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1. Introduction

The classical Banach contraction principle [6] continues to be the soul of metric fixed
point theory which state that, every contraction mapping S defined on a complete metric
space (M,ρ) has a unique fixed point. With a view to have wide range of applications,
this principle has been improved, extended and generalized in many directions (e.g.
[3, 7, 13, 16]) which contains several novel generalization. In the present context an
effective generalization given by Jleli and Samet [13] is worth noting wherein authors
introduce the idea of θ-contractions (or JS-contractions).

In 1969, Nadler [18] extended Banach contraction principle to multi-valued mappings
and begun the study of fixed point theory of multi-valued contractions. For the sake of
completeness, we recollect few basic notions and related results regarding multi-valued
mappings.

Let (M,ρ) be a metric space and CB(M) be the family of all nonempty closed and
bounded subsets of M . Let K(M) be the family of all nonempty compact subsets of
M . Now, define H : CB(M)× CB(M)→ R by

H(U, V ) = max
{

sup
u∈U

D(u, V ), sup
v∈V

D(v, U)
}
, U, V ∈ CB(M).

Then H is a metric on CB(M) known as Pompeiu-Hausdorff metric, where

D(u, V ) := inf{ρ(u, v) : v ∈ V }.
1
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Let P(M) denotes the family of all nonempty subsets of M and S : M → P (M). An
element u ∈M is said to be a fixed point of S if u ∈ Su (Fix(S) denotes the set of all
such points).

Now, we are equipped to state Nadler’s theorem as follows:

Theorem 1.1. [18] Let (M,ρ) be a complete metric space and S : M → CB(M) a
multi-valued contraction; i.e., there exists δ ∈ [0, 1) such that

H(Su, Sv) ≤ δρ(u, v), for all u, v ∈M.

Then S has a fixed point.

Thereafter, vigorous studies were conducted to obtain a variety of generalizations,
extensions, and applications of Theorem 1.1 (e.g. [1,8,14,17,19]). With a similar quest,
Hançer et al. [9], extended the concept of θ-contractions to multi-valued mappings and
prove two nice fixed point results. Furthermore, Baghani and Ramezani [5] introduced
a new class of multi-valued mappings by utilizing the idea of arbitrary binary relations
between two sets.

Continuing this direction of research, in this paper, we introduce a relatively new
concept of multi-valued (θ,R)-contractions and obtain some fixed point results for a new
class of mappings proposed by Baghani and Ramezani [5]. Some illustrative examples
are also furnished to exhibit the utility of our obtained results besides deducing some
relation-theoretic existence and uniqueness results for single-valued mappings. Further,
we show the applicability of our newly obtained results by investigating the existence and
uniqueness of a solution for Volterra type integral equation under suitable conditions.

2. Preliminaries

We begin this section by describing some terminological and notational conventions
that will be used through out the paper.

In what follows, we denote the sets of positive integers, nonnegative integers, rational
numbers and real numbers by N,N0,Q and R respectively.

Following [10, 13], let θ : (0,∞) → (1,∞) be a function satisfying the following
conditions:

(Θ1) θ is nondecreasing;
(Θ2) for each sequence {βn}⊂ (0,∞), limn→∞ θ(βn) = 1 ⇐⇒ limn→∞ βn = 0+;

(Θ3) there exist κ ∈ (0, 1) and γ ∈ (0,∞] such that limβ→0+
θ(β)−1
βκ

= γ;

(Θ4) θ is continuous.

Also, We use the following notation:

• By Θ1,2,3,4, we denote all the functions θ satisfying (Θ1)− (Θ4);
• By Θ1,2,3, we denote all the functions θ satisfying (Θ1)− (Θ3);
• By Θ1,2,4, we denote all the functions θ satisfying (Θ1), (Θ2) and (Θ4);
• By Θ2,3, we denote all the functions θ satisfying (Θ2) and (Θ3);
• By Θ2,4, we denote all the functions θ satisfying (Θ2) and (Θ4);
• By Θ2, we denote all the functions θ satisfying (Θ2).

The following are some examples of such functions.

Example 2.1. [13] Define θ : (0,∞)→ (1,∞) by θ(β) = e
√
β, then θ ∈ Θ1,2,3,4.
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Example 2.2. [12] Define θ : (0,∞)→ (1,∞) by θ(β) = e
√

β
2
+sinβ, then θ ∈ Θ2,3.

Example 2.3. [12] Define θ : (0,∞)→ (1,∞) by θ(β) = e
β
2
+sinβ, then θ ∈ Θ2,4.

Now, we add the following examples to this effect.

Example 2.4. Define θ : (0,∞)→ (1,∞) by

θ(β) =

{
e
√
β, β ≤ k,

e2(k+1), β > k,

where k is any fixed real number greater than or equal to 1. Then θ ∈ Θ1,2,3.

