelism equal to the length of a complete
query (i.e. two complete addresses and a logic operation configuration string). A composed query is
treated as the combination of two distinct queries, which means that a composed query will occupy
two consecutive registers of the Instruction Memory. Clearly, even if the architecture was configured
to exploit its maximum potential by implementing the bitmap indexing algorithm, it can be configured
to perform additional algorithms. For reconfigurability purposes the instruction memory had to be
implemented as wide as possible, but most likely it will not be updated fully each time. In order
to avoid conflicts the Operation Dispatcher is in charge of blocking any old query. Since a query can
take place between any couple of addresses in the array, it is necessary to sent the addresses to their
respective bank. The Operation Dispatcher thus reorder addresses and sends them to their own bank.
After correct reordering, to ensure synchronization the addresses are sampled by the Address Register
File which loads the addresses and sends them to the array.

As illustrated previously, results of bitwise logic operations answer to queries in the where clause.
To count the number of ones ("1") in the "how many" clause it was inserted a ones counter of logic "1"
connected with the output of a delay register. The register was added to ensure timing constraints
given by the counter. A simple counter that processes the data input bit-by-bit and increments by one
for each "1" found was too slow. Therefore, a tree-structured counter was implemented. Firstly, the
data array is fragmented into D segments, each of N

D -bits. All segments are then analyzed at the same
time and the ones contained in each segment are counted. Finally, all the factors are added together
to obtain the final sum. Also, all the adders that form the tree-structure are of the same dimension
computed to avoid overflow.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2020 doi:10.20944/preprints202002.0294.v1

Peer-reviewed version available at Sensors 2020, 20, 1681; doi:10.3390/s20061681

https://doi.org/10.20944/preprints202002.0294.v1
https://doi.org/10.3390/s20061681

9 of 13

A)

B)

Figure 4. A) Composition of a complete query. B) Preliminary stages of a CLIMA operation

The architecture was conceived to incorporate as many features as possible and at the same time
trying to keep the control circuits as simple as possible. The implemented structure is versatile and
can work in 8 different operation modes, discerned among traditional memory operations and PIM
operations based on the position of the two operands and the desired parallelism: 1) Write; 2) Read; 3)
Save result; 4) PIM simple single bank; 5) PIM simple different banks; 6) PIM multiple banks; 7) PIM
composed; 8) PIM multiple composed. Each operation mode is the starting point of a query, which is
composed as shown in figure figure 4.A. The FSM chart of all operation modes are reported in figure
4.B.

The developed architecture is a modular configurable parallel architecture that implements the
concept of Processing-in-Memory to perform bitwise logic operations directly inside the memory,
making it suitable for other applications other than Bitmap indexing, as long as they are based on
bitwise.

5. Results and Conclusions

The architecture was fully developed in VHDL (VHSIC Hardware Description Language). In
order to evaluate its performance a 8.704 KB square memory array was analysed. The array distribution
consisted in 16 banks with 16 bit data size. To ease the simulation process a Matlab program was
developed for the creation of the queries to feed to the PIM architecture. All eight operation modes
were tested with Modelsim to ensure correct functioning. An example of operation mode is reported in
figure 5, it shows an example of logic behavior (expcted and simulated) of the proposed architecture.

The architecture was later synthesized with Synopsys Design Compiler using 45nm BULK and
28nm FDSOI CMOS technologies (table 1). By using Synopsys Design Compiler latches and logic gates

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2020 doi:10.20944/preprints202002.0294.v1

Peer-reviewed version available at Sensors 2020, 20, 1681; doi:10.3390/s20061681

https://doi.org/10.20944/preprints202002.0294.v1
https://doi.org/10.3390/s20061681

10 of 13

A)

B)

Figure 5. A) Expected waveform of a PIM multiple operations. B) Simulated waveform of a PIM
multiple-bank operation

are used to implement the memory cell, so the results are not optimized as they will be if a custom
transistor layout was created for the memory cell.