Example 2.5. Define θ : (0,∞)→ (1,∞) by θ(β) = ee
− 1
β

, then θ ∈ Θ1,2,4.

For more examples one can see [11–13].

The notion of θ-contractions was introduced by Jleli and Samet [13] as follows:

Definition 2.1. [13] Let (M,ρ) be a metric space and θ ∈ Θ1,2,3. Then S : M →M is
called a θ-contraction mapping if ∃λ ∈ (0, 1) such that

ρ(Su, Sv) > 0⇒ θ(ρ(Su, Sv)) ≤ [θ(ρ(u, v))]λ, for all u, v ∈M. (2.1)

Considering this new concept, the authors in [13] proved the following result.

Theorem 2.1. (Corollary 2.1 of [13]) On a complete metric space, every θ-contraction
mapping has a unique fixed point.

Imdad et al. [12] noticed that Theorem 2.1 can be proved without the assumption θ1,
from which they have introduced the notion of weak θ-contractions. Inspired by this, we
deduce some relation-theoretic results (without assumption θ1) for single-valued map-
pings.

On the other hand, the concept of multi-valued θ-contractions was introduced by
Hançer et al. [9] as follows:

Definition 2.2. [9] Let (M,ρ) be a metric space and S : M →M . Then S is said to be
a multi-valued θ-contraction mapping if there exist λ ∈ (0, 1) and θ ∈ Θ1,2,3 such that

H(Su, Sv) > 0⇒ θ(H(Su, Sv)) ≤ [θ(ρ(u, v))]λ, for all u, v ∈M. (2.2)

Utilizing the preceding definition, authors in [9] proved the following result.

Theorem 2.2. [9] Let (M,ρ) be a complete metric space and S : M → K(M) a multi-
valued θ-contraction for some θ ∈ Θ1,2,3. Then S has a fixed point.

Also, Hançer et al. [9] showed that one may replace K(M) by CB(M), by assuming
the following additional condition on θ :

(θ′4) θ(inf B) = inf θ(B), ∀B ⊂ (0,∞) with inf B > 0.

Notice that if θ satisfies (θ1), then it satisfies (θ′4) ⇐⇒ θ is right continuous.
Let Θ1,2,3,4′ be the class of all functions θ satisfying (θ1), (θ2), (θ3) and (θ′4).

Theorem 2.3. [9] Let (M,ρ) be a complete metric space and S : M → CB(M) a
multi-valued θ-contraction mapping for some θ ∈ Θ1,2,3,4′. Then S has a fixed point.
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3. Relation theoretic notions and auxiliary results

To make our paper self contained we provide the following definitions and notions.
Let M be a nonempty set. A subset R of M ×M is called a binary relation on M .
Trivially, ∅ and M ×M are binary relations on M known as the empty relation and
the universal relation, respectively. A binary relation R on M is said to be transitive
if (u, v) ∈ R and (v, w) ∈ R implies (u,w) ∈ R, for any u, v, w ∈ M . Throughout this
paper R stands for a nonempty binary relation. The inverse of R is denoted by R−1
and is defined by R−1 := {(u, v) ∈ M ×M : (v, u) ∈ R} and Rs = R ∪ R−1. The
elements u and v of M are said to be R-comparable if (u, v) ∈ R or (v, u) ∈ R and is
denoted by [u, v] ∈ R.
Proposition 3.1. [3] For a binary relation R defined on a nonempty set M ,

(u, v) ∈ Rs ⇔ [u, v] ∈ R.
Definition 3.1. [3] Let R be a binary relation on a nonempty set M . A sequence
{un} ⊆M is said to be R-preserving if

(un, un+1) ∈ R, ∀n ∈ N0.

Definition 3.2. [2] Let (M,ρ) be a metric space and R a binary relation on M . Then
M is said to be R-complete if every R-preserving Cauchy sequence converges to some
point in M .

Remark 3.1. Every complete metric space is R-complete, for arbitrary binary relation
R. On the other hand, under the universal relation the notion of R-completeness
coincides with the usual completeness.

Definition 3.3. [3] Let (M,ρ) be a metric space and R a binary relation on M . Then
R is said to be ρ-self-closed if whenever R-preserving sequence {un} converges to u,
then there exists a subsequence {unk} of {un} with [unk , u] ∈ R, ∀k ∈ N0.

Definition 3.4. [2] Let M be a nonempty set equipped with a binary relation R.
Then M is said to be locally transitive if for any (effective) R-preserving sequence
{un} ⊆M (with range A := {un : n ∈ N0}), the binary relation R|A is transitive, where
R|A = R∩ (A× A).

Definition 3.5. [3] Let M be a nonempty set and S : M → M . A binary relation R
on M is called S-closed if for any u, v ∈M ,

(u, v) ∈ R ⇒ (Su, Sv) ∈ R.
Definition 3.6. [4] Let (M,ρ) be a metric space,R a binary relation on M , S : M →M
and u ∈ M . We say that S is R-continuous at u if for any R-preserving sequence

{un} ⊆M such that un
ρ−→ u, we have Sun

H−→ Su. Moreover, S is calledR-continuous
if it is R-continuous at each point of M .

Remark 3.2. Every continuous mapping is R-continuous, for any arbitrary binary rela-
tion R. On the other hand, R-continuity coincides with the usual continuity under the
universal relation.

Definition 3.7. [15] For u, v ∈ M , a path of length n (n ∈ N) in R from u to v is a
finite sequence {u0, u1, u2, ..., un} ⊆ M such that u0 = u, un = v with (ui, ui+1) ∈ R,
for each i ∈ {0, 1, ..., n− 1}.
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Definition 3.8. [4] A subset S ⊆ M is called R-connected if for each u, v ∈ S, there
exists a path in R from u to v.

Now, we have some definitions which play a crucial role in the forthcoming sections.

Definition 3.9. [5] Let U, V be two nonempty subsets of a nonempty set M and R a
binary relation on M . Define binary relations R1 and R2 between U and V as follows:

(i) (U, V ) ∈ R1 if (u, v) ∈ R, for all u ∈ U and v ∈ V .
(ii) (U, V ) ∈ R2 if for each u ∈ U , ∃v ∈ V such that (u, v) ∈ R.

Remark 3.3. Clearly, if (U, V ) ∈ R1 then (U, V ) ∈ R2 but the converse is not true in
general.

Definition 3.10. [5] Let (M,ρ) be a metric space equipped with a binary relation R
and S : M → CB(M). Then S is called

(i) monotone of type (I) if

u, v ∈M, (u, v) ∈ R implies that (Su, Sv) ∈ R1;

(ii) monotone of type (II) if

u, v ∈M, (u, v) ∈ R implies that (Su, Sv) ∈ R2.

Remark 3.4. If S is monotone of type (I) then by Remark 3.3 it is monotone of type
(II), but the converse may not be true in general.

Definition 3.11. Let (M,ρ) be a metric space, R a binary relation on M , S : M →
CB(M) and u ∈ M . We say that S is RH-continuous at u if for any R-preserving

sequence {un} ⊆ M such that un
ρ−→ u, we have Sun

H−→ Su (as n → ∞). Moreover,
S is called RH-continuous if it is RH-continuous at each point of M .

4. Main Results

We begin this section by introducing the notion of multi-valued (θ,R)-contractions
as follows:

Definition 4.1. Let (M,ρ) be a metric space endowed with a binary relation R and
S : M → CB(M). Given θ ∈ Θ1,2,3 (or θ ∈ Θ1,2,4), we say that S is multi-valued
(θ,R)-contraction mapping if there exists λ ∈ (0, 1) such that

θ(H(Su, Sv)) ≤ [θ(ρ(u, v))]λ, ∀u, v ∈M with (u, v) ∈ R∗ (4.1)

where (u, v) ∈ R∗ := {(u, v) ∈ R : H(Su, Sv) > 0}.

Remark 4.1. Due to the symmetricity of the metrics ρ and H it is clear that, if equation
(4.1) is satisfied for (u, v) ∈ R, then it is also satisfied for (v, u) ∈ R and so for [u, v] ∈ R.

Remark 4.2. Under the universal relation (in case θ ∈ Θ1,2,3), Definition 4.1 coincides
with Definition 2.2.

Now, we are in position to state and prove our first main result, which runs as follows.

Theorem 4.1. Let (M,ρ) be a metric space endowed with a binary relation R and
S : M → K(M). Suppose that the following conditions are fulfilled:

(a) S is monotone of type (I);

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 February 2020                   doi:10.20944/preprints202002.0303.v1

Peer-reviewed version available at Mathematics 2020, 8, 695; doi:10.3390/math8050695

https://doi.org/10.20944/preprints202002.0303.v1
https://doi.org/10.3390/math8050695


6 HASANUZZAMAN ET AL.

(b) there exists u0 ∈M such that u0R2Su0;
(c) S is multi-valued (θ,R)-contraction with θ ∈ Θ1,2,3;
(d) M is R-complete;
(e) one of the following holds:

(e′) S is RH-continuous, or
(e′′) R is ρ-self-closed.

Then S has a fixed point.