Table 1. Synthesis results for 45nm and 28 nm CMOS technologies

Parameter Value (45nm) Value (28nm)
Total area [mm2] 2.33 1.058

fCLK [MHz] 153.4 574.7
Total Power [mW] 49.7 14.07

An interesting point is the relation between the number of the segments and the resulting delay.
An analysis was carried out with 8 bit and 16 bit input data size (figure 6). As it shows the delay
reduces considerably with a bigger amount of segments. Indeed, the architecture under consideration
was synthesized with a value D of 8 to achieve best speed.

One of the main goal this paper aimed to fulfill is the high level of concurrency. This was
accomplished thanks to the internal structure of the array, distributed on banks which are capable of
working both independently and with each other, providing flexibility in the position of the operands
that are called to act in the query. To execute a simple query only one cycle is required. Thanks to
the modular structure of the array, the maximum throughput achievable working in parallel in PIM
multiple banks mode is:

throughputmaxsimple = fCLK · Nops

As for composed query two cycles are required to complete the operations. The resulting maximum
throughput operating in PIM multiple composed mode is:

throughputmaxcomposed = fCLK
2 · Nops

So, assuming to execute a different query in each of the 16 available banks, we will reach a
maximum throughput of 2.45Gop/s and 9.2Gop/s for 45nm and 28nm respectively. The performance

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2020 doi:10.20944/preprints202002.0294.v1

Peer-reviewed version available at Sensors 2020, 20, 1681; doi:10.3390/s20061681

https://doi.org/10.20944/preprints202002.0294.v1
https://doi.org/10.3390/s20061681

11 of 13

2 3 4 5 6 7 8

D

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
e

la
y
 [

n
s
]

N = 8 bit

N = 16 bit

Figure 6. Relation between number of segments in the counter and resulting delay

of the proposed PIM architecture was compared with results of other in-memory proposals found in
[29] (table 2).

Table 2. Clock cycles comparison for a single query execution

f = A · B f = A · (B · C)
Pinatubo[21] 5 9
RIMPA[28] 3 5
PIMA-Logic[29] 1 3
PIM 1 2

Noticeably, operations in the proposed PIM array take less clock time compared to other solutions.
Moreover, it should be taken into consideration that executing multiple parallel operations would
not change the number of clock cycles required. This shows how the throughput mentioned above
is obtained. Thus, the maximum degree of parallelism achievable is correspondent to the number of
the available banks. Moreover, it is possible to scale the architecture to bigger dimensions as it was
conceived as modular, meaning it can be composed with as many banks as wanted. Another possibility
is to develop a 3D structure in order to enhance performance. Nonetheless, it would be easy to modify
the architecture to make it fit for other types of operations. This results, coupled with the flexibility of
the architecture, highlight the potential of the proposed architecture.

1. Santoro, G.; Turvani, G.; Graziano, M. New Logic-In-Memory Paradigms: An Architectural and
Technological Perspective. Micromachines 2019, 10. doi:10.3390/mi10060368.

2. Andrighetti, M.; Turvani, G.; Santoro, G.; Vacca, M.; Ruo Roch, M.; Graziano, M.; Zamboni, M. Bitmap
Index: a Processing-in-Memory reconfigurable implementation. Proceedings of Applications in Electronics
Pervading Industry, Environment and Society (ApplePies), 2019, Vol. in press.

3. Matsunaga, S.; Hayakawa, J.; Ikeda, S.; Miura, K.; Endoh, T.; Ohno, H.; Hanyu, T. MTJ-based nonvolatile
logic-in-memory circuit, future prospects and issues. 2009 Design, Automation Test in Europe Conference
Exhibition, 2009, pp. 433–435. doi:10.1109/DATE.2009.5090704.