Proof. In view of assumption (b), there exists u0 ∈M such that u0R2Su0. This implies
that there exists u1 ∈ Su0 such that u0Ru1. As S is monotone of type (I), we have
Su0R1Su1. If u1 ∈ Su1, then u1 is a fixed point of S and we are done. Assume that
u1 /∈ Su1, then Su0 6= Su1, i.e. H(Su0, Su1) > 0. Using the condition (c), we have

θ(H(Su0, Su1)) ≤ [θ(ρ(u0, u1))]
λ. (4.2)

Also, we have

D(u1, Su1) ≤ H(Su0, Su1). (4.3)

Making use of (θ1), (4.2) and (4.3), we have

θ(D(u1, Su1)) ≤ θ(H(Su0, Su1)) ≤ [θ(ρ(u0, u1))]
λ. (4.4)

As u1 ∈ Su0 and Su1 is compact, there exists u2 ∈ Su1 with (u1, u2) ∈ R such that

D(u1, Su1) = ρ(u1, u2). (4.5)

Now, from (4.4) and (4.5), we have

θ(ρ(u1, u2)) ≤ [θ(ρ(u1, u0))]
λ.

Recursively, we obtain a sequence {un} in M such that un+1 ∈ Sun with (un, un+1) ∈ R
(i.e {un} is an R-preserving sequence) and if un /∈ Sun (for all n ∈ N), then

θ(ρ(un, un+1)) ≤ [θ(ρ(un, un−1))]
λ, for all n ∈ N0. (4.6)

Otherwise, S has a fixed point. Denote αn = ρ(un, un+1), ∀n ∈ N0. Then αn > 0
∀n ∈ N0. Now, in view of (4.6), we have (∀n ∈ N0)

θ(αn) ≤ [θ(αn−1)]
λ ≤ [θ(αn−1)]

λ2 ≤ ... ≤ [θ(α0)]
λn ,

which yields that

1 < θ(αn) ≤ [θ(α0)]
λn , ∀n ∈ N0. (4.7)

Taking n→∞ in (4.7), we obtain

lim
n→∞

θ(αn) = 1,

which on using (θ2) gives rise

lim
n→∞

αn = 0+. (4.8)

Using (θ3), ∃κ ∈ (0, 1) and γ ∈ (0,∞] such that

lim
n→∞

θ(αn)− 1

(αn)κ
= γ.
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There are two cases depending on γ.
Case 1. when γ < ∞. Take A = γ

2
, then by the definition of the limit, there exists

n0 ∈ N such that ∣∣∣∣θ(αn)− 1

(αn)r

∣∣∣∣ ≤ A, for all n ≥ n0,

which implies that
θ(αn)− 1

(αn)r
≥ γ − A = A, for all n ≥ n0,

yielding there by

n(αn)r ≤ nB[θ(αn)− 1], (where B =
1

A
) for all n ≥ n0.

Case 2. when γ=∞. Let A∗ > 0 be any positive real number. Then by the definition
of limit, ∃n1 ∈ N such that

θ(αn)− 1

(αn)r
≥ A∗, for all n ≥ n1,

which yields

n(αn)r ≤ nB∗[θ(αn)− 1], (where B∗ =
1

A∗
) for all n ≥ n1.

Thus, in both the above cases, there exists C > 0 (real number) and a positive integer
n2 ∈ N (where n2 = max{n0, n1}), such that

n(αn)r ≤ nC[θ(αn)− 1], for all n ≥ n2.

Using (4.7), we have

n(αn)r ≤ nC[[θ(α0)]
λn − 1].

Taking n→∞ in the above inequality, we get

lim
n→∞

n(αn)r = 0.

Therefore, there exists n3 ∈ N such that n(αn)r ≤ 1, for all n ≥ n3. Which amounts to
say that

αn ≤
1

n
1
r

, for all n ≥ n3.

Now, our aim is to show that {un} is a Cauchy sequence, for this let m,n ∈ N with
m > n ≥ n2, then we have

ρ(un, um) ≤ ρ(un, un+1) + ρ(un+1, un+2) + ...+ ρ(um−1, um)

=
m−1∑
j=n

αj ≤
∞∑
j=n

αj ≤
∞∑
j=n

1

j
1
r

.

As
∑∞

j=n
1

j
1
r
<∞, we get

lim
n,m→∞

ρ(un, um) = 0.

Thus, the sequence {un} is R-preserving Cauchy sequence in (M,ρ). By the condition
(d), M is R-complete, then there exists u∗ ∈ M such that limn→∞ un = u∗. Now, in
view of the condition (e), we have two alternative cases. Firstly, if (e′) holds, then
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due to RH-continuity of S, we must have H(Sun, Su
∗) → 0 as n → ∞. Now, as

un+1 ∈ Sun,∀n ∈ N0, we get

0 ≤ D(un+1, Su
∗) ≤ H(Sun, Su

∗), ∀n ∈ N0

which implies that

0 ≤ lim
n→∞

D(un+1, Su
∗) ≤ lim

n→∞
H(Sun, Su

∗) = 0.

That is, limn→∞D(un+1, Su
∗) = 0. From which we obtain un+1 ∈ Su∗ (as n → ∞).

Since Su∗ is closed and un+1 → u∗(as n → ∞) then u∗ ∈ Su∗. Hence, S has a fixed
point.

Secondly, assume that the condition (e′′) holds. Then by Definition 3.3, there exists
a subsequence {unk} of {un} with [unk , u] ∈ R, ∀k ∈ N0. Also, from (θ1) and (4.1), we
have

H(Su, Sv) < ρ(u, v), ∀u, v ∈M with (u, v) ∈ R∗

Now, using the condition (c), we obtain

D(unk+1, Su
∗) ≤ H(Sunk , Su

∗) ≤ ρ(unk , u
∗), ∀k ∈ N0.

Taking limit as n → ∞, we have D(u∗, Su∗) = 0, which implies that u∗ ∈ Su∗ = Su∗

(as Su∗ is closed). Thus, u∗ is a fixed point of S. This finishes the proof. �

Remark 4.3. The following question naturally arises: Can we replace K(M) by CB(M)
in Theorem 4.1? The answer to this question is No. The following example substantiates
the answer.

Example 4.1. Let M = [0, 2] and define a metric ρ on M by (for all u, v ∈M)

ρ(u, v) =

{
0, u = v
µ+ |u− v|, u 6= v,

where µ be any fixed real number such that µ ≥ 1. Define a binary relation R on M as
follows:

R := {(u, v) ∈ R ⇔ {u, v} ∩Q is singeltion, for all u, v ∈M}.
Then M is R-complete and R is d-self closed. Also, (M,ρ) is bounded metric space. All
subsets of M are closed as τρ generates discrete topology. Define a mapping S : M →
CB(M) by

Su =

{
QM , u ∈M \QM ,
M \QM , u ∈ QM ,

where QM = Q ∩M . Then S is not compact valued. Now, define θ : (0,∞) → (1,∞)
by

θ(β) =

{
e
√
β, β ≤ µ,

e2(µ+1), β > µ.

Clearly θ ∈ Θ1,2,3 and does not satisfy Θ4. Next, we will show that

θ(H(Su, Sv)) ≤ [θ(ρ(u, v))]1/2, ∀u, v ∈M with (u, v) ∈ R∗
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. Observe that (for all (u, v) ∈ R)

H(Su, Sv) = µ and ρ(u, v) = µ+ |u− v| > µ

⇒ θ(H(Su, Sv)) = e
√
µ and [θ(ρ(u, v))]1/2 = e(µ+1)

⇒ θ(H(Su, Sv)) ≤ [θ(ρ(u, v))]1/2.

Therefore, S is a multi-valued (θ,R)-contraction with θ ∈ Θ1,2,3. Hence, all the condi-
tions of Theorem 4.1 are satisfied but still S has no fixed point.

Next, we present the following result employing the relatively larger class CB(M)
instead of K(M).

Theorem 4.2. Let (M,ρ) be a complete metric space endowed with a locally transitive
binary relation R and S : M → CB(M). Suppose that the following conditions are
fulfilled:

(a) S is monotone of type (I);
(b) there exists u0 ∈M such that ({u0}, Su0) ∈ R2;
(c) S is multi-valued (θ,R)-contraction with θ ∈ Θ1,2,4;
(d) M is R-complete;
(e) one of the following holds:

(e′) either S is RH-continuous, or
(e′′) R is ρ-self-closed.

Then S has a fixed point.

Proof. In view of assumption (b), there exists u0 ∈M such that ({u0}, Su0) ∈ R2. This
implies that there exists u1 ∈ Su0 such that (u0, u1) ∈ R. As S is monotone of type
(I), we have (Su0, Su1) ∈ R1. Now, if u1 ∈ Su1, then u1 is a fixed point of S and
the proof is completed. Assume that u1 /∈ Su1, then Su0 6= Su1, i.e.,H(Su0, Su1) > 0.
Now, making use of the condition (c), we have

θ(H(Su0, Su1)) ≤ [θ(ρ(u0, u1))]
λ. (4.9)

Also, we have
D(u1, Su1) ≤ H(Su0, Su1).

Using (θ1) and (4.9), we obtain

θ(D(u1, Su1)) ≤ θ(H(Su0, Su1)) ≤ [θ(ρ(u0, u1))]
λ. (4.10)

Due to (θ4), we have
θ(D(u1, Su1)) = inf

v∈Su1
θ(ρ(u1, v)).