4. HANYU, T. CHALLENGE OF MTJ-BASED NONVOLATILE LOGIC-IN-MEMORY
ARCHITECTURE FOR DARK-SILICON LOGIC LSI. SPIN 2013,
03, 1340014, [http://www.worldscientific.com/doi/pdf/10.1142/S2010324713400146].
doi:10.1142/S2010324713400146.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2020 doi:10.20944/preprints202002.0294.v1

Peer-reviewed version available at Sensors 2020, 20, 1681; doi:10.3390/s20061681

https://doi.org/10.3390/mi10060368
https://doi.org/10.1109/DATE.2009.5090704
http://xxx.lanl.gov/abs/http://www.worldscientific.com/doi/pdf/10.1142/S2010324713400146
https://doi.org/10.1142/S2010324713400146
https://doi.org/10.20944/preprints202002.0294.v1
https://doi.org/10.3390/s20061681

12 of 13

5. Turvani, G.; Bollo, M.; Vacca, M.; Cairo, F.; Zamboni, M.; Graziano, M. Design of MRAM-Based Magnetic
Logic Circuits. IEEE Transactions on Nanotechnology 2017, 16, 851–859. doi:10.1109/TNANO.2016.2641444.

6. Chang, L.; Wang, Z.; Zhang, Y.; Zhao, W. Reconfigurable processing in memory architecture based on spin
orbit torque. 2017 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), 2017,
pp. 95–96. doi:10.1109/NANOARCH.2017.8053713.

7. Jiang, L.; Kim, M.; Wen, W.; Wang, D. XNOR-POP: A processing-in-memory architecture for binary
Convolutional Neural Networks in Wide-IO2 DRAMs. 2017 IEEE/ACM International Symposium on Low
Power Electronics and Design (ISLPED), 2017, pp. 1–6. doi:10.1109/ISLPED.2017.8009163.

8. Zhu, Q.; Akin, B.; Sumbul, H.E.; Sadi, F.; Hoe, J.C.; Pileggi, L.; Franchetti, F. A 3D-stacked logic-in-memory
accelerator for application-specific data intensive computing. 2013 IEEE International 3D Systems
Integration Conference (3DIC), 2013, pp. 1–7. doi:10.1109/3DIC.2013.6702348.

9. Kim, D.H.; Athikulwongse, K.; Healy, M.B.; Hossain, M.M.; Jung, M.; Khorosh, I.; Kumar, G.; Lee,
Y.J.; Lewis, D.L.; Lin, T.W.; Liu, C.; Panth, S.; Pathak, M.; Ren, M.; Shen, G.; Song, T.; Woo, D.H.;
Zhao, X.; Kim, J.; Choi, H.; Loh, G.H.; Lee, H.H.S.; Lim, S.K. Design and Analysis of 3D-MAPS (3D
Massively Parallel Processor with Stacked Memory). IEEE Transactions on Computers 2015, 64, 112–125.
doi:10.1109/TC.2013.192.

10. Chi, P.; Li, S.; Xu, C.; Zhang, T.; Zhao, J.; Liu, Y.; Wang, Y.; Xie, Y. PRIME: A Novel
Processing-in-Memory Architecture for Neural Network Computation in ReRAM-Based Main Memory.
2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), 2016, pp. 27–39.
doi:10.1109/ISCA.2016.13.

11. Huangfu, W.; Li, S.; Hu, X.; Xie, Y. RADAR: A 3D-ReRAM based DNA Alignment Accelerator
Architecture. 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), 2018, pp. 1–6.
doi:10.1109/DAC.2018.8465882.

12. Su, F.; Chen, W.H.; Xia, L.; Lo, C.P.; Tang, T.; Wang, Z.; Hsu, K.H.; Cheng, M.; Li, J.Y.; Xie, Y.; Wang, Y.;
Chang, M.F.; Yang, H.; Liu, Y. A 462GOPs/J RRAM-based nonvolatile intelligent processor for energy
harvesting IoE system featuring nonvolatile logics and processing-in-memory. 2017 Symposium on VLSI
Technology, 2017, pp. T260–T261. doi:10.23919/VLSIT.2017.7998149.