This together with (4.10) give rise

inf
v∈Su1

θ(ρ(u1, v)) ≤ [θ(ρ(u0, u1))]
λ < [θ(ρ(u0, u1))]

λ1 , (4.11)

where λ1 ∈ (c, 1). From (4.11), there exists u2 ∈ Su1 with (u1, u2) ∈ R such that

θ(ρ(u1, u2)) ≤ [θ(ρ(u0, u1))]
λ1 .

Again if u2 ∈ Su2, then we are done. Otherwise, by the same way we can find u3 ∈ Su2
with (u2, u3) ∈ R such that

θ(ρ(u2, u3)) ≤ [θ(ρ(u1, u2))]
λ1 .
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Continuing this process, we construct a sequence {un} in M such that un+1 ∈ Sun with
(un, un+1) ∈ R and if un /∈ Sun, then

θ(ρ(un, un+1)) ≤ [θ(ρ(un−1, un))]λ1 , for all n ∈ N. (4.12)

Otherwise, un is a fixed point of S. Denote αn = ρ(un, un+1), for all n ∈ N0. Then
αn > 0, for all n ∈ N0. Now, in view of (4.12), we have

θ(αn) ≤ [θ(αn−1)]
λ1 ≤ [θ(αn−1)]

λ21 ≤ ... ≤ [θ(α0)]
λn1 ,

which implise that
1 < θ(αn) ≤ [θ(α0)]

λn1 , for all n ∈ N0. (4.13)

Letting n→∞ in (4.13), we obtain

lim
n→∞

θ(αn) = 1. (4.14)

This together with (θ2), give rises limn→∞ αn = 0+, that is

lim
n→∞

ρ(un, un+1) = 0. (4.15)

Now, we show that {un} is a Cauchy sequence. Let on contrary {un} is not Cauchy,
then there exists an ε > 0 and two subsequences {un(k)} and {um(k)} of {un} such that

k ≤ n(k) < m(k), ρ(um(k)−1, un(k)) < ε ≤ ρ(um(k), un(k)) ∀ k ≥ 0, (4.16)

and
lim
k→∞

ρ(um(k), un(k)) = ε. (4.17)

Now, observe that

ε ≤ ρ(um(k), un(k))

≤ ρ(um(k), u(m(k)−1)) + ρ(um(k)−1 + un(k)−1) + ρ(un(k)−1, un(k))

≤ ρ(um(k), u(m(k)−1)) + ρ(um(k)−1 + un(k)) + 2ρ(un(k)−1, un(k)).

Making use of (4.15),(4.16),(4.17) and letting k →∞, we have

lim
k→∞

ρ(um(k)−1, un(k)−1) = ε. (4.18)

which implies that there exists n0 ∈ N0 such that ρ(um(k), un(k)) > 0 for all k ≥ n0 (due
to (4.17)). Since R is locally transitive, we have (un(k)−1, um(k)−1) ∈ R (as n(k) − 1 <
m(k)− 1). Using the condition (c), we have (for all k ≥ n0)

θ(ρ(un(k), um(k))) ≤ θ(H(Sun(k)−1, Sum(k)−1)) ≤ [θ(ρ(un(k)−1, um(k)−1))]
λ. (4.19)

Letting k →∞ in (4.19) and making use of Θ4, (4.17) and (4.18), we obtain θ(ε) ≤ θ(ε)λ,
which is a contradiction. Thus, {un} is an R-preserving Cauchy sequence. The rest of
the proof follows same lines as in the proof of Theorem 2.1. �

Now, we give the following example which exhibits the utility of our results.

Example 4.2. Let M = (0,∞) equipped with the usual metric ρ. Define a sequence
{σn} in M by

σn = 1 + 2 + ...+ n =
n(n+ 1)

2
, for all n ∈ N.

Now, consider a binary relation R on M as follows:

R := {(σ1, σ1), (σi, σj) : for 1 ≤ i < j, where i, j ∈ N}.
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Then, it is obvious that R is locally transitive and d-self-closed. Also M is R-complete.
Now, define a mapping S : M → CB(M) by

Su =


{u}, if 0 < u ≤ σ1;
{σ1}, if σ1 ≤ u ≤ σ2;

{σ1, σi +
(

σi+1−σi
σi+2−σi+1

)
(u− σi+1)}, if σi+1 ≤ u ≤ σi+2, i = 1, 2... .

Clearly, S is a monotone mapping of type (I) and {σ1}R2Sσ1. Now, observe that

σiRσj, Sσi 6= Sσj ⇔ (i ≥ 1, j > 3).

Let the function θ : (0,∞)→ (1,∞) be defined by

θ(β) := e
√
βeβ , ∀ β > 0.

Then θ ∈ Θ1,2,3,4. Now, we show that S satisfies (4.1), that is

H(Sσi, Sσj) 6= 0⇒ e
√
H(Sσi,Sσj)e

H(Sσi,Sσj) ≤ eλ
√
ρ(σi,σj)e

ρ(σi,σj)

, for some λ ∈ (0, 1),

or

H(Sσi, Sσj) 6= 0⇒ H(Sσi, Sσj)e
H(Sσi,Sσj)−ρ(σi,σj)

ρ(σi, σj)
≤ λ2, for some λ ∈ (0, 1). (4.20)

Now, consider two cases as follows:
Case 1. when i = 1 or 2, and j > 3. In this case, we get

H(Sσ1, Sσj)e
H(Sσ1,Sσj)−ρ(σ1,σj)

ρ(σ1, σj)
=

j2 − j − 2

j2 + j − 2
e−j

≤ e−1. (4.21)

Case 2. when j > i > 2, we have

H(Sσi, Sσj)e
H(Sσi,Sσj)−ρ(σi,σj)

ρ(σi, σj)
=

j + i− 1

j + i+ 1
ei−j

≤ e−1. (4.22)

Therefore, the inequality (4.20) is satisfied with λ = e−1/2. Hence, all the requirement
of Theorem 4.1 (also Theorem 4.2) are fulfilled (Fix(S) = (0, σ1]).

Remark 4.4. Observe that the results due to Hançer et al. [9] are not usable in the
context of Example 4.2 as S does not satisfy equation (2.2) on (0, σ1] and also the
underlying space is incomplete.

By putting Su = {Su} (for all u ∈ M), every single valued map can be treated as
a multi-valued map. Therefore using Theorems 4.1 and 4.2, we deduce two fixed point
results for single valued mappings as follows:

Theorem 4.3. Let (M,ρ) be a metric space endowed with a binary relation R and
S : M →M . Suppose the following conditions are fulfilled:

(a) R is S-closed;
(b) ∃u0 ∈M such that (u0, Su0) ∈ R;
(c) S is (θ,R)-contraction with θ ∈ Θ2,3;
(d) M is R-complete;
(e) one of the following holds:
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(e′) S is continuous, or
(e′′) R is ρ-self-closed.

Then S has a fixed point.

Theorem 4.4. Let (M,ρ) be a complete metric space endowed with a locally transitive
binary relation R and S : M →M . Suppose the following conditions are fulfilled:

(a) R is S-closed;
(b) ∃u0 ∈M such that (u0, Su0) ∈ R;
(c) S is (θ,R)-contraction with θ ∈ Θ2,4;
(d) M is R-complete;
(e) one of the following holds:

(e′) S is continuous, or
(e′′) R is ρ-self-closed.

Then S has a fixed point.

Remark 4.5. The monotonicity assumption on θ (namely θ1) can be removed in the
context of single-valued mappings and hence it is omitted in Theorems 4.3 and 4.4.

Next, we obtain a corresponding uniqueness result in this sequel as follows.

Theorem 4.5. Besides the assumptions of Theorem 4.3 (or Theorem 4.4), if Fix(S)
is Rs-connected, then the fixed point of S is unique.

Proof. On contrary, let us suppose that u, v ∈ Fix(S) such that u 6= v. Then we
construct a path of some finite length n from u to v in Rs say {u = u0, u1, u2, ..., un =
v} ⊆ Fix(S) (where ui 6= ui+1 for each i, (0 ≤ i ≤ n − 1), otherwise u = v, a
contradiction) with [ui, ui+1] ∈ R for each i, (0 ≤ i ≤ n − 1). As ui ∈ Fix(S), then
Sui = ui, for each i ∈ {0, 1, 2, ..., n}. By using the fact that S is (θ,R)-contraction, we
have (for all i, (0 ≤ i ≤ n− 1))

θ(ρ(ui, ui+1)) = θ(ρ(Sui, Sui+1)) ≤ [θ(ρ(ui, ui+1))]
λ, where λ ∈ (0, 1),

a contradiction. This concludes the proof. �

Remark 4.6. If we take θ(β) = e
√
β (θ ∈ Θ2,3), then Theorem 4.5 is a sharpened version

of the main result due to Alam and Imdad [3].

5. Application to Integral Equation

In this section, we show the applicability of our newly obtained by proving the exis-
tence and uniqueness of a positive solution for the integral equation of Volterra type as
follows:

u(t) =

∫ t

0

g(t, r, u(r))dr + β(t), ∀t ∈ I = [0, 1], (5.1)

where g : I×I×R→ R be an integrable function and β : I → [1,∞) is a given function.
Consider M = {u ∈ C(I,R) : u(t) > 0, for all t ∈ I}, where C(I,R) is the space of

all continuous functions u : I → R equipped with the Bielecki’s norm

‖u‖ = sup
t∈I

e−t|u(t)|.
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Define a metric ρ on M by ρ(u, v) = ‖u− v‖, for all u, v ∈M . Then (M,ρ) is a metric
space which is not complete.