13. Han, L.; Shen, Z.; Shao, Z.; Huang, H.H.; Li, T. A novel ReRAM-based processing-in-memory architecture
for graph computing. 2017 IEEE 6th Non-Volatile Memory Systems and Applications Symposium
(NVMSA), 2017, pp. 1–6. doi:10.1109/NVMSA.2017.8064464.

14. Gaillardon, P.E.; Amarú, L.; Siemon, A.; Linn, E.; Waser, R.; Chattopadhyay, A.; Micheli, G.D. The
Programmable Logic-in-Memory (PLiM) computer. 2016 Design, Automation Test in Europe Conference
Exhibition (DATE), 2016, pp. 427–432.

15. Bhattacharjee, D.; Devadoss, R.; Chattopadhyay, A. ReVAMP: ReRAM based VLIW architecture for
in-memory computing. Design, Automation Test in Europe Conference Exhibition (DATE), 2017, 2017, pp.
782–787. doi:10.23919/DATE.2017.7927095.

16. Zhang, D.; Jayasena, N.; Lyashevsky, A.; Greathouse, J.L.; Xu, L.; Ignatowski, M. TOP-PIM:
Throughput-oriented Programmable Processing in Memory. Proceedings of the 23rd International
Symposium on High-performance Parallel and Distributed Computing; ACM: New York, NY, USA,
2014; HPDC ’14, pp. 85–98. doi:10.1145/2600212.2600213.

17. Draper, J.; Chame, J.; Hall, M.; Steele, C.; Barrett, T.; LaCoss, J.; Granacki, J.; Shin, J.; Chen, C.; Kang, C.W.;
Kim, I.; Daglikoca, G. The Architecture of the DIVA Processing-in-memory Chip. Proceedings of the
16th International Conference on Supercomputing; ACM: New York, NY, USA, 2002; ICS ’02, pp. 14–25.
doi:10.1145/514191.514197.

18. Gokhale, M.; Holmes, B.; Iobst, K. Processing in memory: the Terasys massively parallel PIM array.
Computer 1995, 28, 23–31. doi:10.1109/2.375174.

19. Ahn, J.; Hong, S.; Yoo, S.; Mutlu, O.; Choi, K. A scalable processing-in-memory accelerator for parallel
graph processing. 2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA), 2015, pp. 105–117. doi:10.1145/2749469.2750386.

20. Xiao, Y.; Nazarian, S.; Bogdan, P. Prometheus: Processing-in-memory heterogeneous architecture design
from a multi-layer network theoretic strategy. 2018 Design, Automation Test in Europe Conference
Exhibition (DATE), 2018, pp. 1387–1392. doi:10.23919/DATE.2018.8342229.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2020 doi:10.20944/preprints202002.0294.v1

Peer-reviewed version available at Sensors 2020, 20, 1681; doi:10.3390/s20061681

https://doi.org/10.1109/TNANO.2016.2641444
https://doi.org/10.1109/NANOARCH.2017.8053713
https://doi.org/10.1109/ISLPED.2017.8009163
https://doi.org/10.1109/3DIC.2013.6702348
https://doi.org/10.1109/TC.2013.192
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1109/DAC.2018.8465882
https://doi.org/10.23919/VLSIT.2017.7998149
https://doi.org/10.1109/NVMSA.2017.8064464
https://doi.org/10.23919/DATE.2017.7927095
https://doi.org/10.1145/2600212.2600213
https://doi.org/10.1145/514191.514197
https://doi.org/10.1109/2.375174
https://doi.org/10.1145/2749469.2750386
https://doi.org/10.23919/DATE.2018.8342229
https://doi.org/10.20944/preprints202002.0294.v1
https://doi.org/10.3390/s20061681

13 of 13

21. Li, S.; Xu, C.; Zou, Q.; Zhao, J.; Lu, Y.; Xie, Y. Pinatubo: A processing-in-memory architecture for bulk
bitwise operations in emerging non-volatile memories. 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC), 2016, pp. 1–6. doi:10.1145/2897937.2898064.