Now, we are equipped to state and prove our result of the section which runs as
follows:

Theorem 5.1. Assume that the following conditions are satisfied:

(a1) g(t1, r1, u) ≥ 0, for all u ≥ 0 and t1, r1 ∈ I,
(a2) g is non-decreasing in the third variable and there exists h > 0 such that

|g(t, r, u)− g(t, r, v)| ≤ |u(t)− v(t)|
h‖u− v‖+ 1

,

∀ t, r ∈ I and u, v ≥ 0 with uv ≥ (u ∨ v), where u ∨ v = u or v.

Then the integral equation (5.1) has a positive solution.

Proof. Let us define a binary relation R on M as follows:

R := {uRv ⇔ u(t)v(t) ≥ (u(t) ∨ v(t)), for all t ∈ I}.

Since C(I,R) is a Banach space with Bielecki’s norm then for any R-preserving Cauchy
sequence {un} in M , it converges to some point u ∈ C(I,R). Now, fix t ∈ I, then by
the definition of R, we have

un(t)un+1(t) ≥ (un(t) ∨ un+1(t)), for all n ∈ N.

As un(t) > 0, ∀ n ∈ N, there exists a subsequence {unk} of {un} such that unk(t) ≥
1, ∀k ∈ N. This subsequence {unk(t)} of real numbers converges to u(t) which gives
rise u(t) ≥ 1. As t ∈ I is arbitrary, we have u ≥ 1 and consequently u ∈M . Therefore,
(M,ρ) is R-complete. In a similar fashion, one may prove that R is ρ-self-closed.
Consider a mapping S : M →M defined by

Su(t) =

∫ t

0

g(t, r, u(r))dr + β(t), u ∈ C(I,R).

Clearly, the solutions of (5.1) are nothing but fixed points of S.
Now, for all u, v ∈M with (u, v) ∈ R and t ∈ I, we have

Su(t) =

∫ t

0

g(t, r, u(r))dr + β(t) ≥ 1

⇒ Su(t)Sv(t) ≥ Su(t)

so that by the definition of R, we have (Su, Sv) ∈ R, i.e., R is S-closed. By the
definition of R, it is clear that R is also locally transitive. Furthermore, for any u ∈M ,
(u, Su) ∈ R.
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Next, for all u, v ∈M with (u, v) ∈ R and t ∈ I, consider

|Su(t)− Sv(t)| =

∣∣∣∣∫ t

0

(g(t, r, u(r))− g(t, r, v(r)))dr

∣∣∣∣
≤

∫ t

0

|(g(t, r, u(r))− g(t, r, v(r)))| dr

≤
∫ t

0

1

h‖u− v‖+ 1
(|u− v|e−t)etdr

≤ 1

h‖u− v‖+ 1

∫ t

0

‖u− v‖etdr

≤ ‖u− v‖
h‖u− v‖+ 1

et.

Thus, we obtain

|Su(t)− Sv(t)|e−t ≤ ‖u− v‖
h‖u− v‖+ 1

, ∀t ∈ I.

Taking supremum over both the sides, we have

‖Su− Sv‖ ≤ ‖u− v‖
h‖u− v‖+ 1

,

or
−1

‖Su− Sv‖
≤ −1

‖u− v‖
− h,

or
−1

ρ(Su, Sv)
≤ −1

ρ(u, v)
− h.

Now, define θ : (0,∞) → (1,∞) by θ(β) = ee
− 1
β

, then θ ∈ Θ1,2,4. Also S satisfies (4.1)
with this θ (and λ = e−h, h > 0). Therefore, all the requirement of Theorem 4.4 are
fulfilled. Consequently, S has a fixed point. �

Next, we obtain a corresponding uniqueness result of Theorem 5.1 as follows.

Theorem 5.2. Besides the assumptions of Theorem 5.1, if Fix(S) ⊆ {u ∈M : u(t) ≥
1, ∀t ∈ I}, then the solution of the integral equation (5.1) is unique.

Proof. Due to Theorem 5.1, the set Fix(S) is nonempty. Now, if Fix(S) ⊆ {u ∈ M :
u(t) ≥ 1, ∀t ∈ I}, then by the definition of R, we have Fix(S) is Rs-connected. Hence,
Theorem 4.5, ensures that Fix(S) is singleton set. Thus, the solution of the integral
equation (5.1) is unique. This establishes our result.

�
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