22. Seshadri, V.; Lee, D.; Mullins, T.; Hassan, H.; Boroumand, A.; Kim, J.; Kozuch, M.A.; Mutlu, O.; Gibbons,
P.B.; Mowry, T.C. Ambit: In-memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM
Technology. Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture;
ACM: New York, NY, USA, 2017; MICRO-50 ’17, pp. 273–287. doi:10.1145/3123939.3124544.

23. Imani, M.; Gupta, S.; Rosing, T. Ultra-Efficient Processing In-Memory for Data Intensive Applications.
Proceedings of the 54th Annual Design Automation Conference 2017; ACM: New York, NY, USA, 2017;
DAC ’17, pp. 6:1–6:6. doi:10.1145/3061639.3062337.

24. Tang, Y.; Wang, Y.; Li, H.; Li, X. ApproxPIM: Exploiting realistic 3D-stacked DRAM for energy-efficient
processing in-memory. 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC),
2017, pp. 396–401. doi:10.1109/ASPDAC.2017.7858355.

25. Yang, K.; Karam, R.; Bhunia, S. Interleaved logic-in-memory architecture for energy-efficient fine-grained
data processing. 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS),
2017, pp. 409–412. doi:10.1109/MWSCAS.2017.8052947.

26. Sterling, T.L.; Zima, H.P. Gilgamesh: A Multithreaded Processor-In-Memory Architecture for Petaflops
Computing. Supercomputing, ACM/IEEE 2002 Conference, 2002, pp. 48–48. doi:10.1109/SC.2002.10061.

27. Azarkhish, E.; Rossi, D.; Loi, I.; Benini, L. Design and Evaluation of a Processing-in-Memory Architecture
for the Smart Memory Cube. Proceedings of the 29th International Conference on Architecture of
Computing Systems – ARCS 2016 - Volume 9637; Springer-Verlag New York, Inc.: New York, NY, USA,
2016; pp. 19–31. doi:10.1007/978-3-319-30695-7_2.

28. Angizi, S.; He, Z.; Parveen, F.; Fan, D. RIMPA: A New Reconfigurable Dual-Mode In-Memory Processing
Architecture with Spin Hall Effect-Driven Domain Wall Motion Device. 2017 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2017, pp. 45–50. doi:10.1109/ISVLSI.2017.18.

29. Angizi, S.; He, Z.; Fan, D. PIMA-Logic: A Novel Processing-in-Memory Architecture for Highly Flexible
and Energy-Efficient Logic Computation. 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC), 2018, pp. 1–6. doi:10.1109/DAC.2018.8465706.

30. https://docs.oracle.com/cd/A84870_01/doc/server.816/a76994/indexes.htm.
31. https://en.wikipedia.org/wiki/Column-oriented_DBMS.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 February 2020 doi:10.20944/preprints202002.0294.v1

Peer-reviewed version available at Sensors 2020, 20, 1681; doi:10.3390/s20061681

https://doi.org/10.1145/2897937.2898064
https://doi.org/10.1145/3123939.3124544
https://doi.org/10.1145/3061639.3062337
https://doi.org/10.1109/ASPDAC.2017.7858355
https://doi.org/10.1109/MWSCAS.2017.8052947
https://doi.org/10.1109/SC.2002.10061
https://doi.org/10.1007/978-3-319-30695-7_2
https://doi.org/10.1109/ISVLSI.2017.18
https://doi.org/10.1109/DAC.2018.8465706
https://docs.oracle.com/cd/A84870_01/doc/server.816/a76994/indexes.htm
https://en.wikipedia.org/wiki/Column-oriented_DBMS
http://creativecommons.org/licenses/by/4.0/.
https://doi.org/10.20944/preprints202002.0294.v1
https://doi.org/10.3390/s20061681

